Ashokan Rail Trail Project 6 NYCRR PART 617.7 STATE ENVIRONMENTAL QUALITY REVIEW ACT NEGATIVE DECLARATION

NEGATIVE DECLARATION NOTICE OF DETERMINATION OF NON-SIGNIFICANCE

This Notice and Negative Declaration is issued pursuant to Part 617 of the implementing regulations pertaining to Article 8 (State Environmental Quality Review Act) of the New York State Environmental Conservation Law ("SEQRA".)

Pursuant to Resolution No. 421 of November 14, 2017, the Ulster County Legislature, as Lead Agency and Project Sponsor, has determined that the proposed action described below will not have a significant effect on the environment and a Draft Environmental Impact Statement will not be prepared.

SEQRA: Type I Action: 12/15/2015 **Status:** EAF Part 3

PROJECT SPONSOR: Ulster County

NAME OF ACTION: In The Matter of the Ulster County Legislature Approval of the Construction of the Ashokan Rail Trail consisting of 11.5 mile pedestrian and bicycle trail along the north shore of the Ashokan Reservoir from Basin Road in the Town of Hurley to NYS Route 28A in the Town of Olive on the Ashokan Trail Easement along the former Ulster and Delaware Railroad right-of-way.

CONDITIONED NEGATIVE DECLARATION: No

PROJECT SUMMARY:

Ulster County (the "County") is proposing the construction of an approximately 11.5-mile pedestrian and bicycle trail that will run along the north shore of the Ashokan Reservoir from Basin Road in the Town of Hurley to NYS Route 28A in the Town of Olive on the abandoned Ulster & Delaware Railroad Corridor (the "Ashokan Rail Trail"), which has been owned by the County since 1979. The Ashokan Rail Trail project (the "Project") is being developed in cooperation with and with funding support from the New York City Department of Environmental Projection ("DEP"). The environmental review for the Project includes three public trailheads to be constructed by DEP.

The Project will be implemented in two phases. The first phase will include the removal and off-site disposal of railroad rail, wooden ties, metal hardware and the felling and disposal of dead and stressed trees. The second phase includes the repurposing of the existing ballast for the trail base, the addition of a stone layer top surface, the replacement of a large failed culvert and a destroyed railroad bridge, maintenance to existing drainage culverts, and development of three public trailheads, which will be constructed by DEP but are included in this SEQR review.

The Project will have a significant positive impact for residents of Ulster County and visitors by providing economic development for Route 28 businesses, expanding non-motorized recreational opportunities, improving public health and quality of life, and further developing Ulster County's rail trail network into a premiere tourism destination.

The Project has been designed to mitigate any potential environmental impacts and will also provide environmental benefits. These benefits include the removal and proper disposal of thousands (35,000+) of creosote-treated railroad ties, repairs and stabilization of unmaintained culverts and drainage ditches, stream daylighting of the Butternut Creek, and embankment erosion reductions and stabilization. Additionally, through interpretive panels and exhibits, trail users will be educated on the importance of the New York City Watershed and the Ashokan Reservoir, the history and significance of the Catskill Park, and the importance of responsible trail use to protect drinking water quality.

The Project design has been developed, from the beginning, with extensive coordination and involvement with DEP. The engineering designs developed by the County's engineering consultant firm, Barton & Loguidice, D.P.C. ("B&L"), were prepared and revised with the significant and frequent input from DEP staff. Throughout the extensive design revisions, the County and B&L have gone to great lengths to reduce and minimize the footprint of the Project, to mitigate environmental impacts, and provide positive environmental benefits where feasible, such as daylighting the Butternut Creek. To ensure sensitive environmental resources would not be adversely impacted and to determine where avoidance and mitigation could be employed, the B&L performed detailed studies with cooperation, assistance and full coordination with DEP. These studies are listed below, and the avoidance and impact minimization are summarized in the sections below and in the detailed studies attached.

HISTORY OF THE PROJECT:

December 15, 2015 – The Ulster County Legislature, pursuant to Resolution No. 480, declared its intent to act as Lead Agency in the matter of constructing the Ashokan Rail Trail Project, determining the action to be Type 1 under SEQRA. The Legislature also created Capital Project No. 459 to authorize and fund necessary engineering studies and environmental reviews.

August 31, 2016 - Ulster County, pursuant to the State Environmental Quality Review Act and 6 NYCRR 617.6(b)(3)(i), circulated by way of letters its Notice of Intent to Establish Lead Agency along with Part 1 of the completed Full Environmental Assessment Form to all Involved and Interested agencies (refer to list below) for the construction of the Ashokan Rail Trail, an 11.5 mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive. The following were identified as Involved and Interested Agencies that received the Notice:

- New York State Department of Environmental Conservation ("NYSDEC")
- New York State Office of Parks and Historic Preservation ("NYS OPRHP")
- United States Fish and Wildlife Service ("USFW")
- United States Army Corps of Engineers ("ACOE")
- New York City Department of Environmental Protection ("DEP")

- Town of Olive
- Town of Hurley
- New York State Department of Transportation ("NYSDOT")

September 20, 2016- As no objections were received from the Involved and Involved Agencies, the Ulster County Legislature became Lead Agency for the Ashokan Rail Trail Project.

August 15, 2017 – The Ulster County Legislature, pursuant to Resolution No. 327, determined and resolved to lawfully segment the execution of the "Ashokan Trail Easement" with the City of New York from the Ashokan Rail Trail Project. The Legislature declared approval of the Ashokan Trail Easement as an Unlisted Action and determined the action would not have an adverse impact on the environment. Further, the Legislature authorized the issuance of a negative declaration for the execution of the Ashokan Trail Easement as provided in 6 NYCRR Part 617.7.

REASONS SUPPORTING THE DETERMINATION:

Methodology

In making this Determination of Non-Significance, the Ulster County Legislature, as Lead Agency and its advisors first examined Part 1 of the Full Environmental Assessment Form ("EAF") and the supplemental data and documentation as contained in the various Reports completed for the project by the Lead Agency's engineering consultants. This work was undertaken over the course of nearly two years (2016-2017) by said Lead Agency's consultants, and a copy of the Full EAF, Parts 1 and 2 are annexed hereto and made a part hereof.

Detailed studies were completed to identify potential impacts, and these studies are included as attachments to this narrative. These studies and analyses include the following:

- Wetland Delineation Report (May 2017), which includes:
 - o Wetland Study and Delineation, Mapping
 - o Threatened and Endangered Species Habitat Assessment and Coordination Letters
- Traffic Impact Study (March 2017)
- No Adverse Impact Letter from NYS OPRHP (October 2016)
- Environmental Soil Sampling Program, Conclusions and Test Results (May 2017)
- Resolution No. 480- Establishing Ashokan Rail Trail Capital Project (12/15/2015)
- Resolution No. 327- Ashokan Trail Easement Authorization (08/15/2017)
- Ashokan Rail Trail Easement Only SEQR Full Environmental Assessment Form
- Lead Agency Letters Notice of Intent to Establish Lead Agency for Ashokan Rail Trail Construction (August 31, 2016)
- Engineering Assessment of Alternatives

Alternative Analysis

The County considered several alternatives including: rail with trail, alternative trail locations, and construction of the trail leaving existing rail and ties in place. Rail with trail was

rejected due to the constraints over long stretches in the Ulster and Delaware ("U&D") Railroad Corridor to accommodate both facilities, the requirement from New York City as the underlying land owner to allow either rail or trail but not both, and the adopted policy of the Ulster County Legislature to provide for trail only in this section of the U&D Corridor. It is also important to note that use of the corridor by an operating railroad has not occurred for more than forty (40) Alternative trail locations were confined by DEP requirements to the area of the railroad easement/trail easement. Additionally, the cost and environmental impacts associated with deviation off of the existing railroad bed is prohibitive and fails to meet the County's objective to create a safe and highly scenic trail experience that is fully accessible to persons with disabilities. A short deviation (approximately 800 linear feet) from the existing rail bed is proposed as part of the Project to avoid existing wetlands that have formed within this section as a result of the prolonged lack of maintenance of the drainage facilities. Construction of the trail on top of the existing steel rail and ties was rejected for several reasons, including the following: difficulty associated with trail and bridge construction with the rail in place: on-going maintenance needs: increased disturbance necessary to accommodate the fill needed to cover rail and ties; uneven consolidation of the trail surface as wooden ties further decay; frost heaves from trapped moisture; drainage and erosion issues; the condition of the underlying rail bed with over 95 percent of the existing ties being decayed; narrowed trail width; and the requirement from DEP that, for water quality purposes, the existing creosote-treated wooden ties be removed.

Evaluation of Impacts of the Proposed Action

Under the circumstances of the particular related actions as hereinafter evaluated, and the extensive environmental analysis of the Project, the Lead Agency finds that the facts and information available to it support a determination that all probable and relevant adverse environmental effects have been identified and that they will not be significant, and therefore, an Environmental Impact Statement is not necessary.

The environmental analysis of the reasonably related long-term, short-term, direct, indirect and cumulative impacts of these related and simultaneous actions started with an analysis of the existing conditions of the Project site. The review then analyzed the environmental impacts of the proposed changes and actions, while comparing those impacts with the impacts on existing land use to determine if the proposed action may have a significant adverse environmental impact.

No other related or subsequent actions are included in any long-range plans for the Project site, nor likely to be undertaken, nor dependent on the actions which are now under consideration. A listing of all of the Involved and Interested Agencies for the Project is provided at the end of this Negative Declaration.

The Lead Agency's examination of the specific environmental impacts addresses those areas required under Part 617.7(c) and all of the areas included under Part 2 of the Full Environmental Assessment Form (EAF) as they relate to the proposed actions and changes and their magnitude. In addition, the Lead Agency further examined those potential adverse changes for those questions answered "Yes" on Part 2 of the EAF (the numbers below correspond to all numbered questions on Part 2 of the Full Environmental Assessment Form answered as "Yes") as follows:

1. Impact on Land

The Ashokan Rail Trail ("ART") will be constructed in the same location and on the same footprint as the existing single-tracked railroad bed with only one exception where the Trail will be re-routed from the existing railroad bed for approximately 800 ft. to avoid B&L Delineated Wetland "O". The steel rails, wooden ties and other metal track hardware will be removed and disposed of from the Project corridor (with the exception of a short double-tracked area- or "siding"- to be adapted and re-used for historic interpretation). It is noted by the Lead Agency that this section to be left in place lies outside of the drainage area to the Ashokan Reservoir and as such will not impact water quality. Following the removal of the track materials and rough grading, the ART will be constructed on the remaining ballast with additional stone added (typically 10" thick) and spread and leveled to provide additional base and a top course for the ART. The use of this stone and other grading necessary for the trail will enable the construction of the trail to remain within +/- 12 inches of the current trail profile with the exception of the replacement of the Bridge at Boiceville discussed later.

The Project includes the development of three public trailheads to be designed and constructed by DEP. Land disturbance for the proposed trailheads will be limited to: 0.50-acres for the Woodstock Dike Trailhead in West Hurley; 1.32-acres at the Ashokan Station/ Jones Cove Trailhead in Shokan; and 0.75-acres at the Boiceville Trailhead near Route 28A in Boiceville. The Woodstock Dike and Boiceville Trailheads will be unpaved. The Ashokan Station is proposed to be paved. All trailheads are designed to incorporate stormwater run-off infiltration to avoid any increase in stormwater run-off or velocities.

The construction of both the Butternut Creek Bridge and the Boiceville Bridge will take place close to bedrock and in areas where the water table is less than 3 feet. Construction means and methods approved by the DEP and NYSDEC will be utilized to avoid adverse impacts associated with these conditions. Details and materials will also be approved by both DEC and NYSDEC. No blasting is proposed or anticipated. The Boiceville Bridge will be raised approximately seven (7) feet and extended sixty (60) feet in length to allow the passage of the fifty (50) year storm with two (2) feet of additional clearance (freeboard) which will help reduce velocities, erosion, and scour on the land during marked storm events.

Several cracked concrete culverts will be repaired using minimally invasive techniques and ten (10) new shallow culverts will be installed just below the surface of the ART to convey runoff to the existing swales and eventually to stone aprons designed to reduce energy, velocity, eliminate erosion, and dissipate runoff into a sheet flow condition also reducing impacts on the land.

When originally constructed, sections of the rail, ties, and ballast were installed on embankment material (fill) to provide a near level grade and to traverse, or span, the surrounding undulating terrain. During construction of the ART, the trail surface will typically be within 12 inches (in height) from the original surface with its centerline within three (3) feet from either side of the railroad track centerline. Vegetated slopes along the Project corridor will be left in

place to maintain their current stability, reduce risk of erosion, and maintain existing buffers from wetland and other sensitive areas.

The bridge construction includes areas where minor sections of fill will be required and will utilize slopes greater than fifteen percent (15%) to minimize the disturbance area "footprint." These thirty-three percent (33%) to fifty percent (50%) slopes are standard engineering practice in bridge construction and will be stabilized to inhibit erosion and sediment transportation. Small sections of fill are also necessary to repair washouts which will also be stabilized to inhibit erosion. Stormwater will be conveyed through existing vegetated drainage swales where it will be directed to sheet flow and infiltration locations or into existing streams. Check dams will be utilized as necessary to prevent sediment laden water from flowing into existing ditches, swales, wetlands, streams and other watercourses.

The Project is estimated to take approximately eighteen (18) months to complete. This time frame accounts for careful attention to sensitive areas as part of the construction management plan and limitations in site access and movement of materials, particularly during the winter months, that may impede the typical speed of construction. Construction will occur during day time hours. The remoteness of the corridor from developed areas with very limited homes nearby and only in one isolated area (Reservoir Road) ensures that the Project will not result in negative impacts to the land uses in the Route 28 corridor or the surrounding communities.

Additionally, construction sequencing and acceptable work periods will be tailored to suit the ecological needs of the ART corridor including avoiding construction near any potential bald eagle nests during the breeding season, refraining from tree clearing activities during the active Indiana and northern long-eared bat season, prohibiting entry into trout streams during spawning periods, and avoiding wetland and stream impacts to the greatest extent possible with a project impact on less than ½ acre of wetlands.

Based upon the factors noted above, the Project plans, and the supporting studies, the Lead Agency finds that there will be no substantial adverse change in existing impacts to the land as a result of Project.

3. Impacts on Surface Water and Groundwater

Construction of the Project will result in disturbance to a NYSDEC mapped wetland (AS-20) as well as very minor disturbance to unmapped federally jurisdictional wetlands. A wetland delineation was performed by B&L, and the Wetland Delineation Report was prepared. This effort was supplemented by DEP staff, who worked with B&L to form a consensus on additional wetland locations and boundaries. Each wetland, stream, swale or other water course was mapped and analyzed. To avoid and mitigate impacts to the maximum extent possible the centerline of the trail was shifted along the corridor where possible. These horizontal and vertical shifts of the ART were designed at twenty-five (25) ft. intervals along the entire Project corridor to minimize disturbance to land, avoid impacts to water courses, and to reduce the need for transport of materials both in and out of the Project corridor. In order to further reduce impacts to land and water, the trail shoulders were reduced from five (5) ft. in width on each side

of the trail (originally proposed based on AASHTO guidelines for multi-use trail design) to zero (0) ft. in width in most locations. A maximum width shoulder of 3 ft. is being utilized in areas where feasible and where impacts to sensitive areas will not occur. The proposed trail width was reduced from twelve (12) feet to ten (10) feet in areas that are immediately adjacent to water courses, wetlands, and sensitive areas identified by B&L and/or DEP. The resulting disturbed areas fall within the General Permit issued by the ACOE for wetland disturbance and within NYSDEC guidelines.

Appropriate erosion and sediment control measures will be utilized during and post construction to stabilize any disturbed areas. A Stormwater Pollution Prevention Plan ("SWPPP") has been developed in consultation with DEP, which highlights these measures, provides the details and "tools" to install them properly, and includes means to enforce compliance by construction contractors, if necessary. Best Management Practices as outlined in the Project SWPPP and the NYSDEC Stormwater Management Design Manual (Blue Book) is incorporated into the design of the trail to be used by the contractor during construction to minimize and prevent erosion and sedimentation of existing watercourses. Post-construction drainage patterns and characteristics will generally remain the same as the pre-construction conditions with a few minor exceptions.

To further minimize impacts to wetlands approximately 800 ft. of trail was re-routed from the existing railroad centerline to the north of B&L Delineated Wetland "O" to completely avoid impacts to an unmapped federally-jurisdictional wetland. Other portions of the ART were shifted and narrowed to minimize impacts to existing mapped and unmapped streams and wetlands. Review the NYSDEC and the United States Army Corps of Engineers (USACE) is ongoing, and permits have been submitted and will be obtained prior to commencement of construction activities. Any additional required permit requirements including wetland improvements will be incorporated into the final construction drawings.

In order to ensure the stability and future safety of the ART, multiple existing culverts will require repair. Repairs will be limited to minor concrete crack and spalling repairs and the filling of scour pits at the outlet of the existing culverts. Work performed in a flowing stream, will utilize temporary dewatering and rerouting of the stream so as to perform the work in the dry. This will limit the amount of sediment potentially disturbed during culvert repairs. Several cracked concrete culverts will be repaired using minimally invasive techniques and ten (10) new shallow culverts will be installed just below the surface of the trail to convey runoff in areas with existing water to the existing swales and eventually to stone aprons designed to reduce energy and velocity and dissipate runoff into a sheet flow condition.

The large concrete Butternut Creek Culvert, where the wing walls have collapsed and the supported railroad embankment is heavily eroded, will be removed and replaced with a prefabricated steel truss bridge structure that "daylights" the Creek, restores the natural flow of the Butternut Creek - a Class A,A(t) waterbody, and improves passage for fish and other wildlife. The new Butternut Creek Bridge will be founded on short foundations (abutments) high above the Creek, and all concrete materials from the failed culvert, including the concrete bottom of the former culvert, will be removed. This restoration will include stabilization and protection of the remaining high-fill railroad bed embankment.

In addition to the removal of the failed Butternut Creek Culvert, the Project also includes the replacement of the destroyed former Boiceville Trestle and removal of elements that remain in the stream. This bridge carried the railroad over the Esopus Creek at Boiceville. The bridge was destroyed during storm disaster events in 2011. The Project includes a new pedestrian bridge capable of supporting emergency vehicles at this location with a raised profile approximately seven (7) feet above the former Trestle's elevation and extending the former bridge's length by sixty (60) feet so that the new bridge structure is installed above the 50 year flood zone with two (2) feet of additional clearance. The new bridge replaces the former three-pier structure with one of two-piers limiting work in the stream and reducing in stream obstruction. The new abutments are designed with extensive scour protection. During the reconstruction of this bridge, coffer dams will be employed to protect the Esopus Creek from disturbance of bottom sediments. Turbidity curtains and other Best Management Practices will be utilized to eliminate impacts to the waterbody. Each practice will require written approval by the project team and DEP prior to installation. The project will also remove the remains and debris from the former structure from the Esopus Creek.

The Project will remove all of the deteriorated ties in the corridor which will be appropriately disposed of. The removal of these ties from close proximity to the Reservoir is an example of best management practices as required by DEP.

The project does not propose the use of groundwater in any fashion as part of its construction or operation. Drainage improvements will not redirect water flow to the extent that recharge areas are affected. Finally, no herbicides are permitted as part of the maintenance of the trail as noted in the operations plan for the project and by the County's local law that prohibits their use on County property.

Based upon the above, the Project plans, and supporting studies, the Lead Agency finds that there is no substantial adverse change in existing ground or surface water quantity or quality as a result of project.

5. Impact on Flooding

Portions of the ART are located within a one-hundred (100) year floodplain. However, where this occurs no major changes will be made that relate to trail construction with the exceptions of the new bridge at Boiceville and Butternut Creek. The proposed Boiceville Bridge has been raised approximately seven (7) ft. higher than the former bridge, which collapsed during a major flood event in 2011. The new bridge will be designed to fully pass the fifty (50) year storm below the structure with two (2) feet of additional clearance (freeboard). The bridge will also pass the 100 year storm event without being overtopped. The failed Butternut Creek Culvert will be removed and replaced with a prefabricated steel truss bridge which will "daylight" the Creek and significantly increase the hydraulic capacity of this system.

Most of the trail itself lies outside of the 100 year floodplain, and those areas where the trail lies within the floodplain have been designed to ensure that "no rise" occurs and that the trail itself is resistant to the impacts of flooding.

Based upon the above, the Project plans, and supporting studies, the Lead Agency finds that there no substantial adverse change associated with flooding as a result of the Project.

7. Impact on Plants and Animals

The U.S. Fish and Wildlife Service ("USFWS") New York Field Office's website was reviewed to determine whether any federally listed endangered, threatened, or candidate species are known to inhabit the proposed Project area. The USFWS Information, Planning and Conservation (IPaC) System reported three federally protected species that could potentially inhabit the Project corridor: the Indiana bat (*Myotis sodalis* – Endangered), the northern longeared bat (*Myotis septentrionalis* – Threatened), and the bog turtle (*Clemmys muhlenbergii* – Threatened).

Additionally, the New York Natural Heritage Program ("NHP") was queried for information regarding the reported presence of any endangered species, threatened species, species of special concern, or significant natural communities within or adjacent to the Project area. A response was received from the NHP on July 26, 2016, which indicated three records of rare or state-listed animals or plants and significant natural communities at the site or in its immediate vicinity. The bald eagle (*Haliaeetus leucocephalus*- Threatened) was identified to have nested within four hundred (400) feet of the Project corridor. An Indiana bat maternity colony was identified within two-hundred, fifty (250) feet of the Project corridor. Additionally, a high quality occurrence of an uncommon community type, a bluestone vernal pool, was identified 0.5 miles east of the corridor.

Indiana and Northern Long-eared Bats

In accordance with the 2016 Range-wide Indiana Bat Summer Survey Guidelines (this document applies to both Indiana bat and northern long-eared bats), most trees greater than 3" diameter at breast height ("DBH") are considered potential habitat for the northern long-eared bats, and greater than 4" DBH for the Indiana bat. The dominant tree species observed within the Project corridor include: red maple (*Acer rubrum*), striped maple (*Acer pensylvanicum*), shagbark hickory (*Carya ovata*), silver maple (*Acer saccharinum*), northern red oak (*Quercus rubra*), eastern white pine (*Pinus strobus*), and American beech (*Fagus grandifolia*). Woody vegetation, including shrubs less than 3" intermixed with larger DBH trees (most of which are dead and dying ash trees), are proposed for clearing throughout the linear length of trail. The section titled, "Tree Clearing Activities," provides details regarding the trees to be cut. In accordance with the aforementioned USFWS resources, trees greater than 3" DBH requiring removal are to be cut only between November 1st and March 31st during the conservation cutting window timelines.

The proposed Project is not likely to adversely affect the northern long-eared or Indiana bats, or their suitable habitats, due to the selective clearing to be conducted along a linear corridor and the availability of large tracts of forestland adjacent to the proposed corridor that will remain untouched. Tree clearing activities will not occur during the active Indiana and northern long-eared bat season.

Bog Turtle

The bog turtle, the smallest of the emydid turtles, spends much of the time buried in the mud and therefore has a reputation for being secretive. While they prefer fens, highly acidic wetlands and areas of soft, deep mud are considered suitable habitat. Several wetland complexes are adjacent to, but not within, the proposed areas of disturbance for the Project. Two wetland complexes will be slightly impacted as a result of the Project. Field delineated Wetlands K and L, identified as correspondent to NYSDEC Mapped wetland AS-20, were emergent in nature but did not contain the deep mucky soils required by this species or microtopographic relief for basking. Additionally, a large patch of common reed (*Phragmites australis*) was noted as dominant which due to plant density prohibits basking. Wetland O, which will be avoided by this Project, was also emergent but shaded over by the upland tree canopy, lacking the necessary sunlight and microtopographic relief for basking. Additionally, the soils were restricted at twelve (12) inches with the presence of ballast. No impacts are expected to other wetlands delineated within the corridor.

Bald Eagle

Bald eagles prefer habitat along large bodies of water and shoreline area. The Project corridor is located along and within close proximity to the Ashokan Reservoir and Esopus Creek. A confirmed bald eagle nest with young was reported by the USGS Breeding Bird Atlas ("BBA") as well as the DEP and the NHP. However, during coordination with the NYSDEC, the nest that was originally reported to be within regulation distance of the Project was not successful and is no longer active. Two other territories are active within .5 mile of the Project. It is understood that impacts may occur to this species as a result of loud construction noises during the nesting season. To minimize potential impacts and the necessity for a BGEPA permit, any construction activities within six-hundred, sixty (660) feet of a nest will be scheduled during the non-breeding season from mid-September to December. In addition, loud noises such as back up alarms will be kept to a minimum through the use of white noise emitting back alarms instead of the traditional beeping alarms.

Additionally, NYSDEC and DEP have ongoing coordination to improve bald eagle habitat along the Ashokan Reservoir. As such, NYSDEC recommends that no tree removal occur within two hundred (200) feet of the shoreline, no white pines be removed within three hundred (300) feet of the shoreline, and no white pines larger than twenty-five (25) inches are removed at any location within a project site. (Please the Threatened and Endangered Species Habitat Assessment) For this Project, less than twenty (20) white pine trees within the DBH range of four (4) inches to fourteen (14) inches will be cut along the entire corridor for trail construction purposes and all lie within close proximity to the centerline of the trail and pose an immediate threat to the safety of the proposed ART.

Tree Clearing Activities

In August of 2017, representatives from the County and B&L delineated, marked in the field and GIS mapped trees that needed to be removed for the construction of the ART as well as "hazard trees," dying or dead trees that could pose a threat if they were to fall onto the trail. In

total, approximately 2,300 trees were identified along the 11.5-mile Project corridor to be removed to allow for the ART construction and/or protect the safety of its users. Based on the data collected during the field marking, more than two-thousand, one-hundred (2,100) of the total two-thousand, three-hundred (2,300) trees delineated to be cut were categorized as dead, downed or stressed (with the large majority white ash tree showing evidence of infection by emerald ash borers.) Less than two-hundred (200) trees delineated for removal are healthy, and the majority of these are smaller diameter trees that have grown up into the culverts, railroad bed edges, and drainage ditches over the past years when little or no maintenance was conducted along this corridor. These specific tree counts do not include several areas totaling approximately 1.9 acres that need to be cleared to construct the new Butternut Creek Bridge, install the new Boiceville Bridge over the Esopus Creek, and prepare for the re-routed trail planned to avoid Wetland O. These areas have been delineated on the plans and timed to be cut so as to avoid impacts to nesting species of concern.

The proposed tree clearing is limited to hazard trees and trees that require removal to construct the trail and/or major bridge structures. No tree clearing for viewshed enhancement has been proposed. The Project plans provide specific requirements to ensure that tree and brush coverage along sloped areas of the railroad embankment remain undisturbed.

The Lead Agency notes that no endangered species were located in the areas proposed for disturbance by the construction of the Project. In addition, the width of the trail and the placement of the trailhead areas are such that the movement of any resident migratory fish or wildlife species will not be impacted. The daylighting of the Butternut Creek is likely to improve connections for some species.

Based upon the above, the Project plans, and supporting studies, the Lead Agency finds that the will not be any removal or destruction of large quantities of vegetation or fauna not substantial interference with the movement of fish or wildlife species nor will there be any significant impacts to habitat or other natural resources as a result of the Project.

10. Impact on Historic and Archaeological Resources

The proposed Project corridor is located along the former Ulster & Delaware ("U&D") Railroad Corridor and partially within a segment of the U&D Corridor eligible for the National Register, which runs from Shokan to Phoenicia. During the preliminary design phase of the Project, a State Historic Preservation Office ("SHPO") Cultural Resource Information System ("CRIS") query was submitted as part of SEQR coordination. A letter was received on October 3, 2016 stating that the proposed Project will have No Adverse Impact upon the historic Ulster and Delaware Railroad corridor providing a Preservation Plan be developed, historic interpretation be utilized along the trail, and preliminary plans be submitted to SHPO for review of these features. The Project as designed will meet all of SHPO's requirements and includes not only a recreational experience, but an educational and cultural resource as well. At a minimum, the Project will include a preserved section of rail with improvements that will be used for interpretive purposes. In addition, improvements versus replacement are planned for all the major culverts and drainage structures with the exception of Butternut Cove. Other applications that will be further developed include:

- Interpretive panels that tell the story of the former communities displaced by construction of the Ashokan Reservoir
- Interpretive panels that describe the importance of the Ashokan Reservoir and New York City Watershed and the history of its construction
- Identification of historic elements along the reservoir, such as the still remaining original bridge abutments and former train stations
- Panels educating visitors on the history of the Catskill Park
- Signage and educational materials regarding wildlife

The proposed alignment of the trail follows the existing railbed and previously disturbed areas. As such, no impacts to archeological resources are anticipated. The areas adjoining the Project are in lands largely owned by DEP and the Project site is eligible to be utilized for railroad purposes. In addition, access to the Ashokan Reservoir for fishing that includes boating is currently available by DEP Access Permit only. The lands associated with the Project including the proposed trailheads are removed from residential neighborhoods and will not be an impact to residents or businesses.

Based upon the above, the Project plans, and supporting studies, the Lead Agency finds that there no impairment of the character or quality of important historical, archaeological, architectural or aesthetic resources or of existing community or neighborhood character as a result of the Project.

13. Impact on Transportation

A Traffic Impact Study ("TIS") was conducted and completed for the Project along NYS Route 28 and in the locations of the proposed DEP trailheads at the Woodstock Dike in West Hurley, Shokan Station/ Jones Cove in Shokan, and at Route 28A in Boiceville. The TIS assessed the impacts anticipated to nearby roads and intersections from anticipated visitors to the ART. It was determined that impacts to study intersections were negligible, and that traffic generated by the Project did not require mitigation.

The trailheads associated with the Project will provide parking limited to approximately one-hundred, fifty parking spaces distributed along the 11.5-mile corridor, only one of which will be paved. The Project will not degrade pedestrian and bicycle accommodations on the NYS Rout 28 Corridor, and it is anticipated to improve and expand such accommodations off the Corridor. The Lead Agency finds that the Project is likely to result minor alterations of the traffic in the NYS Route 28 corridor. However, it notes that the corridor is not congested in the area of the Project and that peak traffic periods expected as a result of the construction of trail and trailheads do not coincide with peak AM and PM traffic periods during the week. Level of service estimates for the trailhead areas is within acceptable parameters and no signalization is warranted.

Based upon the above, the Project plans, and supporting studies, the Lead Agency finds that there no substantial adverse impact on transportation as a result of the Project.

16. Impact on Human Health

Active and former railroad corridors are often associated with uncharacterized spills and accumulation of potentially hazardous materials. Soil borings within the Project corridor completed by the DEP indicated presence of PAHs and levels of copper and zinc above Eastern USA background concentration ranges. Additional soil sampling by B&L throughout the corridor was performed at representative locations to further evaluate the presence of hazardous materials (See Environmental Soil Sampling Program Results). Results of the completed field investigation revealed no parameter concentration exceedances in the analyzed surface soil samples when compared to the NYSDEC Part 375 SCOs for Restricted-Residential Use.

The Project includes removal of approximately thirty-five thousand (35,000) wooden ties treated with creosote, which will be removed from the corridor and properly disposed of off-site and out of the New York City Watershed. Clean materials will be imported to the Project site for the trail surface, effectively creating a "cap" of the underlying materials throughout the Corridor. Four (4) inches of clean crushed stone surface course will be imported to cover the ballast at a width of twelve (12) feet, and three (3) inches of clean imported topsoil will lay adjacent to the trail and will cover all soils disturbed during construction of the Project.

In addition to the soil boring work, B&L conducted a review of spill records within or adjacent to the Project site. Twenty spills were identified during record review within or adjacent to the Project corridor, all of which have been closed by the NYSDEC. These reported spills are no longer active and have either met State cleanup standards or have received additional corrective action. Several spills did not meet cleanup standards, but these are not a concern for this Project due to limited contamination occurring. One of the spills that did not meet cleanup standards and was of a significant quantity was Spill Number 0801824 located at a former Mobil station (located at 1460 NYS Route 28 in West Hurley) in which 2,856 tons of soil and 5,312 gallons of water were removed from the site and monitoring wells were installed. This site is 700 feet north of the proposed trail on the north side of NYS Route 28. Shallow subsurface soil samples taken within the Project corridor and downgradient from the former Mobile station were tested in April and May 2017. Results of this testing indicated that the parameter concentrations reported were below the applicable NYSDEC Part 375 SCOs for Restricted-Residential Use.

Based upon the above, the Project plans, and supporting studies the Lead Agency finds that the Project will not create a hazard to human health. Rather, as a new public recreational corridor, the Project is expected to result in positive impacts to public health, allowing residents of all ages and abilities to walk, run, bicycle, and/or cross-country ski on a fully-accessible, multi-use trail that is buffered and separated from vehicular traffic.

Examination of Additional Environmental Impacts as Required under Part 617.7 (c)

In addition to the specific questions provided for in the EAF Part 2, the Lead Agency also examined the Project as provided for under Part 617.7(c) as noted below:

A. Encouraging or Attracting a Large Number of People to a Place or Places for more than a Few Days, Compared to Who Would Come to Such a Place Absent the Action:

The Project covers a corridor that is approximately 11.5 mile long and includes three trailheads adequately spaced along the corridor to allow convenient access along its length. The length of the corridor and the facilities provided are designed to handle larger numbers of people than currently utilize the site. The design includes appropriately sized parking areas to accommodate those that will utilize the facility, and the traffic analysis indicates that the both regional and local roadways including intersections have sufficient capacity to accept this increase in traffic without significant impacts or improvements. The Project will be open to public use from sunrise to sunset only, eliminating concerns about overnight stays and the additional impacts that this would bring.

Based upon the foregoing, increasing numbers of people that will be attracted to the site can be accommodated so as not to cause any significant adverse environmental impacts.

B. <u>The Creation of a Material Demand for Other Actions that would Result in One of the Above Consequences</u>

The construction of Project and related appurtenances over the 11.5 mile route will not create any material demand for other actions which would result in one of the previously discussed consequences. The site characteristics and mitigative engineering methodology employed allow the Project to be constructed without adverse environmental effect. In addition, the Lead Agency working with local police and fire services has completed a Cooperative Security Agreement that speaks directly to the safety and emergency management plans for the Project. The Agreement illustrates that, by working cooperatively, that the material demand for essential services, fire protection or emergency response can be accommodated with the existing availability of personnel and equipment.

The Project will not cause any material increase in population or directly affect additional development which would have an adverse effect upon the environmental criteria set forth above and studied herein.

C. Changes in Two or More Elements of the Environment, No One of Which has a Significant Impact on the Environment, But when Considered Together Result in a Substantial Adverse Impact on the Environment

Based upon the information contained in this Negative Declaration of Environmental Significance and the record before the Lead Agency, there will be no changes in two or more elements of the environment which, when considered together would result in a substantial adverse impact on the environment.

D. Two or More Related Actions Undertaken, Funded or Approved by an Agency, None of Which has or Would Have a Significant Impact on the Environment, but When Considered Cumulatively Would Meet One or More of the Criteria of Part 617.7(c)

None of the probable impacts on the environment that are associated with or which result from incremental or increased impacts of this action, when such impacts are added to other related past, present or reasonably foreseeable future actions, will be significant. The Lead Agency has reviewed and analyzed the Project plans, the Environmental Assessment Forms,

Engineering and Environmental Studies, all related Addenda, the Administrative Record and the physical changes to the environment which will take place simultaneously or sequentially and has determined that their combined and/or cumulative effects will not be significant.

In regard to any subsequent actions that may possibly arise as the result of the proposed ART Project, the Lead Agency has addressed all identified and relevant long-term, short-term and cumulative impacts and effects of the proposed activities and actions, as well as any related actions, as now submitted, and the County of Ulster, has no identifiable long-range or overall plans for any subsequent development, changes in use or other activities relating to the ART Project.

Approval of the Action contemplated by the current Project now before the Ulster County Legislature does not commit the Lead Agency to any particular course of action with respect to future development of the ART and associated trailheads beyond what is analyzed herein. Any future physical expansion of the ART, beyond that which is approved, will require independent and separate environmental review pursuant to SEQRA, unless the same shall be lawfully determined to be designated as a Type II Action or an Exempt Action in accordance with 6 NYCRR Part 617 et. seq.

Due to the continued environmental and other administrative review requirements of any subsequent development activities in the area of the Project on a case by case exercise of discretion by reviewing agencies and officials, it is not necessary nor reasonable to require at this time a hypothetical "worst case" analysis of all speculative environmental effects or potential environmentally threatening uses which could be anticipated at some time in the future.

The Lead Agency is satisfied that any possible environmental effects of any future development associated with the ART within the Towns of Hurley and Olive and the New York City Watershed, or any change in use of the ART infrastructure appurtenances is capable of being adequately addressed through subsequent discretionary, administrative and environmental review.

In making this Determination of Non-Significance, the Lead Agency has not balanced any potential benefits of the proposed action against potential harm.

CONCLUSION:

Based on the information currently available to the Lead Agency and the above analysis and evaluation of all the relevant and probable environmental impacts related to the activities and actions herein proposed, the Ulster County Legislature, as Lead Agency and Project Sponsor, determines that there will be no significant adverse environmental impacts as a result of the Ashokan Rail Trail Project, and no Environmental Impact Statement will be required. Therefore, this Determination of Non-Significance and Negative Declaration under SEQRA is hereby approved, adopted, and issued by the Lead Agency. (See also; Lead Agency Resolution annexed hereto and made a part hereof as Exhibit "A.")

CONTACT PERSON: Kenneth J. Ronk, Jr., Chairman

Ulster County Legislature 244 Fair Street, PO Box 1800 Kingston, New York 12402

(845) 340-3900

FILINGS:

Pursuant to 6 NYCRR Part 617.12 (b) a copy of this Negative Declaration is being filed with the following:

NYSDEC Environmental Notice Bulletin http://www.dec.ny.gov/enb/enb.html

Mr. Paul Rush, P.E., Deputy Commissioner Bureau of Water Supply New York City Department of Environmental Protection Bureau of Water Supply 59-17 Junction Blvd. Flushing, New York 11373

Mr. Todd Westhuis, P.E., Regional Director New York State Department of Transportation – Region 8 4 Burnett Boulevard Poughkeepsie, New York 12603

Ms. Kelly Turturro, Regional Director New York State Department of Environmental Conservation- Region 3 21 South Putt Corners Road New Paltz, New York 12561

Historic Preservation Field Services Bureau New York State Office of Parks, Recreation & Historic Preservation Peebles Island, PO Box 189 Waterford, New York 12188-0189

Town Clerk Town of Olive PO Box 96 West Shokan, New York 12494

Town Clerk Town of Hurley 10 Wamsley Place, PO Box 569 Hurley, New York 12443 Town Clerk Town of Woodstock 47 Comeau Drive Woodstock, New York 12498

United States Fish and Wildlife Service New York Field Office 3817 Luker Road Cortland, New York 13045

United States Army Corps of Engineers New York Regulatory Branch Western Permit Section Counties 26 Federal Plaza, Room 1937 New York, New York 10278-0090

DATED: 1/20/17, 2017

KENNETH J. RONK, Jr., Chairman

Ulster County Legislature

CERTIFICATION

The undersigned hereby certifies that the annexed SEQRA Resolution and Negative Declaration with Notice of Determination of Non-Significance, Being In The Matter of the Ulster County Legislature Approval of the Construction of the Ashokan Rail Trail and dated the // / 7 , 2017, has been duly filed this day in the Legislative Offices of the Ulster County Legislature located at 244 Fair Street, Kingston, New York 12401.

DATED: 1/20/,2017

Victoria A. Fabella, CLERK Ulster County Legislature

ATTACHMENT A ULSTER COUNTY LEGISLATURE RESOLUTION NO. 421 NOVEMBER 14, 2017

Adopting and Issuing A Negative Declaration Under 6 NYCRR Part 617 State Environmental Quality Review Act (SEQRA) By The Ulster County Legislature For The Construction Of The Ashokan Rail Trail—Capital Project No. 459- Department Of Planning

Referred to: The Economic Development, Tourism, Housing, Planning and Transit Committee (Chairman Maloney and Legislators Berky, Delaune, Lapp, Litts, Maio and Rodriguez), and The Public Works and Capital Projects Committee (Chairman Fabiano and Legislators Greene, Litts, Loughran, and Maloney)

Deputy Chairman of the Economic Development, Tourism, Housing, Planning, and Transit Committee, Hector Rodriguez, offers the following:

WHEREAS, this resolution has been submitted by the County Executive on behalf of the Department of Planning; and

WHEREAS, pursuant to Resolution No. 480 passed on December 15, 2015, the Ulster County Legislature established Capital Project No. 459 to provide for design and engineering work for the Ashokan Rail Trail and approved funding for professional engineering services; and

WHEREAS, pursuant to Resolution No. 480 passed on December 15, 2015, the Ulster County Legislature declared its intent to act as Lead Agency for the Ashokan Rail Trail Project (the "Project") as provided for in 6 NYCRR Part 617.6(b)(3) of the Regulations pertaining to Article 8 of the Environmental Conservation Law of New York State ("SEQRA") and determined that the Project was a Type I Action that required a coordinated review; and

WHEREAS, Ulster County circulated the necessary notifications on August 31, 2016 and receiving no objections became Lead Agency 30 days after this date; and

WHEREAS, pursuant to Resolution No. 327 passed on August 15, 2017, the Ulster County Legislature authorized the execution of the Ashokan Trail Easement with the City of New York, determining that approval of the Ashokan Trail Easement was a discrete unlisted action separate and apart from any trail construction and issued a negative declaration as provided under 6NYCRR Part 617.7; and

WHEREAS, Ulster County has examined the proposed action consisting of the construction of the Ashokan Rail Trail along the Ashokan Trail Easement, including removing rail, ties and other track materials and developing three trailhead areas, to create a public recreational trail and prepared the Environmental Record as now on file with the Clerk of the Legislature; and

Adopting and Issuing A Negative Declaration Under 6 NYCRR Part 617 State Environmental Quality Review Act (SEQRA) By The Ulster County Legislature For The Construction Of The Ashokan Rail Trail—Capital Project No. 459- Department Of Planning

WHEREAS, as part of the Project approval process, the County has completed an expanded Environmental Evaluation of Impacts and Negative Declaration that includes an analysis of impacts to historic and archeological sites, wetlands and water bodies, threatened or endangered species, traffic, cumulative growth, and other environmental considerations as required under 6 NYCRR Part 617 of the Regulations of Article 8 of the Environmental Conservation Law of New York State ("SEQRA"); and

WHEREAS, pursuant to the Regulations, the County Legislature has considered the significance of the potential environmental impacts of the Project by (a) using the criteria specified in Section 617.7 of the Regulations, and (b) examining the EAF for the Project, including the facts and conclusions in Parts 1, 2 and 3 of the EAF, together with other available supporting information, to identify the relevant areas of environmental concern, and (c) thoroughly analyzing the areas of relevant environmental concern; and

WHEREAS, such evaluation of impacts and negative declaration has been filed with the Clerk of the Legislature and made available to members of the Legislature; and

WHEREAS, Ulster County has addressed all SEQRA issues as identified, considered and examined by the Involved and Interested Agencies and members of the public in conducting the environmental review and in so doing, hereby determines that the Project will not have a significant adverse environmental impact, will not require the preparation of a Draft Environmental Impact Statement with respect to the Project, and has made a determination of non-significance under SEQRA ("Negative Declaration"), a copy of which is annexed to this Resolution and made a part hereof; now, therefore, be it

RESOLVED, that pursuant to 6 NYCRR Part 617 et seq. of the Regulations of Article 8 of the Environmental Conservation Law of New York State (SEQRA), the Ulster County Legislature hereby adopts and issues the Negative Declaration under SEQRA for the Ashokan Rail Trail Project upon the vote thereupon and the signature of the Ulster County Legislature Chairman herewith; and, be it further

Adopting and Issuing A Negative Declaration Under 6 NYCRR Part 617 State Environmental Quality Review Act (SEQRA) By The Ulster County Legislature For The Construction Of The Ashokan Rail Trail—Capital Project No. 459- Department Of Planning

RESOLVED, that Clerk of the Legislature shall file this Resolution and accompanying Negative Declaration with the Involved and Interested Agencies as enumerated in the Negative Declaration and publish the Resolution and Negative Declaration in the Environmental Notice Bulletin; and, be it further

RESOLVED, that the adoption of the Negative Declaration shall constitute the SEQRA Decision of approval for the construction of the Ashokan Rail Trail Project as therein defined to convert the U&D Railroad Corridor from Basin Road in West Hurley to Route 28A in Boiceville to a recreational trail only and all of the actions associated with such project, including the removal of railroad track and ties and the development of trailheads, together with all plans and documents associated therewith,

and move its adoption.

ADOPTED BY THE FOLLOWING VOTE:

AYES: 14 NOES: 7

(Noes: Legislators Donaldson, Fabiano, Greene,

Lapp, J. Parete, R. Parete, and Wawro) (Absent: Legislators Berky and Loughran)

No Action Taken in Committee: Public Works and Capital Projects on November 1, 2017

Passed Committee: Economic Development, Tourism, Housing, Planning and Transit on November 9, 2017

Passed Committee: Public Works and Capital Projects on November 14, 2017

FINANCIAL IMPACT: NONE

Adopting and Issuing A Negative Declaration Under 6 NYCRR Part 617 State Environmental Quality Review Act (SEQRA) By The Ulster County Legislature For The Construction Of The Ashokan Rail Trail—Capital Project No. 459- Department Of Planning

Legislator Greene motioned, seconded by Legislator Donaldson, to amend the sixth WHEREAS and third RESOLVED to add additional language as indicated in bold font:

WHEREAS, Ulster County has examined the proposed action consisting of the construction of the Ashokan Rail Trail along the Ashokan Trail Easement, including removing rail, ties and other track materials (with the exception of all rail, ties and other track materials between Basin Road and MP 11.1, which shall not be removed) and developing three trailhead areas, to create a public recreational trail and prepared the Environmental Record as now on file with the Clerk of the Legislature; and

RESOLVED, that the adoption of the Negative Declaration shall constitute the SEQRA Decision of approval for the construction of the Ashokan Rail Trail Project as therein defined to convert the U&D Railroad Corridor from Basin Road in West Hurley to Route 28A in Boiceville to a recreational trail only and all of the actions associated with such project, including the removal of railroad track and ties (with the exception of all rail, ties and other track materials between Basin Road and MP 11.1, which shall not be removed) and the development of trailheads, together with all plans and documents associated therewith,

MOTIONED DEFEATED BY THE FOLLOWING VOTE:

AYES: 7 NOES: 14

(Ayes: Legislators Donaldson, Fabiano, Greene, Lapp, J. Parete,

R. Parete, and Wawro)

(Absent: Legislators Berky and Loughran)

- Page 5 -

Resolution No. 421 November 14, 2017

Adopting and Issuing A Negative Declaration Under 6 NYCRR Part 617 State Environmental Quality Review Act (SEQRA) By The Ulster County Legislature For The Construction Of The Ashokan Rail Trail—Capital Project No. 459- Department Of Planning

STATE OF NEW YORK

ss:

COUNTY OF ULSTER

I, the undersigned Clerk of the Legislature of the County of Ulster, hereby certify that the foregoing resolution is the original resolution adopted by the Ulster County Legislature on the 14th Day of November in the year Two Thousand and Seventeen, and said resolution shall remain on file in the office of said clerk.

IN WITNESS WHEREOF, I have hereunto set my hand and seal of the County of Ulster this 16^{th} Day of November in the year Two Thousand and Seventeen.

Victoria A. Fabella, Clerk Ulster County Legislature

Submitted to the County Executive this 16th Day of November, 2017.

Victoria A. Fabella, Clerk Ulster County Legislature Approved by the County Executive this Day of November, 2017.

Michael P. Hein, County Executive

Ashokan Rail Trail Project 6 NYCRR PART 617.7

STATE ENVIRONMENTAL QUALITY REVIEW ACT NEGATIVE DECLARATION NOTICE OF DETERMINATION OF NON-SIGNIFICANCE

SUPPORTING DOCUMENTATION:

- Ashokan Rail Trail- Full Environmental Assessment Form: Parts 1, 2 and 3
- Wetland Delineation Report (May 2017), which includes:
 - Wetland Study and Delineation, Mapping
 - o Threatened and Endangered Species Habitat Assessment and Coordination Letters
- Traffic Impact Study (March 2017)
- No Adverse Impact Letter from NYS OPRHP (October 2016)
- Environmental Soil Sampling Program, Conclusions and Test Results (May 2017)
- Resolution No. 480- Establishing Ashokan Rail Trail Capital Project (December 15, 2015)
- Lead Agency Letters Notice of Intent to Establish Lead Agency for Ashokan Rail Trail Construction (August 31, 2016)
- Resolution No. 327- Ashokan Trail Easement Authorization (August 15, 2017)
- Ashokan Trail Easement SEQR Full Environmental Assessment Form: Parts 1, 2 and 3 and Determination/ Negative Declaration
- Engineering Assessments of Burying Track and Tie: Richard C. Semenick, P.E. (HDR) and Thomas C. Baird, P.E. (Barton & Loguidice)

Full Environmental Assessment Form Part 1 - Project and Setting

Instructions for Completing Part 1

Part 1 is to be completed by the applicant or project sponsor. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A & B. In Sections C, D & E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section G requires the name and signature of the project sponsor to verify that the information contained in Part 1 is accurate and complete.

A. Project and Sponsor Information.

Name of Action or Project:	0 000 7 0	
Ashokan Rail Trail		
Project Location (describe, and attach a general location map):		
Fowns of Hurley and Olive, Ulster County		23 17 1
Brief Description of Proposed Action (include purpose or need):		
Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Dlive, as shown on the enclosed Project area map. The Project will establish a non-motorize Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes regail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, oridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurrican ecreational opportunities, enhance quality of life, and boost economic development and touri Ashokan Reservoir water supply.	d recreational trail on the County-ow ourposing of the existing railroad bed repair to existing drainage structure e Irene in 2011. The Project goals a	ned Ulster & Delaware and ballast, removal of s, and replacement of the re to improve
Name of Applicant/Sponsor:	Telephone: (845) 340-3800	
Ulster County, C/O Mr. Michael Hein, County Executive	E-Mail: exec@co.ulster.ny.us	
Address: 244 Fair Street, PO Box 1800		
City/PO: Kingston	State: NY	Zip Code: 12402
Project Contact (if not same as sponsor; give name and title/role):	Telephone: (845) 340-3338	
Mr. Christopher White, Ulster County Planning Dept., Deputy Director/Project Manager	E-Mail: cwhi@co.ulster.ny.us	75
Address: 244 Fair Street, PO Box 1800		
City/PO:	State:	Zip Code:
Kingston	NY	12402
Property Owner (if not same as sponsor):	Telephone: (845) 340-7218	
New York City Department of Environmental Protection (County owns railroad easement)	E-Mail: CLaing@dep.nyc.gov	3
Address: 71 Smith Avenue	,	-
City/PO: Kingston	State: NY	Zip Code: 12401

B. Government Approvals

B. Government Approvals, Funding, or Sponssistance.)	nsorship. ("Funding" includes grants, loans, tax	relief, and any other	r forms of financial	
Government Entity	If Yes: Identify Agency and Approval(s) Required	Applicati (Actual or j		
a. City Council, Town Board, ☐Yes ☑No or Village Board of Trustees		, and the second	* 4 = F	
b. City, Town or Village ☐Yes ✓No Planning Board or Commission		ja k	A + 184	
c. City Council, Town or ☐Yes ☑No Village Zoning Board of Appeals		i 1-	, u	
d. Other local agencies ☐Yes☑No			50 50	
e. County agencies ☑Yes☐No	Ulster County Legislature (SEQRA/ Funding)		* 67 5	
f. Regional agencies ✓Yes□No	NYCDEP (SWPPP - Design Approval)			
g. State agencies ☑Yes☐No	NYSDEC (Wetland, Habitat, Endangered Species, Protect Water), NYSHPO (Arch & Historic)		, 5 , g s , so	
h. Federal agencies ☑Yes□No	US Army Corps of Engineers (Wetland jurisdiction)			
i. Coastal Resources.i. Is the project site within a Coastal Area, or	or the waterfront area of a Designated Inland Wat	terway?	□Yes ☑ No	
 ii. Is the project site located in a community with an approved Local Waterfront Revitalization Program? □ Yes☑No iii. Is the project site within a Coastal Erosion Hazard Area? 				
C. Planning and Zoning	And the second s			
C.1. Planning and zoning actions.	dia, a di como action est	8, 2 × 4, 2 ×		
only approval(s) which must be granted to enal • If Yes, complete sections C, F and G.	mendment of a plan, local law, ordinance, rule or ble the proposed action to proceed? nplete all remaining sections and questions in Pa		∐Yes ⊠ No	
C.2. Adopted land use plans.				
a. Do any municipally- adopted (city, town, vil where the proposed action would be located?	lage or county) comprehensive land use plan(s) i	nclude the site	∠ Yes□No	
	ecific recommendations for the site where the pro-	posed action	∠ Yes□No	
b. Is the site of the proposed action within any local or regional special planning district (for example: Greenway Brownfield Opportunity Area (BOA); designated State or Federal heritage area; watershed management plan; or other?) If Yes, identify the plan(s): New York City Watershed Boundary - subject to NYC Watershed Rules and Regulations				
c. Is the proposed action located wholly or partially within an area listed in an adopted municipal open space plan, ✓ Yes No				
or an adopted municipal farmland protection If Yes, identify the plan(s):	n plan?	ni open space pian,	∠ Yes□No	
Ulster County Open Space Plan				

C.3. Zoning	
a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. If Yes, what is the zoning classification(s) including any applicable overlay district? Conservation Residential and very low density residential	☑ Yes□No
b. Is the use permitted or allowed by a special or conditional use permit?	☑Yes□No
c. Is a zoning change requested as part of the proposed action? If Yes, i. What is the proposed new zoning for the site?	□ Yes ☑ No
C.4. Existing community services.	
a. In what school district is the project site located? Onteora Central School District, Kingston City Schools	
b. What police or other public protection forces serve the project site? Olive Police Department, Ulster County Sheriff, NYS Police, NYC DEP Police	3 (10 m)
c. Which fire protection and emergency medical services serve the project site? Olive Fire Department, Olive First Aid, Inc., Hurley Fire Department	
d. What parks serve the project site? None	
D. Project Details	
D.1. Proposed and Potential Development	
a. What is the general nature of the proposed action (e.g., residential, industrial, commercial, recreational; if mixed components)? Recreational	ed, include all
b. Total acreage to be physically disturbed? 42 acres (11.5 m	ted by length iles) multiplied eet average
 c. Is the proposed action an expansion of an existing project or use? i. If Yes, what is the approximate percentage of the proposed expansion and identify the units (e.g., acres, mile square feet)? %	Yes No Son Notes, housing units,
 d. Is the proposed action a subdivision, or does it include a subdivision? If Yes, i. Purpose or type of subdivision? (e.g., residential, industrial, commercial; if mixed, specify types) 	□Yes ☑ No
ii. Is a cluster/conservation layout proposed?iii. Number of lots proposed?iv. Minimum and maximum proposed lot sizes? Minimum Maximum	□Yes□No
e. Will proposed action be constructed in multiple phases? i. If No, anticipated period of construction: months ii. If Yes: • Total number of phases anticipated2	☑ Yes□No
 Anticipated commencement date of phase 1 (including demolition) Anticipated completion date of final phase Generally describe connections or relationships among phases, including any contingencies where progredetermine timing or duration of future phases: 	ress of one phase may
Phasing of the project relates to constraints on access to the site and the difficulty of construction during winter month	s primarily due to access

f. Does the project include					☐Yes Z No
If Yes, show numbers of to One Fa		sed. Two Family	Three Family	Multiple Family (four or more)	
Initial Phase	<u> </u>	1110 1411111	<u> </u>	Transport & Mining (1981 91 mere)	
At completion					
of all phases			4 0		
D 11 1 1		• • • • •	1	1	
g. Does the proposed action of Yes,	on include r	new non-residentia	il construction (incit	iding expansions)?	☐Yes ☑ No
i. Total number of struct	tures				
ii. Dimensions (in feet) of	of largest pr	oposed structure:	height;	width; andlength	
iii. Approximate extent o	f building s	pace to be heated	or cooled:	square feet	
				l result in the impoundment of any	☐Yes Z No
liquids, such as creation	n of a water	supply, reservoir,	pond, lake, waste l	agoon or other storage?	
If Yes, i. Purpose of the impoun	dmonte				
ii. If a water impoundmen	nt. the princ	cinal source of the	water:	Ground water Surface water stream	ms Other specify:
m ii a water impounding	it, the princ	ipar source of the	L		
iii. If other than water, ide					
iv. Approximate size of the	ne proposed	l impoundment.	Volume:	million gallons; surface area:height; length	acres
v. Dimensions of the pro	posed dam	or impounding str	ucture:	height; length	
vi. Construction method/r	naterials fo	or the proposed da	m or impounding st	ructure (e.g., earth fill, rock, wood, con-	crete):
			-		
D.2. Project Operations					-
		ny excavation mi	ning or dredging d	uring construction, operations, or both?	☐ Yes / No
				or foundations where all excavated	103
materials will remain or		, 8			
If Yes:					
i. What is the purpose of	the excava	tion or dredging?		1	7
ii. How much material (in	cluding roc	k, earth, sediments	s, etc.) is proposed t	o be removed from the site?	
Volume (specifyOver what durati	on of time?	oic yards):	50		
iii. Describe nature and ch	aracteristic	s of materials to b	e excavated or dred	ged, and plans to use, manage or dispos	e of them.
				5, p	
iv. Will there be onsite de	ewatering o	or processing of ex	cavated materials?	y" a	Yes No
If yes, describe.		1	3 10		
					2° ,
v. What is the total area t			. 0	acres	
vi. What is the maximum				acres	
vii. What would be the ma			or areaging?	feet	☐Yes ☐No
ix. Summarize site reclam					
W. Summaride Site Teerani.	ation gould				
50.00					
		a 4^			£' " "
				crease in size of, or encroachment	✓ Yes No
into any existing wetlan	nd, waterbo	ody, shoreline, bea	ch or adjacent area?		
If Yes:	viotoul - 1	hiah	offeeted (because =	votor index number wetland man	or or goographic
				water index number, wetland map numb 71-P 848-12, H-171-P 848-11, H-171-P 848-1	
	stream reso		70-20 as well as n-11	1-1 040-12, 11-1/ 1-F 040-11, F1/ 1-F 040-	0, 11-17 1-F 040-9 and
				1	7

ii. Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placement of stalteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in square fee Wetland AS-20 and 1 unmapped wetland would have a minor linear impact as well as some adjacent area impact and proposed bridge work will require entry into waterways and temporary bank impacts. Note: The proposed trathe existing built railroad corridor	t or acres: cts. Culvert repair
iii. Will proposed action cause or result in disturbance to bottom sediments?	✓ Yes No
If Yes, describe: Major culvert repair and/or bridge reconstruction may cause temporary disturbance	
iv. Will proposed action cause or result in the destruction or removal of aquatic vegetation?	☐ Yes ✓ No
If Yes:	_ = 1: 1
acres of aquatic vegetation proposed to be removed:	
	
• purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):	
proposed method of plant removal:	
if chemical/herbicide treatment will be used, specify product(s):	
v. Describe any proposed reclamation/mitigation following disturbance:	
The wetland will be restored to pre-construction conditions and losses mitigated. Enhancement and restoration will occur.	
c. Will the proposed action use, or create a new demand for water?	☐Yes Z No
If Yes:	
i. Total anticipated water usage/demand per day: gallons/day	To the second second
ii. Will the proposed action obtain water from an existing public water supply?	☐Yes ☐No
If Yes:	
Name of district or service area:	
 Does the existing public water supply have capacity to serve the proposal? 	☐ Yes☐ No
• Is the project site in the existing district?	☐ Yes☐ No
• Is expansion of the district needed?	☐ Yes☐ No
 Do existing lines serve the project site? 	☐Yes☐No
iii. Will line extension within an existing district be necessary to supply the project?	□Yes □No
If Yes:	
Describe extensions or capacity expansions proposed to serve this project:	vo
• Source(s) of supply for the district:	☐ Yes☐No
If, Yes:	
Applicant/sponsor for new district:	
Date application submitted or anticipated:	
Proposed source(s) of supply for new district:	-
v. If a public water supply will not be used, describe plans to provide water supply for the project:	
vi. If water supply will be from wells (public or private), maximum pumping capacity: gallons/minute.	
d. Will the proposed action generate liquid wastes?	☐ Yes Z No
If Yes:	
i. Total anticipated liquid waste generation per day: gallons/day	
ii. Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe all comp	onents and
approximate volumes or proportions of each):	121.0
iii. Will the proposed action use any existing public wastewater treatment facilities?	☐Yes Z No
If Yes:	
Name of wastewater treatment plant to be used:	
Name of district:	
Does the existing wastewater treatment plant have capacity to serve the project?	□Yes□No
• Is the project site in the existing district?	☐Yes ☐No
Is expansion of the district needed?	☐Yes ☐No

 Do existing sewer lines serve the project site? Will line extension within an existing district be necessary to serve the project? 	☐Yes☐No ☐Yes☐No
If Yes: Describe extensions or capacity expansions proposed to serve this project:	<u> </u>
iv. Will a new wastewater (sewage) treatment district be formed to serve the project site? If Yes:	☐Yes Z No
 Applicant/sponsor for new district: Date application submitted or anticipated: 	
What is the receiving water for the wastewater discharge?	
v. If public facilities will not be used, describe plans to provide wastewater treatment for the project, including spectreceiving water (name and classification if surface discharge, or describe subsurface disposal plans):	cifying proposed
vi. Describe any plans or designs to capture, recycle or reuse liquid waste:	
	- 7 - 9
e. Will the proposed action disturb more than one acre and create stormwater runoff, either from new point sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater) or non-point source (i.e. sheet flow) during construction or post construction?	Z Yes □No
If Yes: i. How much impervious surface will the project create in relation to total size of project parcel?	
500 Square feet or0.01 acres (impervious surface)	
2.4M Square feet or 56 acres (parcel size)	
ii. Describe types of new point sources. the occasional swale will collect runoff in isolated locations and parking lots where it sheet flow and infiltration locations	will be directed to
iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facility/structures, adjacent p groundwater, on-site surface water or off-site surface waters)? on-site infiltration practices	properties,
If to surface waters, identify receiving water bodies or wetlands:	
Will down of God and Provide Co.	
• Will stormwater runoff flow to adjacent properties? iv. Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater?	☐ Yes ☑ No ☑ Yes ☐ No
f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations?	✓ Yes ☐ No
If Yes, identify:	
i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles)	
Heavy equipment during construction phase only	
ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers)	3
iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation) N/A	
g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit,	☐Yes ZNo
or Federal Clean Air Act Title IV or Title V Permit? If Yes:	
i. Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet	□Yes□No
ambient air quality standards for all or some parts of the year)	
ii. In addition to emissions as calculated in the application, the project will generate:	
•Tons/year (short tons) of Carbon Dioxide (CO ₂)	
•Tons/year (short tons) of Nitrous Oxide (N ₂ O)	
•Tons/year (short tons) of Perfluorocarbons (PFCs)	
•Tons/year (short tons) of Sulfur Hexafluoride (SF ₆)	
•Tons/year (short tons) of Carbon Dioxide equivalent of Hydroflourocarbons (HFCs)	
 Tons/year (short tons) of Hazardous Air Pollutants (HAPs) 	

 h. Will the proposed action generate or emit methane (including, but not limited to, sewage treatment plants, landfills, composting facilities)? If Yes: i. Estimate methane generation in tons/year (metric): ii. Describe any methane capture, control or elimination measures included in project design (e.g., combustion to gene electricity, flaring): 	Yes No
 i. Will the proposed action result in the release of air pollutants from open-air operations or processes, such as quarry or landfill operations? If Yes: Describe operations and nature of emissions (e.g., diesel exhaust, rock particulates/dust): 	∐Yes √ No
j. Will the proposed action result in a substantial increase in traffic above present levels or generate substantial new demand for transportation facilities or services? If Yes: i. When is the peak traffic expected (Check all that apply):	☐Yes☐No ☐Yes☐No cess, describe:
or other alternative fueled vehicles?	□Yes□No □Yes□No □Yes□No
 k. Will the proposed action (for commercial or industrial projects only) generate new or additional demand for energy? If Yes: i. Estimate annual electricity demand during operation of the proposed action: ii. Anticipated sources/suppliers of electricity for the project (e.g., on-site combustion, on-site renewable, via grid/loc other): iii. Will the proposed action require a new, or an upgrade to, an existing substation? 	Yes No cal utility, or
I. Hours of operation. Answer all items which apply. i. During Construction: Monday - Friday: Saturday: Sunday: Holidays: II. During Operations: Monday - Friday: Saturday: Saturday: Sunday: Holidays: Dawn to Dusk Sunday: Sunday: Dawn to Dusk Dawn to Dusk Dawn to Dusk	

m. Will the proposed action produce noise that will exceed existing ambient noise levels during construction, operation, or both?	☑ Yes □No
If yes:	
i. Provide details including sources, time of day and duration:	18 18 18 18 18 18 18 18 18 18 18 18 18 1
Heavy equipment usage during hours of construction, M-F 7am-5pm.	
	MxrDNI
ii. Will proposed action remove existing natural barriers that could act as a noise barrier or screen?	✓ Yes □No
Describe: Some limited tree removal will be required to achieve appropriate trail width. However, the entire area is forested and substantial natural barriers.	will still have
n Will the proposed action have outdoor lighting?	☐ Yes ☑ No
If yes:	
i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures:	
	Пхг Г Л ът
ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen?	☐ Yes ☑ No
Describe:	1 5/
o. Does the proposed action have the potential to produce odors for more than one hour per day?	☐ Yes ☑ No
If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest	
occupied structures:	
oodplod stratum -	***
p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons)	☐ Yes ☑ No
or chemical products 185 gallons in above ground storage or any amount in underground storage?	
If Yes:	
i. Product(s) to be stored	<u>.</u>
ii. Volume(s) per unit time (e.g., month, year)	
iii. Generally describe proposed storage facilities:	**
q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides,	☐ Yes ☑No
insecticides) during construction or operation?	
If Yes:	
i. Describe proposed treatment(s):	
ii. Will the proposed action use Integrated Pest Management Practices?	☐ Yes ☑No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal	☐ Yes ☑No
of solid waste (excluding hazardous materials)?	
If Yes:	
i. Describe any solid waste(s) to be generated during construction or operation of the facility:	
• Construction: tons per (unit of time)	
Operation: tons per (unit of time)	
• Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste:	
Construction:	· ·
Operation:	
iii. Proposed disposal methods/facilities for solid waste generated on-site:	
Construction:	
• ODECATION:	
Operation:	

IfY	oes the proposed action include construction or mod	ification of a solid waste mana	gement facility?	Yes 🗸 No	
	If Yes: i. Type of management or handling of waste proposed for the site (e.g., recycling or transfer station, composting, landfill, or				
l.	other disposal activities):	for the site (e.g., recycling or	transfer station, composting	g, iailuiiii, oi	
ii.	Anticipated rate of disposal/processing:	2 11 g			
	• Tons/month, if transfer or other non-	combustion/thermal treatment	, or		
	• Tons/hour, if combustion or thermal				
iii.	If landfill, anticipated site life:	years			
t. W	ill proposed action at the site involve the commercia	l generation, treatment, storag	e, or disposal of hazardous	☐Yes Z No	
	vaste?				
If Y			ad at facility		
I.	Name(s) of all hazardous wastes or constituents to be	e generated, nandled or manag	ed at facility:		
:		· · · · · · · · · · · · · · · · · · ·			
ii.	Generally describe processes or activities involving l	nazardous wastes or constituen	ts:		
222	Specify amount to be handled or generatedt	ons/month			
iu.	Describe any proposals for on-site minimization, red	ons/monu	onstituents:		
.,.	Describe any proposale for on one minimization, re-	young or rouse or magnitudes			
	Will any hazardous wastes be disposed at an existing			□Yes□No	
II Y	es: provide name and location of facility:				
IfN	o: describe proposed management of any hazardous	wastes which will not be sent	to a hazardous waste facilit	y:	
	1				
Tr (Site and Setting of Proposed Action	17			
		5 au			
E.1. Land uses on and surrounding the project site					
_ IC.					
a. E	xisting land uses.				
a. E	Check all uses that occur on, adjoining and near the		(non form)		
a. E i.	Check all uses that occur on, adjoining and near the Urban ☐ Industrial ☑ Commercial ☑ Resid	lential (suburban) Rural		untina	
a. E i. U U	Check all uses that occur on, adjoining and near the Urban ☐ Industrial ☑ Commercial ☑ Resid			unting	
a. E i. ☐ U ☑ I ii.	Check all uses that occur on, adjoining and near the Urban ☐ Industrial ☑ Commercial ☑ Residencest ☐ Agriculture ☐ Aquatic ☑ Other	dential (suburban)	y; Recreational- Fishing and H	unting	
a. E i. ☐ U ☑ I ii.	Check all uses that occur on, adjoining and near the Urban Industrial I Commercial I Residence Agriculture Aquatic I Other If mix of uses, generally describe:	dential (suburban)	y; Recreational- Fishing and H	unting	
a. E i. U I ii. Op	Check all uses that occur on, adjoining and near the Urban Industrial I Commercial I Residence Agriculture Aquatic I Other If mix of uses, generally describe:	dential (suburban)	y; Recreational- Fishing and H	unting	
a. E i. U I ii. Op	Check all uses that occur on, adjoining and near the Urban Industrial Industr	dential (suburban)	y; Recreational- Fishing and H	unting	
a. E i. U I ii. Op	Check all uses that occur on, adjoining and near the Urban Industrial Industr	dential (suburban)	y; Recreational- Fishing and H		
a. E i. U I ii. Op	Check all uses that occur on, adjoining and near the Urban Industrial Commercial Residences Agriculture Aquatic Other If mix of uses, generally describe: en space/ forested area with linear railroad corridor adjoining and near the Urban Residence Residenc	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage	y; Recreational- Fishing and Hog parallel to State Route 28 Acreage After Project Completion	Change (Acres +/-)	
a. E i. I I ii. Op b. I	Check all uses that occur on, adjoining and near the Urban Industrial Industr	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage	y; Recreational- Fishing and Hog parallel to State Route 28 Acreage After Project Completion	Change (Acres +/-)	
a. E i. I I ii. Op b. L	Check all uses that occur on, adjoining and near the Urban Industrial Industr	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage	y; Recreational- Fishing and Hog parallel to State Route 28 Acreage After Project Completion	Change (Acres +/-)	
a. E i. I I ii. Op b. I	Check all uses that occur on, adjoining and near the Urban Industrial Industr	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage	y; Recreational- Fishing and Hog parallel to State Route 28 Acreage After Project Completion	Change (Acres +/-)	
a. E	Check all uses that occur on, adjoining and near the Urban Industrial Industr	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37	Acreage After Project Completion 0 37	Change (Acres +/-) 0 0 0	
a. E i. I I ii. Op b. L	Check all uses that occur on, adjoining and near the Urban Industrial Industr	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37	Acreage After Project Completion 0 37	Change (Acres +/-) 0	
a. E	Check all uses that occur on, adjoining and near the Urban Industrial Industr	lential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37 0	Acreage After Project Completion 0 37 0	Change (Acres +/-) 0 0 0	
a. E	Check all uses that occur on, adjoining and near the Urban Industrial Commercial Residences Agriculture Aquatic Other If mix of uses, generally describe: en space/ forested area with linear railroad corridor adjoining and uses and covertypes on the project site. Land use or Covertype Roads, buildings, and other paved or impervious surfaces Forested Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) Agricultural (includes active orchards, field, greenhouse etc.)	ential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37	Acreage After Project Completion 0 37	Change (Acres +/-) 0 0 0	
a. E	Check all uses that occur on, adjoining and near the Urban Industrial Commercial Residences Agriculture Aquatic Other If mix of uses, generally describe: en space/ forested area with linear railroad corridor adjoining and uses and covertypes on the project site. Land use or Covertype Roads, buildings, and other paved or impervious surfaces Forested Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) Agricultural (includes active orchards, field, greenhouse etc.) Surface water features	lential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37 0	Acreage After Project Completion 0 37 0	Change (Acres +/-) 0 0 0	
a. E i I I ii Opp b. I	Check all uses that occur on, adjoining and near the Urban Industrial Commercial Residences Agriculture Aquatic Other If mix of uses, generally describe: en space/ forested area with linear railroad corridor adjoining and uses and covertypes on the project site. Land use or Covertype Roads, buildings, and other paved or impervious surfaces Forested Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) Agricultural (includes active orchards, field, greenhouse etc.) Surface water features (lakes, ponds, streams, rivers, etc.)	Pential (suburban) Rural Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37 0 2 1	Acreage After Project Completion 0 37 0 2 0.5+	Change (Acres +/-) 0 0 0 0 0 0 0 0 <0.5	
a. E i I I ii Opp b. I	Check all uses that occur on, adjoining and near the Urban Industrial Industr	Idential (suburban) Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37 0 0	Acreage After Project Completion 0 37 0 2	Change (Acres +/-) 0 0 0 0	
a. E i	Check all uses that occur on, adjoining and near the Urban Industrial Commercial Residencest Agriculture Aquatic Other If mix of uses, generally describe: en space/ forested area with linear railroad corridor adjoining and uses and covertypes on the project site. Land use or Covertype Roads, buildings, and other paved or impervious surfaces Forested Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) Agricultural (includes active orchards, field, greenhouse etc.) Surface water features (lakes, ponds, streams, rivers, etc.) Wetlands (freshwater or tidal)	Pential (suburban) Rural Rural r (specify): Drinking Water Suppl g a NYC DEP reservoir and runnin Current Acreage 0 37 0 2 1	Acreage After Project Completion 0 37 0 2 0.5+	Change (Acres +/-) 0 0 0 0 0 0 0 0 <0.5	

c. Is the project site presently used by members of the community for public recreation? i. If Yes: explain: Hunting and Fishing - Requires NYCDEP Access Permit	✓Yes□No
d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site?	Z Yes□No
If Yes,	
i. Identify Facilities: DD's Daycare- 36 Bonnie Brae Lane, Shokan	
BB 6 Baysard 66 Borning Bras Earle, Orlenan	
e. Does the project site contain an existing dam? If Yes:	☐Yes Z No
i. Dimensions of the dam and impoundment:	
Dam height: feet	
• Dam length: feet	
• Surface area: acres	
Volume impounded: gallons OR acre-feet Dam's quisting barand algorifications gallons OR acre-feet	
ii. Dam's existing hazard classification: iii. Provide date and summarize results of last inspection:	•
f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility, or does the project site adjoin property which is now, or was at one time, used as a solid waste management facility.	□Yes ☑ No ity?
If Yes: i. Has the facility been formally closed?	☐Yes☐ No
If yes, cite sources/documentation:	
ii. Describe the location of the project site relative to the boundaries of the solid waste management facility:	
m. Describe the recurion of the project site relative to the countainted of the sona waste management atomic,	
iii. Describe any development constraints due to the prior solid waste activities:	
g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste? If Yes:	☑ Yes□No
i. Describe waste(s) handled and waste management activities, including approximate time when activities occurred Note: Former railroad corridor. There is potential for coal ash and slag and uncharacterized fill on site. Testing will be complete.	ted to determine the
extent, if any, is on site. It is not expected to a hazard. Existing railroad ties will removed from the corridor and disposed of pr	operly
 h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any remedial actions been conducted at or adjacent to the proposed site? If Yes: 	☑Yes□ No
 i. Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply: 	□Yes□No
 ✓ Yes – Spills Incidents database ✓ Yes – Environmental Site Remediation database ✓ Neither database Provide DEC ID number(s): Multiple, Hazardous Was Provide DEC ID number(s):	
ii. If site has been subject of RCRA corrective activities, describe control measures:	-
iii. Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database? If yes, provide DEC ID number(s):	□Yes☑No
iv. If yes to (i), (ii) or (iii) above, describe current status of site(s):	
	-

v. Is the project site subject to an institutional control limiting property uses?	□Yes☑No	
If yes, DEC site ID number:		
Describe the type of institutional control (e.g., deed restriction or easement)	it):	
Describe any use limitations:		
Describe any engineering controls:		_
 Will the project affect the institutional or engineering controls in place? 	☐ Yes ☐ No	
Explain:		
E.2. Natural Resources On or Near Project Site		124
a. What is the average depth to bedrock on the project site?	6.5 feet	
b. Are there bedrock outcroppings on the project site?	✓ Yes No	
If Yes, what proportion of the site is comprised of bedrock outcroppings?	10_%	
	29 %	
c. Predominant soil type(s) present on project site: Oquaga-Arnot-Rock outcrop Tunkhannock gravelly loam	<u></u>	
Lackawanna and Swartswood	6 %	
d. What is the average depth to the water table on the project site? Average:	6.5 feet	
e. Drainage status of project site soils: Well Drained: 82 % o		
✓ Moderately Well Drained:10.4 % o		
✓ Poorly Drained	f site	
f. Approximate proportion of proposed action site with slopes: 0-10%:	30 % of site	
<u> </u>	<u>40</u> % of site	
Note: Trail Gradient <= 5 % ☐ 15% or greater:		
g. Are there any unique geologic features on the project site? If Yes, describe:	□Yes√No	
II Tes, describe.		
h. Surface water features.	nding streams, rivers, ✓ Yes No	
i. Does any portion of the project site contain wetlands or other waterbodies (inclusive and or lelea)?	ding streams, rivers,	
ponds or lakes)? ii. Do any wetlands or other waterbodies adjoin the project site?	✓ Yes No	
If Yes to either <i>i</i> or <i>ii</i> , continue. If No, skip to E.2.i.	- 100-110	
iii. Are any of the wetlands or waterbodies within or adjoining the project site regu	lated by any federal.	
state or local agency?	mated by any federal,	
iv. For each identified regulated wetland and waterbody on the project site, provide	the following information:	
 Streams: Name 862: 555, 549, 551, 543, 523 	Classification A(TS), A(T), AA(T), C(TS)	
Lakes or Ponds: Name	Classification	3
Wetlands: Name Federal and State	Approximate Size 100+	
• Wetland No. (if regulated by DEC) AS-19. AS-20		
v. Are any of the above water bodies listed in the most recent compilation of NYS	water quality-impaired Yes No	
waterbodies?		
If yes, name of impaired water body/bodies and basis for listing as impaired:	:	
Ashokan Reservoir, Esopus Creek - Metals (silt/sediment),		_
i. Is the project site in a designated Floodway?	☐Yes Z No	
j. Is the project site in the 100 year Floodplain?	Z Yes □No	١,
k. Is the project site in the 500 year Floodplain?	☑ Yes □No	
1. Is the project site located over, or immediately adjoining, a primary, principal or If Yes:	sole source aquifer? Yes \[\sum No	
i. Name of aquifer: Principal Aquifer		
		-

m. Identify the predominant wildlife species white tailed deer		te: black bear	
eastern chipmunk	turkey eastern gray squirrel	coyote	- W
eastern Gripmank	eastern gray squirer		
n. Does the project site contain a designated If Yes: i. Describe the habitat/community (composition) Vernal pool		ignation):	☑ Yes □No
ii. Source(s) of description or evaluation: s	Site Investigations NYC DEP		
iii. Extent of community/habitat:	nio mvodigationo, m o bil		
Currently:		.75 acres	
 Following completion of project as 	proposed:	.75 acres	, a . a x
• Gain or loss (indicate + or -):		0 acres	
o. Does project site contain any species of pl			✓ Yes No
endangered or threatened, or does it contains the state of the state o			pecies?
p. Does the project site contain any species special concern?	of plant or animal that is listed by	NYS as rare, or as a species of	✓ Yes No
Sharp-shinned hawk, osprey, red-shouldered hawk, q. Is the project site or adjoining area current			⊘ Yes⊡No
If yes, give a brief description of how the pro			W 1 C3
Access to designated fishing and hunting areas			y special permit.
E.3. Designated Public Resources On or N	lear Project Site		
a. Is the project site, or any portion of it, loca Agriculture and Markets Law, Article 25- If Yes, provide county plus district name/nu	AA, Section 303 and 304?	listrict certified pursuant to	∐Yes☑No
b. Are agricultural lands consisting of highly	productive soils present?		□Yes Z No
i. If Yes: acreage(s) on project site?		7	
ii. Source(s) of soil rating(s):			
c. Does the project site contain all or part of Natural Landmark? If Yes:	Biological Community [Geological Feature	∐Yes☑No
d. Is the project site located in or does it adjoint fyes: i. CEA name: ii. Rasis for designation:			☐Yes ✓ No
ii. Basis for designation:iii. Designating agency and date:		3	* *
Designating agency and date.			

e. Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district which is listed on, or has been nominated by the NYS Board of Historic Preservation for inclusion on, the State or National Register of Historic Places? If Yes:	Yes No
i. Nature of historic/archaeological resource: ☐ Archaeological Site ☐ Historic Building or District ii. Name:	
iii. Brief description of attributes on which listing is based:	
f. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?	☑ Yes □No
 g. Have additional archaeological or historic site(s) or resources been identified on the project site? If Yes: i. Describe possible resource(s): 	□Yes □ No
ii. Basis for identification:	
h. Is the project site within fives miles of any officially designated and publicly accessible federal, state, or local scenic or aesthetic resource? If Yes:	☑ Yes □No
 i. Identify resource: NYS Route 28 Scenic Byway, Ashokan Reservoir ii. Nature of, or basis for, designation (e.g., established highway overlook, state or local park, state historic trail or etc.): Rt. 28 Scenic byway - Ashokan Reservoir overlooks and trail iii. Distance between project and resource: 	

Full Environmental Assessment Form Part 2 - Identification of Potential Project Impacts

Project : Date :

Part 2 is to be completed by the lead agency. Part 2 is designed to help the lead agency inventory all potential resources that could be affected by a proposed project or action. We recognize that the lead agency's reviewer(s) will not necessarily be environmental professionals. So, the questions are designed to walk a reviewer through the assessment process by providing a series of questions that can be answered using the information found in Part 1. To further assist the lead agency in completing Part 2, the form identifies the most relevant questions in Part 1 that will provide the information needed to answer the Part 2 question. When Part 2 is completed, the lead agency will have identified the relevant environmental areas that may be impacted by the proposed activity.

If the lead agency is a state agency **and** the action is in any Coastal Area, complete the Coastal Assessment Form before proceeding with this assessment.

Tips for completing Part 2:

- Review all of the information provided in Part 1.
- Review any application, maps, supporting materials and the Full EAF Workbook.
- Answer each of the 18 questions in Part 2.
- If you answer "Yes" to a numbered question, please complete all the questions that follow in that section.
- If you answer "No" to a numbered question, move on to the next numbered question.
- Check appropriate column to indicate the anticipated size of the impact.
- Proposed projects that would exceed a numeric threshold contained in a question should result in the reviewing agency checking the box "Moderate to large impact may occur."
- The reviewer is not expected to be an expert in environmental analysis.
- If you are not sure or undecided about the size of an impact, it may help to review the sub-questions for the general question and consult the workbook.
- When answering a question consider all components of the proposed activity, that is, the "whole action".
- Consider the possibility for long-term and cumulative impacts as well as direct impacts.
- Answer the question in a reasonable manner considering the scale and context of the project.

1. Impact on Land Proposed action may involve construction on, or physical alteration of, the land surface of the proposed site. (See Part 1. D.1) If "Yes", answer questions a - j. If "No", move on to Section 2.	□NC		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may involve construction on land where depth to water table is less than 3 feet.	E2d		
b. The proposed action may involve construction on slopes of 15% or greater.	E2f		
c. The proposed action may involve construction on land where bedrock is exposed, or generally within 5 feet of existing ground surface.	E2a		
d. The proposed action may involve the excavation and removal of more than 1,000 tons of natural material.	D2a		
e. The proposed action may involve construction that continues for more than one year or in multiple phases.	D1e		
f. The proposed action may result in increased erosion, whether from physical disturbance or vegetation removal (including from treatment by herbicides).	D2e, D2q		
g. The proposed action is, or may be, located within a Coastal Erosion hazard area.	B1i		
h. Other impacts:			

2. Impact on Geological Features			
The proposed action may result in the modification or destruction of, or inhib access to, any unique or unusual land forms on the site (e.g., cliffs, dunes, minerals, fossils, caves). (See Part 1. E.2.g) If "Yes", answer questions a - c. If "No", move on to Section 3.	it □ NO		YES
ij les , unswer questions a - c. ij ivo , move on to section 3.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Identify the specific land form(s) attached:	E2g		
b. The proposed action may affect or is adjacent to a geological feature listed as a registered National Natural Landmark. Specific feature:	E3c		
c. Other impacts:			
	<u> </u>		
3. Impacts on Surface Water The proposed action may affect one or more wetlands or other surface water bodies (e.g., streams, rivers, ponds or lakes). (See Part 1. D.2, E.2.h) If "Yes", answer questions a - l. If "No", move on to Section 4.	□ NO		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may create a new water body.	D2b, D1h		
b. The proposed action may result in an increase or decrease of over 10% or more than a 10 acre increase or decrease in the surface area of any body of water.	D2b		
c. The proposed action may involve dredging more than 100 cubic yards of material from a wetland or water body.	D2a		
d. The proposed action may involve construction within or adjoining a freshwater or tidal wetland, or in the bed or banks of any other water body.	E2h		
e. The proposed action may create turbidity in a waterbody, either from upland erosion, runoff or by disturbing bottom sediments.	D2a, D2h		
f. The proposed action may include construction of one or more intake(s) for withdrawal of water from surface water.	D2c		
g. The proposed action may include construction of one or more outfall(s) for discharge of wastewater to surface water(s).	D2d		
h. The proposed action may cause soil erosion, or otherwise create a source of stormwater discharge that may lead to siltation or other degradation of receiving water bodies.	D2e		
i. The proposed action may affect the water quality of any water bodies within or downstream of the site of the proposed action.	E2h		
j. The proposed action may involve the application of pesticides or herbicides in or around any water body.	D2q, E2h		
k. The proposed action may require the construction of new, or expansion of existing,	D1a, D2d		

wastewater treatment facilities.

1. Other impacts:			
4. Impact on groundwater The proposed action may result in new or additional use of ground water, or may have the potential to introduce contaminants to ground water or an aquife (See Part 1. D.2.a, D.2.c, D.2.d, D.2.p, D.2.q, D.2.t) If "Yes", answer questions a - h. If "No", move on to Section 5.	□ NO) [YES
ij Tes , unswer questions a n. ij 110 , move on to section 3.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may require new water supply wells, or create additional demand on supplies from existing water supply wells.	D2c		
b. Water supply demand from the proposed action may exceed safe and sustainable withdrawal capacity rate of the local supply or aquifer. Cite Source:	D2c		
c. The proposed action may allow or result in residential uses in areas without water and sewer services.	D1a, D2c		
d. The proposed action may include or require wastewater discharged to groundwater.	D2d, E2l		
e. The proposed action may result in the construction of water supply wells in locations where groundwater is, or is suspected to be, contaminated.	D2c, E1f, E1g, E1h		
f. The proposed action may require the bulk storage of petroleum or chemical products over ground water or an aquifer.	D2p, E2l		
g. The proposed action may involve the commercial application of pesticides within 100 feet of potable drinking water or irrigation sources.	E2h, D2q, E2l, D2c		
h. Other impacts:			
5. Impact on Flooding The proposed action may result in development on lands subject to flooding. (See Part 1. E.2) If "Yes", answer questions a - g. If "No", move on to Section 6.	□ NO) 🗆	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may result in development in a designated floodway.	E2i		
b. The proposed action may result in development within a 100 year floodplain.	E2j		
c. The proposed action may result in development within a 500 year floodplain.	E2k		
d. The proposed action may result in, or require, modification of existing drainage patterns.	D2b, D2e		
e. The proposed action may change flood water flows that contribute to flooding.	D2b, E2i, E2j, E2k		
f. If there is a dam located on the site of the proposed action, is the dam in need of repair, or upgrade?	Ele		

g. Other impacts:			
6. Impacts on Air The proposed action may include a state regulated air emission source. (See Part 1. D.2.f., D,2,h, D.2.g) If "Yes", answer questions a - f. If "No", move on to Section 7.	□ NO		YES
zy rea , emisire, questiona et j. zy rie , mere en le section / l	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
 a. If the proposed action requires federal or state air emission permits, the action may also emit one or more greenhouse gases at or above the following levels: i. More than 1000 tons/year of carbon dioxide (CO₂) ii. More than 3.5 tons/year of nitrous oxide (N₂O) iii. More than 1000 tons/year of carbon equivalent of perfluorocarbons (PFCs) iv. More than .045 tons/year of sulfur hexafluoride (SF₆) v. More than 1000 tons/year of carbon dioxide equivalent of hydrochloroflourocarbons (HFCs) emissions vi. 43 tons/year or more of methane 	D2g D2g D2g D2g D2g D2g		
b. The proposed action may generate 10 tons/year or more of any one designated hazardous air pollutant, or 25 tons/year or more of any combination of such hazardous air pollutants.	D2g		
c. The proposed action may require a state air registration, or may produce an emissions rate of total contaminants that may exceed 5 lbs. per hour, or may include a heat source capable of producing more than 10 million BTU's per hour.	D2f, D2g		
d. The proposed action may reach 50% of any of the thresholds in "a" through "c", above.	D2g		
e. The proposed action may result in the combustion or thermal treatment of more than 1 ton of refuse per hour.	D2s		
f. Other impacts:			
7. Impact on Plants and Animals The proposed action may result in a loss of flora or fauna. (See Part 1. E.2. If "Yes", answer questions a - j. If "No", move on to Section 8.	mq.)	□NO	□ YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may cause reduction in population or loss of individuals of any threatened or endangered species, as listed by New York State or the Federal government, that use the site, or are found on, over, or near the site.	E2o		
b. The proposed action may result in a reduction or degradation of any habitat used by any rare, threatened or endangered species, as listed by New York State or the federal government.	E2o		
c. The proposed action may cause reduction in population, or loss of individuals, of any species of special concern or conservation need, as listed by New York State or the Federal government, that use the site, or are found on, over, or near the site.	E2p		
d. The proposed action may result in a reduction or degradation of any habitat used by any species of special concern and conservation need, as listed by New York State or the Federal government.	E2p		

e. The proposed action may diminish the capacity of a registered National Natural Landmark to support the biological community it was established to protect.	E3c		
f. The proposed action may result in the removal of, or ground disturbance in, any portion of a designated significant natural community. Source:	E2n		
g. The proposed action may substantially interfere with nesting/breeding, foraging, or over-wintering habitat for the predominant species that occupy or use the project site.	E2m		
h. The proposed action requires the conversion of more than 10 acres of forest, grassland or any other regionally or locally important habitat. Habitat type & information source:	E1b		
i. Proposed action (commercial, industrial or recreational projects, only) involves use of herbicides or pesticides.	D2q		
j. Other impacts:			
8. Impact on Agricultural Resources The proposed action may impact agricultural resources. (See Part 1. E.3.a. ar	nd b.)	□ NO	□ YES
If "Yes", answer questions a - h. If "No", move on to Section 9.			
If "Yes", answer questions a - h. If "No", move on to Section 9.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System.	Part I	small impact	to large impact may
a. The proposed action may impact soil classified within soil group 1 through 4 of the	Part I Question(s)	small impact may occur	to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land 	Part I Question(s) E2c, E3b	small impact may occur	to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of 	Part I Question(s) E2c, E3b E1a, Elb	small impact may occur	to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land. d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 	Part I Question(s) E2c, E3b E1a, Elb	small impact may occur	to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land. d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 acres if not within an Agricultural District. e. The proposed action may disrupt or prevent installation of an agricultural land 	Part I Question(s) E2c, E3b E1a, Elb E3b E1b, E3a	small impact may occur	to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land. d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 acres if not within an Agricultural District. e. The proposed action may disrupt or prevent installation of an agricultural land management system. f. The proposed action may result, directly or indirectly, in increased development 	Part I Question(s) E2c, E3b E1a, Elb E3b E1b, E3a El a, E1b C2c, C3,	small impact may occur	to large impact may occur

9. Impact on Aesthetic Resources The land use of the proposed action are obviously different from, or are in sharp contrast to, current land use patterns between the proposed project and a scenic or aesthetic resource. (Part 1. E.1.a, E.1.b, E.3.h.) If "Yes", answer questions a - g. If "No", go to Section 10.	□NO) 🗆	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Proposed action may be visible from any officially designated federal, state, or local scenic or aesthetic resource.	E3h		
b. The proposed action may result in the obstruction, elimination or significant screening of one or more officially designated scenic views.	E3h, C2b		
c. The proposed action may be visible from publicly accessible vantage points: i. Seasonally (e.g., screened by summer foliage, but visible during other seasons) ii. Year round	E3h		
d. The situation or activity in which viewers are engaged while viewing the proposed action is:i. Routine travel by residents, including travel to and from workii. Recreational or tourism based activities	E3h E2q, E1c	0 0	
e. The proposed action may cause a diminishment of the public enjoyment and appreciation of the designated aesthetic resource.	E3h		
f. There are similar projects visible within the following distance of the proposed project: 0-1/2 mile 1/2 -3 mile 3-5 mile 5+ mile	D1a, E1a, D1f, D1g		
g. Other impacts:			
10. Impact on Historic and Archeological Resources The proposed action may occur in or adjacent to a historic or archaeological resource. (Part 1. E.3.e, f. and g.) If "Yes", answer questions a - e. If "No", go to Section 11.	□NO) 🛭	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may occur wholly or partially within, or substantially contiguous to, any buildings, archaeological site or district which is listed on or has been nominated by the NYS Board of Historic Preservation for inclusion on the State or National Register of Historic Places.	E3e		
b. The proposed action may occur wholly or partially within, or substantially contiguous to, an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory.	E3f		
c. The proposed action may occur wholly or partially within, or substantially contiguous to, an archaeological site not included on the NY SHPO inventory. Source:	E3g		

d. Other impacts:			
If any of the above (a-d) are answered "Moderate to large impact may e. occur", continue with the following questions to help support conclusions in Part 3:			
 The proposed action may result in the destruction or alteration of all or part of the site or property. 	E3e, E3g, E3f		
ii. The proposed action may result in the alteration of the property's setting or integrity.	E3e, E3f, E3g, E1a, E1b		
iii. The proposed action may result in the introduction of visual elements which are out of character with the site or property, or may alter its setting.	E3e, E3f, E3g, E3h, C2, C3		
11. Impact on Open Space and Recreation The proposed action may result in a loss of recreational opportunities or a reduction of an open space resource as designated in any adopted municipal open space plan. (See Part 1. C.2.c, E.1.c., E.2.q.) If "Yes", answer questions a - e. If "No", go to Section 12.	□NO) 🗆	YES
•	Relevant	No, or	Moderate
	Part I Question(s)	small impact may occur	to large impact may occur
a. The proposed action may result in an impairment of natural functions, or "ecosystem services", provided by an undeveloped area, including but not limited to stormwater storage, nutrient cycling, wildlife habitat.	D2e, E1b E2h, E2m, E2o, E2n, E2p		
b. The proposed action may result in the loss of a current or future recreational resource.	C2a, E1c, C2c, E2q		
c. The proposed action may eliminate open space or recreational resource in an area with few such resources.	C2a, C2c E1c, E2q		
d. The proposed action may result in loss of an area now used informally by the community as an open space resource.	C2c, E1c		
e. Other impacts:			
12. Impact on Critical Environmental Areas The proposed action may be located within or adjacent to a critical environmental area (CEA). (See Part 1. E.3.d) If "Yes", answer questions a - c. If "No", go to Section 13.)	YES
	Relevant	No, or	Moderate
	Part I Question(s)	small impact may occur	to large impact may occur
a. The proposed action may result in a reduction in the quantity of the resource or characteristic which was the basis for designation of the CEA.	E3d		
b. The proposed action may result in a reduction in the quality of the resource or characteristic which was the basis for designation of the CEA.	E3d		
c. Other impacts:			

13. Impact on Transportation The proposed action may result in a change to existing transportation systems (See Part 1. D.2.j)	s. 🗆 No	O 🗖	YES
If "Yes", answer questions a - f. If "No", go to Section 14.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Projected traffic increase may exceed capacity of existing road network.	D2j		
b. The proposed action may result in the construction of paved parking area for 500 or more vehicles.	D2j		
c. The proposed action will degrade existing transit access.	D2j		
d. The proposed action will degrade existing pedestrian or bicycle accommodations.	D2j		
e. The proposed action may alter the present pattern of movement of people or goods.	D2j		
f. Other impacts:			
	1		•
14. Impact on Energy The proposed action may cause an increase in the use of any form of energy. (See Part 1. D.2.k) If "Yes", answer questions a - e. If "No", go to Section 15.	□Nº	O 🗆	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action will require a new, or an upgrade to an existing, substation.	D2k		
b. The proposed action will require the creation or extension of an energy transmission or supply system to serve more than 50 single or two-family residences or to serve a commercial or industrial use.	D1f, D1q, D2k		
c. The proposed action may utilize more than 2,500 MWhrs per year of electricity.	D2k		
d. The proposed action may involve heating and/or cooling of more than 100,000 square feet of building area when completed.	D1g		
e. Other Impacts:			
[12]			
15. Impact on Noise, Odor, and Light The proposed action may result in an increase in noise, odors, or outdoor ligh (See Part 1. D.2.m., n., and o.) If "Yes", answer questions a - f. If "No", go to Section 16.	ting. NC) 🗆	YES
J ,	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may produce sound above noise levels established by local regulation.	D2m		
b. The proposed action may result in blasting within 1,500 feet of any residence, hospital, school, licensed day care center, or nursing home.	D2m, E1d		

c. The proposed action may result in routine odors for more than one hour per day.

D2o

d. The proposed action may result in light shining onto adjoining properties.	D2n	
e. The proposed action may result in lighting creating sky-glow brighter than existing area conditions.	D2n, E1a	
f. Other impacts:		

16. Impact on Human Health The proposed action may have an impact on human health from exposure \square NO \square YES to new or existing sources of contaminants. (See Part 1.D.2.q., E.1. d. f. g. and h.) If "Yes", answer questions a - m. If "No", go to Section 17. Relevant Moderate No,or Part I small to large **Ouestion(s)** impact impact may may cccur occur a. The proposed action is located within 1500 feet of a school, hospital, licensed day E1d П П care center, group home, nursing home or retirement community. Elg, Elh b. The site of the proposed action is currently undergoing remediation. Elg, Elh П c. There is a completed emergency spill remediation, or a completed environmental site remediation on, or adjacent to, the site of the proposed action. Elg, Elh d. The site of the action is subject to an institutional control limiting the use of the П property (e.g., easement or deed restriction). e. The proposed action may affect institutional control measures that were put in place Elg, Elh П to ensure that the site remains protective of the environment and human health. D2t f. The proposed action has adequate control measures in place to ensure that future generation, treatment and/or disposal of hazardous wastes will be protective of the environment and human health. g. The proposed action involves construction or modification of a solid waste D2q, E1f П management facility. D2q, E1f h. The proposed action may result in the unearthing of solid or hazardous waste. П D2r, D2s i. The proposed action may result in an increase in the rate of disposal, or processing, of solid waste. j. The proposed action may result in excavation or other disturbance within 2000 feet of E1f, E1g a site used for the disposal of solid or hazardous waste. E1h E1f, E1g k. The proposed action may result in the migration of explosive gases from a landfill П П site to adjacent off site structures. D2s, E1f, 1. The proposed action may result in the release of contaminated leachate from the D2r project site. m. Other impacts:

17. Consistency with Community Plans The proposed action is not consistent with adopted land use plans. (See Part 1. C.1, C.2. and C.3.) If "Yes", answer questions a - h. If "No", go to Section 18.	□NO		YES
If Tes , unswer questions a - n. If Two , go to section 10.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action's land use components may be different from, or in sharp contrast to, current surrounding land use pattern(s).	C2, C3, D1a E1a, E1b		
b. The proposed action will cause the permanent population of the city, town or village in which the project is located to grow by more than 5%.	C2		
c. The proposed action is inconsistent with local land use plans or zoning regulations.	C2, C2, C3		
d. The proposed action is inconsistent with any County plans, or other regional land use plans.	C2, C2		
e. The proposed action may cause a change in the density of development that is not supported by existing infrastructure or is distant from existing infrastructure.	C3, D1c, D1d, D1f, D1d, Elb		
f. The proposed action is located in an area characterized by low density development that will require new or expanded public infrastructure.	C4, D2c, D2d D2j		
g. The proposed action may induce secondary development impacts (e.g., residential or commercial development not included in the proposed action)	C2a		
h. Other:			
18. Consistency with Community Character The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3.	□NO) DY	/ES
The proposed project is inconsistent with the existing community character.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3)	Relevant Part I	No, or small impact	Moderate to large impact may
The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3. a. The proposed action may replace or eliminate existing facilities, structures, or areas	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3. a. The proposed action may replace or eliminate existing facilities, structures, or areas of historic importance to the community. b. The proposed action may create a demand for additional community services (e.g.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3. a. The proposed action may replace or eliminate existing facilities, structures, or areas of historic importance to the community. b. The proposed action may create a demand for additional community services (e.g. schools, police and fire) c. The proposed action may displace affordable or low-income housing in an area where	Relevant Part I Question(s) E3e, E3f, E3g C4 C2, C3, D1f	No, or small impact may occur	Moderate to large impact may occur
The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3. a. The proposed action may replace or eliminate existing facilities, structures, or areas of historic importance to the community. b. The proposed action may create a demand for additional community services (e.g. schools, police and fire) c. The proposed action may displace affordable or low-income housing in an area where there is a shortage of such housing. d. The proposed action may interfere with the use or enjoyment of officially recognized	Relevant Part I Question(s) E3e, E3f, E3g C4 C2, C3, D1f D1g, E1a	No, or small impact may occur	Moderate to large impact may occur
The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3. a. The proposed action may replace or eliminate existing facilities, structures, or areas of historic importance to the community. b. The proposed action may create a demand for additional community services (e.g. schools, police and fire) c. The proposed action may displace affordable or low-income housing in an area where there is a shortage of such housing. d. The proposed action may interfere with the use or enjoyment of officially recognized or designated public resources. e. The proposed action is inconsistent with the predominant architectural scale and	Relevant Part I Question(s) E3e, E3f, E3g C4 C2, C3, D1f D1g, E1a C2, E3	No, or small impact may occur	Moderate to large impact may occur

	Agency Use Only	[IfApplicable]
Project:		
Date:		

Full Environmental Assessment Form Part 3 - Evaluation of the Magnitude and Importance of Project Impacts and Determination of Significance

Part 3 provides the reasons in support of the determination of significance. The lead agency must complete Part 3 for every question in Part 2 where the impact has been identified as potentially moderate to large or where there is a need to explain why a particular element of the proposed action will not, or may, result in a significant adverse environmental impact.

Based on the analysis in Part 3, the lead agency must decide whether to require an environmental impact statement to further assess the proposed action or whether available information is sufficient for the lead agency to conclude that the proposed action will not have a significant adverse environmental impact. By completing the certification on the next page, the lead agency can complete its determination of significance.

Reasons Supporting This Determination:

To complete this section:

 size or exi Assess the occurring occur. The assess Repeat thi there is a renvironme Provide the For Condino significant 	tent of an impact. e importance of the impact, number of people affect sment should take into co is process for each Part 2 need to explain why a paental impact. the reason(s) why the impact.	ct. Importance relates sed by the impact and a consideration any design question where the intricular element of the act may, or will not, reions identify the specital impacts will result.	to the geographic so any additional environment of project apact has been identic proposed action will esult in a significant of fic condition(s) imposes	cope, duration, probability onmental consequences if the changes. If it is a potentially moderall not, or may, result in a sign adverse environmental imposed that will modify the property of	of the impact the impact were to te to large or where gnificant adverse
					,
	•				
		•			
					¥
	Determinat	ion of Significanc	e - Type 1 and U	Unlisted Actions	
SEQR Status:	✓ Type 1	Unlisted			
dentify portions of	EAF completed for this	Project: Part 1	Part 2	✓ Part 3	
, ,		C Inviscouli			

Upon review of the information recorded on this EAF, as noted, plus this additional support information
and considering both the magnitude and importance of each identified potential impact, it is the conclusion of the Ulster County Legislature as lead agency that:
A. This project will result in no significant adverse impacts on the environment, and, therefore, an environmental impact statement need not be prepared. Accordingly, this negative declaration is issued.
B. Although this project could have a significant adverse impact on the environment, that impact will be avoided or substantially mitigated because of the following conditions which will be required by the lead agency:
There will, therefore, be no significant adverse impacts from the project as conditioned, and, therefore, this conditioned negative declaration is issued. A conditioned negative declaration may be used only for UNLISTED actions (see 6 NYCRR 617.d).
C. This Project may result in one or more significant adverse impacts on the environment, and an environmental impact statement must be prepared to further assess the impact(s) and possible mitigation and to explore alternatives to avoid or reduce those impacts. Accordingly, this positive declaration is issued.
Name of Action: Ashokan Rail Trail
Name of Lead Agency: Ulster County Legislature
Name of Responsible Officer in Lead Agency: Kenneth J. Ronk, Jr.
Title of Responsible Officer: Ulster County Legislature Chairman
Signature of Responsible Officer in Lead Agency: Date: //-17-17 Signature of Preparer (if different from Responsible Officer) Date: 10-25-2017
Signature of Preparer (if different from Responsible Officer) Date: 10-25-2017
For Further Information:
Contact Person: Mr. Dennis Doyle, Director Ulster County Planning Department
Address: 244 Fair Street, PO Box 1800, Kingston NY 12401
Telephone Number: 845 340-3338
E-mail: ddoy@co.ulster.ny.us
For Type 1 Actions and Conditioned Negative Declarations, a copy of this Notice is sent to:
Chief Executive Officer of the political subdivision in which the action will be principally located (e.g., Town / City / Village of) Other involved agencies (if any) Applicant (if any) Environmental Notice Bulletin: http://www.dec.ny.gov/enb/enb.html

Ashokan Rail Trail Towns of Hurley and Olive Ulster County, New York

Wetland Delineation Report

May 2017

Ashokan Rail Trail Towns of Hurley and Olive Ulster County, New York

Wetland Delineation Report

Ashokan Rail Trail

Towns of Hurley and Olive Ulster County, New York

Wetland Delineation Report

May 2017

Prepared For:

Ulster County Planning Department 244 Fair Street Kingston, New York 12401

Prepared By:

Barton & Loguidice, D.P.C. 10 Airline Drive Albany, NY 12205

Table of Contents

Secti	<u>on</u>		<u>Page</u>
1.0	Intr	oduction	1
2.0	Site	Description	2
	2.1	Location	
	2.2	Site Use	2
3.0	Age	ncy Resource Information	3
	3.1	Topographic Mapping	
	3.2	Soils Information	
	3.3	New York State Department of Environmental Conservation	
		Freshwater Wetlands Mapping	8
	3.4	National Wetland Inventory Mapping	8
	3.5	Surface Water Resources	9
	3.6	Results of Background Information Review	
4.0	Site	Ecology	10
	4.1	General Cover Types	
	4.2	Ecological Zone	
	4.3	Wetland Cover Types	10
5.0	Wet	land Delineation Methodology	12
	5.1	Vegetation	
	5.2	Hydrology	
	5.3	Soils	
	5.4	Mapping	14
6.0	Resi	ults	15
	6.1	Delineated Wetlands	
	6.2	Surface Waters	20
	6.3	Wetland and Surface Water Labeling	
7.0	Sum	nmary and Conclusions	24
8.0	Rihl	iography	26

Table of Contents – Continued

<u>Tables</u>	<u>Page</u>
Table 1 NRCS Mapped Soils Data	5
Table 2 NWI Mapped Wetlands	8
Table 3 NYSDEC Mapped Stream Resources	
Table 4 Characteristics of the Ecological Zones	
Table 5 Wetland and Stream Locations	22
Table 6 Wetland Data Plot Information and Federal Wetland Criteria	24

Figures

Figure 1 Site Location Map – Aerial Imagery
Figure 2 Site Location Map – Topographic Imagery

Figures 3 and 3A NRCS Mapped Soils
Figures 4 and 4A NYSDEC/NWI Wetlands
Figure 5 NYSDEC Mapped Streams
Figures 6A-6J Delineated Resources

Appendices

Appendix A Wetland/Upland Field Delineation Datasheets

Appendix B Site Photographs

1.0 Introduction

This report describes the wetland resources located along portions of the proposed Ashokan Rail Trail located in the Towns of Olive and Hurley, Ulster County, New York. Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail which will run from Basin Road in the Town of Hurley to Route 28A in the Town of Olive. The proposed action includes the creation of a recreational trail corridor on a former Ulster & Delaware (U&D) rail line, north of the Ashokan Reservoir on an Ulster County-owned corridor. The project is located within New York City Watershed Lands, which are regulated by the New York City Department of Environmental Protection (NYCDEP). The project includes repurposing the existing ballast, removal of rail and ties, creation of trailheads, installation of two pedestrian bridges and maintenance to/replacement of existing culvert structures. The limits of survey along the corridor, identified as the Project Corridor, were approximately 20 feet from the center of the railway in the Ulster County Right of Way (ROW).

A wetland and stream delineation was conducted by Barton & Loguidice, D.P.C. (B&L) throughout the Project Corridor (see Figures 1 and 2) on June 28 and 29, 2016 and July 7, 2016, in accordance with the Routine Delineation Method set forth in the *Wetlands Delineation Manual* (Environmental Laboratory, 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region Version 2.0* (U.S. Army Corps of Engineers [USACE], 2011). These methods were used to identify wetland and water resources within the Project Corridor.

This report summarizes agency resource information obtained for the Project Corridor, details the methods used to identify and delineate the field observed resources, and presents the results of the field wetland boundary delineation. Wetland delineation field data sheets and photographs of the wetland resources located within and adjacent to the Project Corridor are included as Appendices A and B of this report, respectively.

2.0 Site Description

2.1 Location

Located in the Ulster County Towns of Hurley and Olive, the Ashokan Rail Trail will repurpose an abandoned railway owned by Ulster County within the Catskill Park. This abandoned railroad travels north of, and parallel to, the NYCDEP-regulated Ashokan Reservoir. Portions of the eastern section of railway were recently used by the Catskill Mountain Railway as a tourist attraction. This use ceased in May 2016. The remainder of the U&D railroad has been neglected for many years.

2.2 Site Use

Areas immediately adjacent to the Project Corridor consist primarily of residential and commercial properties to the north developed along NYS Route 28. To the south of the Corridor, the Ashokan Reservoir serves as a drinking water source for New York City and is recreationally limited to fishing and non-motorized boat use. The Project Corridor travels through mature and mid-successional forests, primarily deciduous, and crosses the Esopus Creek at the western end of the proposed trail.

3.0 Agency Resource Information

Prior to undertaking the field wetland delineation, a desktop information search was completed to review the site topography, mapped soils, and mapped wetlands associated with the Project Corridor. This desktop review included the U.S. Geological Survey's (USGS) topographic mapping, soils information from the Natural Resources Conservation Service's (NRCS) Soil Survey Geographic (SSURGO) Database and Web Soil Survey, the National Wetland Inventory (NWI) mapping, and the New York State Department of Environmental Conservation's (NYSDEC) freshwater wetland mapping.

3.1 Topographic Mapping

The Project Corridor is included on the USGS' 7.5-minute Ashokan, Bearsville, Kingston West, Phoenicia, and West Shokan quadrangle maps (Figure 2). Descriptions of the topographic features noted along the Project Corridor within each of these quadrangles are included below.

Ashokan: The northern quarter of the map portrays an elevation ranging from 600 feet above mean sea level (amsl) to approximately 660 feet amsl. The landscape to the north is steeply sloped with a peak of over 2,200 feet amsl adjacent to the "Little Tonshi Mountain" label. To the south of the Project Corridor, the elevation levels out to less than 600 feet amsl at the Ashokan Reservoir. On the other side of the Reservoir (further south), the landscape is undulating with peaks around 800 to 1000 feet amsl.

Bearsville: The southwest corner of the quadrangle was reviewed for a small portion of the Project Corridor. Topographic elevations are consistent with the Ashokan quadrangle.

Kingston West: Showing the eastern most section of the Project Corridor, the topography remains consistent with the same average elevation. To the east of the Project Corridor's eastern terminus, the undulating hills continue with peaks around 700 feet amsl. The Project Corridor's elevations flatten and drop to the southeast, at the Esopus Creek, to around 160 feet amsl.

Phoenicia: The southwest corner of the map was reviewed for the western terminus of the Project Corridor. A benchmark directly adjacent to the intersection of the railway and NYS Route 28A was labelled 651 feet amsl. Lands north and west of the Project Corridor are steeply mountainous, with elevations rising to above 3,500 feet amsl in the Catskill State Park.

West Shokan: The map shows the Project Corridor immediately east of the western end of the Ashokan Reservoir. There is a fairly steep bank between this section of the railway and NYS Route 28, and the alignment shifts from east-west to north-south. Elevation ranges are consistent with those observed from the Ashokan Quadrangle.

3.2 Soils Information

The NRCS' SSURGO Database and Web Soil Survey (WSS) (USDA, 2016) were reviewed to determine the types and characteristics of soils mapped within the limits of the Project Corridor to preliminarily evaluate the presence of hydric soils, one of the required criteria for federally regulated wetlands. Figure 3 displays the soil types mapped within the Project Corridor. Table 1, below, lists the soil symbol, mapping unit name, taxonomic classification, hydric classification and rating, drainage classification, and typical Munsell soil colors information that characterize each soil type mapped along the Project Corridor. As shown in Table 1, four of the soils mapped within the Project Corridor are defined as hydric soils since the WSS indicates they have hydric ratings greater than 50%. The four hydric soil units (Alluvial Land (AA), Atherton silt loam (At), Canandaigua silt loam (Cc), and Menlo silt loam (Mn)) are bolded in Table 1, below.

Ashokan Rail Trail Wetland Delineation Report

Table 1. NRCS Mapped Soils Data							
Map Unit Name	Soil Symbol	Taxonomic Class	Drainage Class	Hydric Rating (%)	Typical Munsell Soil Horizon Colors	Typical Munsell Redoxymorphic Feature Colors	
Alluvial land	AA	Fluvaquents	Poorly drained	65	N/A	N/A	
Arnot channery silt loam, 0 to 8 percent slopes	AcB	Lithic Dystrochrepts	Somewhat excessively drained	0	0-6": 10YR 4/2 6-13": 10YR 5/4 13-17": 2.5Y 5/4 17-27": "Gray"	-	
Arnot-Oquaga-Rock outcrop complex, very steep	ARF	Lithic Dystrochrepts	Somewhat excessively drained	0	0-6": 10YR 4/2 6-13": 10YR 5/4 13-17": 2.5Y 5/4 17-27": "Gray"	-	
Atherton silt loam	At	Aeric Haploquepts	Poorly drained	90	0-9": 10YR 3/1, 9-22": 5Y 5/1	0-9": 2.5YR 3/6, 9-22": 2.5Y 5/4	
Canandaigua silt loam	Сс	Mollic Haplaquepts	Very poorly drained	95	0-8": 10YR 3/1 8-12": 10YR 6/2 12-19": 10YR 6/1 19-30": 10YR 6/2	8-12": 10YR 5/6, 7.5YR 5/6 12-19": 10YR 7/2, 7.5YR 5/6 19-30": 7.5YR 6/4, 7.5YR 5/6	
Castile gravelly silt loam, 0 to 3 percent slopes	CgA	Aquic Dystrochrepts	Moderately well drained	0	0-13": 10YR 4/2 13-18": 10YR 5/4 18-24": 10YR 5/3	18-24": 10YR 5/1	
Castile gravelly silt loam, 3 to 8 percent slopes	CgB	Aquic Dystrochrepts	Moderately well drained	0	0-13": 10YR 4/2 13-18": 10YR 5/4 18-24": 10YR 5/3	18-24": 10YR 5/1	
Gravel pit	GP	-	Somewhat excessively drained	5	-	-	
Haven loam	He	Typic Dystrochrepts	Well drained	0	0-2": Decomp 2-3": 5YR 2/1 3-6": 10YR 4/2 6-13": 7.5YR 4/4 13-22": 7.5YR 5/6	-	
Hoosic gravelly loam, rolling	HgC	Typic Dystrochrepts	Somewhat excessively drained	0	0-6": 10YR 4/2 6-11": 10YR 5/6 11-22": 10YR 5/6	-	
Hoosic gravelly loam, 15 to 25 percent slopes	HgD	Typic Dystrochrepts	Somewhat excessively drained	0	0-6": 10YR 4/2 6-11": 10YR 5/6 11-22": 10YR 5/6	-	
Hoosic soils, very steep	HSF	Typic Dystrochrepts	Somewhat excessively drained	0	0-6": 10YR 4/2 6-11": 10YR 5/6 11-22": 10YR 5/6	-	
Lackawanna flaggy silt loam, 8 to 15 percent slopes	LaC	Typic Fragiudepts	Well drained	0	0-8": 5YR 3/4 8-13": 5YR 4/4 13-26": 2.5YR 4/4	-	
Lackawanna and Swartswood soils, moderately steep, very bouldery	LCD	Typic Fragiudepts	Well drained	0	0-8": 5YR 3/4 8-13": 5YR 4/4 13-26": 2.5YR 4/4	-	
Lackawanna and Swartswood soils, very steep, very bouldery	LCF	Typic Fragiudepts	Well drained	0	0-8": 5YR 3/4 8-13": 5YR 4/4 13-26": 2.5YR 4/4	-	
Lordstown-Arnot-Rock outcrop complex, sloping	LOC	-	-	0	-	-	

369.007.001/5.17 - 5 - Barton & Loguidice, D.P.C.

Ashokan Rail Trail Wetland Delineation Report

Table 1. NRCS Mapped Soils Data							
Map Unit Name	Soil Symbol	Taxonomic Class	Drainage Class	Hydric Rating (%)	Typical Munsell Soil Horizon Colors	Typical Munsell Redoxymorphic Feature Colors	
Made land	ML	Udorthents	Somewhat excessively drained	5	-	-	
Menlo silt loam	Mn	Histic Humaquepts	Very poorly drained	100	0-5": 10YR 2/1 5-16": 10YR 2/1 16-22": 7.5YR 5/1	5-16": 7.5YR 4/6 16-22": 7.5YR 4/6. 10YR 5/6	
Morris-Tuller complex, gently sloping, very bouldery	MTB	Aeric Fragiaquepts	Somewhat poorly drained	20	0-8": 5YR 4/2 8-10": 7.5YR 4/4 10-14": 5YR 5/2 14-50": 2.5YR 4/4	10-14": 5YR 4/4, N 5/0 14-50": N 6/0, 7.5YR 5/6, N 5/0	
Oquaga channery silt loam, 3 to 8 percent slopes	OgB	Typic Dystrochrepts	Well drained	0	0-4": 5YR 3/3 4-11": 2.5YR 3/6 11-28": 2.5YR 4/4	-	
Oquaga and Lordstown channery silt loams, 8 to 15 percent slopes	OIC	Typic Dystrochrepts	Well drained	0	0-4": 5YR 3/3 4-11": 2.5YR 3/6 11-28": 2.5YR 4/4	-	
Oquaga-Arnot-Rock outcrop complex, sloping	ORC	Typic Dystrochrepts	Well drained	0	0-4": 5YR 3/3 4-11": 2.5YR 3/6 11-28": 2.5YR 4/4	-	
Oquaga-Arnot-Rock outcrop complex, moderately steep	ORD	Typic Dystrochrepts	Well drained	0	0-4": 5YR 3/3 4-11": 2.5YR 3/6 11-28": 2.5YR 4/4	-	
Plainfield-Riverhead complex, very steep	PmF	Typic Udipsamments	Excessively drained	0	0-7": 10YR 3/3 7-16": 7.5YR 4/4 16-28": 7.5YR 5/6	-	
Quarry	QU	-	-	5	-	-	
Red Hook gravelly silt loam	Re	Aeric Haploquepts	Somewhat poorly drained	5	0-6": 10YR 3/2 6-8": 10YR 4/3 8-13": 10YR 5/3 13-22" 10YR 5/2	6-8": 10YR 5/2 8-13": 10YR 5/2, 4/4 13-22": 7.5YR 4/4, 10YR 5/6	
Schoharie silt loam, 3 to 8 percent slopes	SaB	Typic Hapludalfs	Moderately well drained	0	0-8": 7.5YR 3/2 8-11": 10YR 6/3 11-18": 5YR 5/4 18-33":2.5YR 4/4	18-33": 5YR 5/6	
Scriba and Morris soils, 0 to 8 percent slopes	SdB	Aeric Fragiaquepts	Somewhat poorly drained	5	0-9": 10YR 3/2 9-13": 10YR 5/2 13-30": 7.5 YR 5/4	9-13": 10YR 5/6, 7.5YR 5/6, 10YR 6/1 13-30": 10YR 4/4, 7.5 YR 5/6, 7.5YR 6/2	
Scriba and Morris soils, gently sloping, very bouldery	SEB	Aeric Fragiaquepts	Somewhat poorly drained	5	0-9": 10YR 3/2 9-13": 10YR 5/2 13-30": 7.5 YR 5/4	9-13": 10YR 5/6, 7.5YR 5/6, 10YR 6/1 13-30": 10YR 4/4, 7.5 YR 5/6, 7.5YR 6/2	
Suncook loamy fine sand	Su	Typic Udipsamments	Excessively drained	0	0-7": 10YR 3/2 7-14": 10YR 4/2 14-22": 10YR 3/3	-	
Tunkhannock gravelly loam, 0 to 3 percent slopes	TkA	Typic Dystrochrepts	Well drained	0	0-8": 10YR 4/3 8-16": 7.5YR 16-26": 5YR 4/4	-	

Ashokan Rail Trail Wetland Delineation Report

Table 1. NRCS Mapped Soils Data							
Map Unit Name	Soil Symbol	Taxonomic Class	Drainage Class	Hydric Rating (%)	Typical Munsell Soil Horizon Colors	Typical Munsell Redoxymorphic Feature Colors	
Tunkhannock gravelly loam, 3 to 8 percent slopes	TkB	Typic Dystrochrepts	Well drained	0	0-8": 10YR 4/3 8-16": 7.5YR 16-26": 5YR 4/4	-	
Tunkhannock gravelly loam, rolling	TkC	Typic Dystrochrepts	Well drained	0	0-8": 10YR 4/3 8-16": 7.5YR 16-26": 5YR 4/4	-	
Valois very bouldery soils, gently sloping	VAB	Typic Dystrochrepts	Well drained	0	0-7": 10YR 4/3 7-30": 7.5YR 5/6	-	
Valois very bouldery soils, moderately steep	VAD	Typic Dystrochrepts	Well drained	0	0-7": 10YR 4/3 7-30": 7.5YR 5/7	-	
Wellsboro and Wurtsboro soils, gently sloping, very bouldery	WLB	Typic Fragiochrepts	Moderately well drained	0	0-8": 5YR 4/2 8-18": 5YR 4/4 18-24": 7.5YR 5/4	18-24": 5YR 5/8, 10YR 6/1, 5YR 6/3	

3.3 New York State Department of Environmental Conservation Freshwater Wetlands Mapping

Desktop reviews of NYSDEC's freshwater wetland mapping resources (NYSDEC, 2016) were completed prior to a field inspection of the Project Corridor. As shown on Figure 4, several NYSDEC wetland polygons are mapped adjacent to or within the Corridor. NYSDEC regulated Wetland AS-20 is mapped approximately 100-260 feet to the south of the Project Corridor for the majority of its proposed length. A separate polygon, also part of Wetland AS-20, is located just east of Reservoir Road, and is bisected by the proposed Project Corridor. Wetland AS-20 is a Class 1 state-regulated wetland, which is listed as 139 acres in size. Wetland AS-19, a Class 2 wetland of 25.2 mapped acres, is shown immediately north of and overlapping the railway. No other NYSDEC wetlands were mapped within or adjacent to the Corridor.

3.4 National Wetland Inventory Mapping

Multiple wetland polygons were mapped by the U.S. Fish and Wildlife Services' (USFWS) National Wetland Inventory (NWI) along the Project Corridor (Figure 4). Table 2, below, summarizes the characteristics of these NWI mapped wetlands.

Table 2. NWI Mapped Wetlands							
Classification Code	Wetland Type	Total Mapped Size (Acres)	Distance and Direction from Corridor				
PUBH	Palustrine, unconsolidated bottom, permanently flooded (pond)	2.55	20' south of railway in Hurley, west of Basin Road				
PEM1E	Palustrine, scrub-shrub, broad-leaved deciduous, seasonally flooded /saturated	1.34	Crosses railway; corresponds to NYSDEC Wetland AS-20 to north.				
PF01E	Palustrine, forested, broad-leaved deciduous, seasonally flooded /saturated	0.88	Crosses railway; corresponds to NYSDEC Wetland AS-20 to south.				
PSS1/EM1C	Palustrine, scrub-shrub, broad-leaved deciduous/ emergent, persistent, seasonally flooded	2.11	Overlaps railway; corresponds to NYSDEC Wetland AS-19				
PUBHh	Palustrine, unconsolidated bottom, permanently flooded, diked/impounded (pond)	1.7	60' north of railway, western end near Esopus inlet. (Causeway)				
PUBHh	Palustrine, unconsolidated bottom, permanently flooded, diked/impounded (pond)	18.63	60' north of railway, western end near Esopus inlet. (Causeway)				
PFO1C	Palustrine, forested, broad-leaved deciduous, seasonally flooded	5.65	Passes through Corridor along northern bank of Esopus Creek.				

3.5 Surface Water Resources

The Project Corridor is located within the Lower Hudson Drainage Basin, recognized under Title 6, Chapter 10, Article 10, Part 862 in the New York Codes, Rules, and Regulations (NYCRR). NYSDEC stream mapping indicates that eight streams cross the Project Corridor. Table 3, below, provides the project assigned stream crossing identification number, the watercourse name, the NYSDEC Water Index Number, and the water quality classification/standard for the stream resource.

Stream resources mapped within the Project Corridor are shown on Figure 5. Surface water resources mapped within the Project Corridor drain into the Ashokan Reservoir (Waters Index Number H-171-P 848). This waterbody is designated as a Class AA water with AA(T) Standards, and supplies the City of New York by way of the Catskill Aqueduct to the Kensico Reservoir for distribution.

Table 3. NYSDEC Mapped Stream Resources						
Watercourse Name	NYSDEC Waters Index Number	Water Quality (Class, Standard)				
Esopus Creek	H-171	A,A(TS)				
Tributary 8 of the Ashokan Reservoir	H-171-P 848-8	A,A(T)				
Butternut Creek (Trib. 9 of Ashokan Reservoir)	H-171-P 848-9	A,A(T)				
Tributary 9a of the Ashokan Reservoir	H-171-P 848-9a	A,A(T)				
Tributary 1 of Butternut Creek	H-171-P 848-9-1	A,A(T)				
Tributary 10 of the Ashokan Reservoir	H-171-P 848-10	A,A(T)				
Tributary 11 of the Ashokan Reservoir	H-171-P 848-11	A,A(T)				
Tributary 12 of the Ashokan Reservoir	H-171-P 848-12	A,A				

3.6 Results of Background Information Review

A review of the background information conducted prior to the wetland field delineation indicated the potential for federal and state wetlands to be located within or adjacent to the Project Corridor based on the presence of mapped wetlands and prevalence of hydric soil. A field-based wetland identification and delineation was conducted to confirm these preliminary findings and identify the boundaries of wetland and surface water resources within the Project Corridor.

4.0 Site Ecology

4.1 General Cover Types

This section presents a summary of ecological information that is publicly available for the Project Corridor. The Project Corridor is located within mature and mid-successional forests with some scrub shrub patches interspersed throughout.

4.2 Ecological Zone

The proposed Project Corridor is located within the Appalachian Plateau Major Ecological Zone (Zone A) and the Neversink Highlands Minor Zone (NYSDEC, 2008). Characteristics of these ecological zones are provided in Table 4, below.

Table 4. Characteristics of the Ecological Zones						
Feature	Appalachian Plateau / Neversink Highlands					
Topography	Typical plateau structure with horizontal rock formations					
Elevation	Well over 1,000 feet in most of the zone. I Most of the Highlands are above 1,200 feet. Relief is low in relation to sub-zones to the north.					
Soils	Over most of the Plateau the soils are generally medium textured, acid, usually with fragipans, developed on glacial till and tend to be shallow and moderately well or poorly drained. The valley soils brought in by the glaciers are more fertile.					
Vegetation	This zone is situated in the oak-northern hardwood and the northern hardwood natural vegetation zones. <i>I</i> The forests consist of northern hardwoods with substantial amounts of black cherry and ash. Hemlock and white pine are found in the ravines.					
Land Use	The Highlands is the site of the numerous, famous Catskill resorts. Farming contributes to the economy, with a fairly recent shift from dairy to poultry farms taking place.					
Mean Summer Temperature	65 to 70 degrees Fahrenheit					
Mean Winter Temperature	20 to 25 degrees Fahrenheit					
Mean Annual Snowfall	40 to 60 inches (60 to 85 inches in northern portions)					
Growing Season	100-160 days					

4.3 Wetland Cover Types

General wetland types identified within the Project Corridor are of the palustrine and lacustrine systems (Cowardin, 1979). The palustrine wetlands are dominated by emergent (PEM) and/or forested (PFO) classes. The lacustrine wetlands demonstrated a littoral subsystem and met criteria for an emergent wetland class. The Ashokan Reservoir is classified as a lacustrine system with a limnetic subsystem and a permanently flooded class. Brief descriptions of the two dominant wetland cover types noted within the Project Corridor are presented below, as most of the wetlands delineated within the Corridor are classified as such:

Emergent: Erect, rooted, herbaceous hydrophytic plants characterize emergent wetlands. This vegetation can be observed throughout most of the growing season. These wetlands typically have standing water above the soil surface for a portion of the year and often include fringe communities on open water edges.

Forested: Forested wetlands are dominated by woody vegetation with a diameter at breast height (DBH) greater than 3-inches and where soil is at least periodically saturated or inundated. Forested wetlands within the Project Corridor commonly included deciduous trees with an understory of hydrophytic herbaceous vegetation. The density of the understory varies by location and forest type.

5.0 Wetland Delineation Methodology

The background desktop data described in Section 3.0 was reviewed prior to undertaking the wetland field delineation. The *Wetlands Delineation Manual* (Environmental Laboratory, 1987) and the *Northeast/Northcentral Regional Supplement to the 1987 Corps of Engineers' Manual Version 2.0* (USACE, 2011) were followed during the 2016 wetland identification and delineation effort to identify wetlands located within the Project Corridor that are subject to federal jurisdiction by the USACE. B&L performed data collection and delineation of wetland boundaries on June 28-29 and July 7, 2016. Observations of vegetative communities, soils, and hydrological characteristics were documented and used to determine the extent of wetland boundaries in the field.

The first step of the wetland field delineation was to determine whether normal conditions were present at each identified wetland location. Each site was then examined for evidence of natural or human induced alteration of vegetation, soils, or hydrology. These investigations were followed by analyzing the surrounding area and determining the location of the wetland/upland interface. Selected points were sampled for vegetation, hydrology, and soil characteristics to determine the location of this boundary. The following sub-sections describe the 2012 Northeast/Northcentral Regional Supplement Version 2.0 (USACE, 2011) delineation methodology, which was followed during the June/July 2016 field delineation effort.

5.1 Vegetation

The presence of wetland vegetation was determined by evaluating the indicator status of dominant plant species in each vegetative stratum (i.e., herbaceous layer, shrub/sapling layer, tree layer, and woody vine layer). Dominant plant species were determined using percent aerial coverage estimates. Plant identification was made using plant keys such as *Newcomb's Wildflower Guide* (Newcomb, 1977). The plant species that immediately exceeded 50% of the total percent cover for a given stratum (when ranked in descending order of abundance and cumulatively totaled), plus any additional species comprising 20% or more of the total cover for that stratum (called the 50/20 rule), were considered to be the dominant vegetative species for the data plot.

The wetland indicator status (obligate - OBL, facultative wetland - FACW, facultative - FAC, facultative upland - FACU, or upland - UPL) for dominant plant species identified in the sample plots were determined from *The Northcentral and Northeast, Regional Wetland Plant List* (Lichvar, et al., 2016).

The Routine Method outlined in the USACE's Regional Supplement requires a sequence of four tests to establish the presence or absence of a dominance of hydrophytic vegetation. The four tests are done in a sequence on an if/then logic test basis. Proceeding to the next indicator

level should only be completed if the preceding indicator did not determine a dominance of hydrophytic vegetation at the sampling location. Indicator one is the rapid test for hydrophytic vegetation. This indicator is applied if all dominant species across all vegetation strata are rated OBL or FACW.

Indicator two is the dominance test. Vegetation is considered to be hydrophytic if more than 50% of the dominant plant species across all strata are rated OBL, FACW, or FAC. The dominance test and rapid test use the 50/20 rule to determine the dominant species within a vegetative plot.

The third indicator of hydrophytic vegetation is linked to the prevalence index. The prevalence index is a weighted-average of wetland indicator statuses of all plant species in the sampling plot. The wetland indicator status of each species is assigned a value according to the following scale: OBL-1, FACW-2, FAC-3, FACU-4, and UPL-5. These assigned values are multiplied by the absolute percent cover of all species with that particular indicator status. The product of each indicator value is then summed and divided by the total percent cover, resulting in the prevalence index for that vegetation plot. The equation is as follows:

Prevalence Index =
$$\frac{A_{OBL}+2*A_{FACW}+3*A_{FAC}+4*A_{FACU}+5*A_{UPL}}{A_{OBL}+A_{FACW}+A_{FACW}+A_{FACU}+A_{UPL}}$$

where A_X is the absolute percent cover

In order for a sample area to contain hydrophytic vegetation, the plot must have a prevalence index of 3 or less.

Indicator four consists of morphological adaptations. Certain plant species exhibit morphological changes in order to survive in areas that are saturated or flooded for prolonged periods of time. Some common vegetative morphological adaptations in the northeast consist of adventitious roots, hypertrophic lenticels, multi-stemmed trunks, and shallow root systems.

Plant community data recorded from each sample plot are included on the wetland delineation field data sheets provided as Appendix A.

5.2 Hydrology

The presence of primary hydrologic indicators (such as surface inundation (indicator A1), a high water table (indicator A2), soil saturation (indicator A3), or secondary hydrologic indicators (such as drainage patterns (indicator B10) or geomorphic position (indicator D2) was determined through visual observations at the data plot locations, the immediately surrounding areas, and within the soil profile. Soil saturation was determined by sampling the soils at each plot to a minimum depth of 20-inches, if possible. The depth of water was observed within

boreholes. Hydrologic data gathered in the field at each sample plot is included on the wetland delineation field data sheets provided as Appendix A.

5.3 Soils

The presence of hydric soil indicators was determined by extracting soil samples with a soil auger up to a minimal depth of 12-inches, if possible. A Munsell Soil Color Chart (2009 Edition) was used to determine soil color for observed horizons within the soil profile, including different layers within the same horizon, if observed. Soil profiles were compared to hydric soil indicators for the USDA Subregion Land Resource Region (LRR R) – Northeastern Forests, included within the Northcentral and Northeast Regional Supplement (USACE, 2011). Soil characteristics and other observations made at each sample plot are included on the wetland delineation field data sheets provided as Appendix A.

5.4 Mapping

A wetland determination was made at each sample plot after characterizing the vegetation, hydrologic indicators, and soil. If the hydrophytic vegetation, hydrology, and hydric soil criteria were met, the area was determined to be a wetland. If the criterion for one or more of the three-wetland indicators was not met, the area was determined to not be a wetland, unless unusual circumstances were observed at the data plot location.

The boundaries of each wetland location were surveyed in the field using a handheld Global Positioning System (GPS), Trimble GeoXH model (Trimble Navigation Limited, Sunnyvale, CA). This GPS model is capable of sub-foot accuracy and was used to gather each point location and map each wetland boundary along the proposed trail route. The wetland boundaries were later added to the geographic information system (GIS) base mapping for the project.

6.0 Results

6.1 Delineated Wetlands

Vegetative, soil, and hydrologic characteristics of each delineated wetland can be viewed on the corresponding field data sheets in Appendix A. The field collected information for each delineated wetland has also been summarized below. Sixteen wetland resources were identified and delineated in the field. The boundary of many of these wetlands was only partially delineated due to the continuation of the wetland limits outside of the Project Corridor. Locations where the wetland continues outside of the project limits (labelled "open") are identified on the Wetland Delineation Figures, 6A through 6J.

Wetland A (Figure 6A) is classified as a palustrine emergent (PEM) wetland and is located approximately 20 feet south of the railway. At the Wetland A data plot, broom sedge (*Carex scoparia*), shallow sedge (*Carex lurida*), and pinkweed (*Persicaria pensylvanica*) were the dominant plant species observed. A dominance of hydrophytic vegetation was indicated within Wetland A based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland A consisted of high water table (A2), saturation (A3) at the soil surface, geomorphic position (D2), and the FAC-neutral test (D5). The observed hydric soil indicator within the wetland soil data plot was sandy mucky mineral (S1). All observed soil layers exhibited muck/mucky sand textured soil. Wetland datasheets documenting the characteristics of Wetland A from the field visit are included in Appendix A.

Wetland B (Figure 6B) is classified as PEM wetland located at the toe of slope south of the railway. Stream 2 (Section 6.2) flows through the wetland, oriented north-south. The delineated wetland boundary is open to the south. At the Wetland B data plot, shallow sedge and broom sedge were the dominant plant species observed. A dominance of hydrophytic vegetation was indicated within Wetland B based on the dominance test and the prevalence index. Observed wetland hydrology indicators within Wetland B consisted of high water table (A2) at a depth of eight inches, saturation (A3) at three inches, stunted or stressed plants – dead trees – (D1) and the FAC-neutral test (D5). The hydric soil indicator observed within the wetland soil data plot was redox dark surface (F6). Observed soil layers exhibited loamy/clay textured soils. Wetland datasheets documenting the characteristics of Wetland B from the field visit are included in Appendix A.

Wetland C (Figure 6A) is a PEM wetland that was observed adjacent to an access roadway off of NYS Route 28. The delineated Wetland C boundary is open to the west. At the Wetland C data plot, American bur-reed (*Sparganium americanum*) was the dominant plant species observed. A dominance of hydrophytic vegetation was indicated within Wetland C based on the dominance test and the prevalence index. Observed wetland hydrology indicators consisted, high water table (A2) at the two inches, saturation (A3) at soil surface, geomorphic

position (D2), and the FAC-neutral test (D5). Observed hydric soil indicators consisted of depleted matrix (F3). A muck and mucky loam/clay texture were observed until 12 inches in depth, where the soil texture shifted to loam/clay. Wetland datasheets documenting the characteristics of Wetland C from the field visit are included in Appendix A.

Wetland D (Figure 6A) is a PEM wetland that was observed along the east side of the Woodford Dike access roadway. The delineated Wetland D boundary is open east. Dominant plant species within the wetland plot were speckled alder (*Alnus incana*), Japanese stilt grass (*Microstegium vimineum*), and prickly sedge (*Carex stipata*). A dominance of hydrophytic vegetation was indicated within Wetland D based on the dominance test and the prevalence index. Wetland hydrology indicators, high water table (A2) at the two inches, saturation (A3) at soil surface, geomorphic position (D2) and the FAC-neutral test (D5). Hydric soil indicators met at the plot location for Wetland D consisted of depleted matrix (F3). Mucky loam/clay texture was noted until 14 inches, where it became loamy/clay. Wetland datasheets documenting the characteristics of Wetland D from the field visit are included in Attachment B.

Wetland E (Figure 6C) is a PEM wetland that is located to the south of the railway. This wetland is hydrologically fed by an upland runoff that passes from the north and through a cross culvert under the rail. At the time of the survey, water was flowing in the rocky cobble channel at about two to three inches deep (Stream 5). Within the data plot, this wetland was dominated by green bulrush (*Scirpus atrovirens*), arrow-leaf tearthumb (*Persicaria sagittata*), and Japanese stilt grass. A dominance of hydrophytic vegetation was indicated within Wetland E based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland E consisted of saturation (A3) at four inches, drainage patterns (B10), geomorphic position (D2), and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland E soil plot. Wetland datasheets documenting the characteristics of Wetland E from the field visit are included in Appendix A.

Wetland F (Figure 6E) is a PEM wetland that was observed within a low spot influenced by a stream (Stream 8) entering from the west on the north side of the railway. Vegetation in this wetland was dominated by jewelweed (*Impatiens capensis*), pink weed, silver maple (*Acer saccharinum*) and red maple (*Acer rubrum*). A dominance of hydrophytic vegetation was indicated within Wetland F based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland F consisted of, high water table (A2) at approximately one inch from the soil surface, saturation (A3) at soil surface, geomorphic position (D2), and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland F soil plot. Wetland datasheets documenting the characteristics of Wetland F from the field visit are included in Appendix A.

Wetland G (Figure 6E) is a PEM wetland that was observed along a drainage feature south of the railway, beginning where Wetland F ends. Vegetation in Wetland G was dominated

by jewelweed, prickly sedge, red maple (*Acer rubrum*), white ash (*Fraxinus americana*), and American beech (*Fagus grandifolia*). A dominance of hydrophytic vegetation was indicated within Wetland G based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland G consisted of high water table (A2) at approximately two inches from the soil surface, saturation (A3) at soil surface, drainage patterns (B10), geomorphic position (D2) and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland G soil plot. Wetland datasheets documenting the characteristics of Wetland G from the field visit are included in Appendix A.

Wetland H (Figure 6E) is a PEM wetland that was observed along a drainage feature south of the railway. The Wetland H boundary was delineated and left open to the south. Vegetation in this wetland was dominated by jewelweed, Japanese stilt grass, and red maple. A dominance of hydrophytic vegetation was indicated within Wetland H based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland H consisted of saturation (A3) at approximately four inches from the soil surface, drainage patterns (B10), geomorphic position (D2), and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland H soil plot. Wetland datasheets documenting the characteristics of Wetland H from the field visit are included in Appendix A.

Wetland I (Figure 6E), a PEM wetland, is located at the toe of slope on the north side of the railway. The Wetland I boundary was left open to the north. Stream 9 was identified flowing northeast from the wetland and exiting south through a culvert under the railway. Dominant vegetation observed within Wetland I was jewelweed. A dominance of hydrophytic vegetation was indicated within Wetland I based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Plot 1 data plot consisted of saturation (A3) at the soil surface, drainage patterns (B10), geomorphic position (D2) and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland I data plot. Wetland datasheets documenting the characteristics of Wetland I from the field visit are included in Appendix A.

Wetland J (Figure 6F) is a palustrine scrub-shrub/forested (PSS/PFO) wetland to the north of the railway. The wetland was delineated within the Project Corridor and is open to the north. Dominant vegetation observed within Wetland J was red osier dogwood (*Cornus alba*), rattlesnake grass (*Glyceria canadensis*), and shallow sedge. A dominance of hydrophytic vegetation was indicated within Wetland J based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland J consisted of high water table (A2) present at three inches below soil surface, saturation (A3) at two inches below soil surface, and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland J data plot. Wetland datasheets documenting the characteristics of Wetland J from the field visit are included in Appendix A.

Wetland K (Figure 6F) is a PEM wetland, located to the south, north, and within the limits of the abandoned railway. This wetland was delineated across the Project Corridor and is open to the west, north, and south. It is associated with NYSDEC mapped Wetland AS-20. Dominant vegetation observed within Wetland K was common reed (*Phragmites australis*). A dominance of hydrophytic vegetation was indicated within Wetland K based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland K, high water table (A2) present at one inch below soil surface, saturation (A3) at the soil surface, geomorphic position (D2) and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland K data plot. A mucky loam/clay texture was observed until eight inches, where it became loamy/clay. Wetland datasheets documenting the characteristics of Wetland K from the field visit are included in Appendix A.

Wetland L (Figure 6F) is a PEM wetland, located to the south, north, and within the limits of the railway. This wetland was delineated across the Project Corridor and is open to the north, south, and east. It is associated with NYSDEC mapped Wetland AS-20. Dominant vegetation observed within Wetland L was speckled alder, red osier dogwood, and common reed. A dominance of hydrophytic vegetation was indicated within Wetland L based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland L consisted of high water table (A2) present at one inch below soil surface, saturation (A3) at the soil surface, and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland L data plot. All soil layers exhibited a mucky loam/clay texture. Wetland datasheets documenting the characteristics of Wetland L from the field visit are included in Appendix A.

Wetland M (Figure 6F) is a PEM wetland located north of the railway. This wetland was delineated in its entirety. Dominant vegetation observed within Wetland M was Japanese stilt grass and rattlesnake grass. A dominance of hydrophytic vegetation was indicated within Wetland M based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland M consisted of high water table (A2) present at one inch below soil surface, saturation (A3) at the soil surface, geomorphic position (D2) and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was observed within the Wetland M data plot. A mucky loam/clay texture was observed until a depth of ten inches, where further investigation was restricted by rail ballast. Wetland datasheets documenting the characteristics of Wetland M from the field visit are included in Appendix A.

Wetland N (Figure 6F) is a PEM wetland located south of the railway. This wetland was delineated in its entirety. Wetland N is located on the opposite side of the railway from Wetland M. Dominant vegetation observed within Wetland N was broom sedge, shallow sedge, and soft rush (*Juncus effusus*). A dominance of hydrophytic vegetation was indicated within Wetland N based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland N consisted of high water table (A2) present at two inches below soil surface, saturation (A3) at the soil surface, geomorphic position (D2) and the FAC-neutral test (D5). The hydric soil indicator depleted matrix (F3) was met by the soil profile characteristics recorded within the Wetland N data plot. A mucky loam/clay texture was observed until a depth of eight inches, where further investigation was restricted by rail ballast. Wetland datasheets documenting the characteristics of Wetland N from the field visit are included Appendix A.

Wetland O (Figure 6I) is a PEM wetland located at a topographic low point within the center of the proposed trail alignment. This wetland was delineated in its entirety. Dominant vegetation observed within Wetland O was jewelweed. A dominance of hydrophytic vegetation was indicated within Wetland O based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland O consisted of high water table (A2) present at one inch below soil surface, saturation (A3) at the soil surface, hydrogen sulfide odor (C1) and the FAC-neutral test (D5). The hydric soil indicator redox depressions (F8) was met within the Wetland O data plot. A muck texture was observed until a depth of four inches, where it became mucky loam/clay and was restricted by rail ballast at 12 inches in depth. Wetland datasheets documenting the characteristics of Wetland O from the field visit are included in Appendix A.

Wetland P (Figure 6J) is a PEM wetland located at the toe of slope east of the railway. A culvert was observed with no flowing water or defined channel passing under the railway, to the north, suggesting the area becomes inundated during storms. This storm overflow likely settles within the topographic low spot that represents Wetland P. Investigation of the western side of the culvert did not identify any wetland areas. Dominant vegetation observed within Wetland P was Japanese stilt grass, jewelweed, and white ash. A dominance of hydrophytic vegetation was indicated within Wetland P based on the dominance test and the prevalence index. Wetland hydrology indicators observed within Wetland P consisted of saturation (A3) at three inches in depth, drainage patterns (B10), geomorphic position (D2), and the FAC-neutral test (D5). The hydric soil indicator redox dark surface (F6) was met within the Wetland P data plot. A loamy/clay texture was observed for all soil layers. Wetland datasheets documenting the characteristics of Wetland P from the field visit are included in Appendix A.

6.2 Surface Waters

Surface waters within the Project Corridor were identified in the field during the wetland delineation effort. Potential federal jurisdiction was based on observations of bed, bank, and ordinary high water characteristics. The presence of these characteristics in streams that are hydraulically connected to other regulated resources qualify them as Waters of the U.S. under the Clean Water Act, which is regulated by the USACE. The results of the stream identification field effort are summarized below. Unmapped stream classification is discussed in Section 7, Summary and Conclusions. Stream resources can be seen on Figures 6A-6J.

Stream 1 is an unmapped stream that was observed flowing from north to south through a culvert under the railway. This stream was dry at the time of observation but held pools of approximately 3 inches depth of water in spots. The stream channel was approximately 5 feet wide and exhibited a bedrock cobble substrate (Figure 6B).

Stream 2 is an unmapped stream that was observed flowing through Wetland B, oriented north-south. This stream was observed to have flow ranging from 1-3 inches. The stream channel was approximately 3 feet wide and exhibited a cobble substrate (Figure 6B).

Stream 3 is a NYSDEC mapped stream identified as Tributary 12 of the Ashokan Reservoir (Waters Index Number H-171-P 848-12). The stream was observed flowing north to south with flowing water and a channel width of approximately 10 feet comprised of a silt and cobble substrate. The stream is classified as a Class A stream with A standards (Figure 6B).

Stream 4 is an unmapped stream observed flowing from the northwest to the southeast. Observed water depth in the channel was $\frac{1}{2}$ " to 1 foot with a channel width of approximately 8 feet. Total channel depth was noted at 1 $\frac{1}{2}$ feet with a cobble bedrock substrate (Figure 6C).

Stream 5 is an unmapped stream feeding Wetland E as an upland runoff that passes from the north and through a cross culvert under the rail. At the time of the survey, water was flowing in the rocky cobble channel at about two to three inches deep (Figure 6C).

Stream 6 is a NYSDEC mapped stream identified as Tributary 11 of the Ashokan Reservoir (Waters Index Number H-171-P 848-11). The stream was observed flowing northwest to the southeast. Observed water depth in the channel was 2-6 inches with a channel width of approximately 3 feet. This stream is a Class A stream with A(T) standards (Figure 6D).

Stream 7 is an unmapped stream that was observed flowing from north to south through a culvert under the railway. This stream was dry at the time of observation but was a clearly defined rocky cobble channel of approximately 3 feet width (Figure 6E).

Stream 8 is an unmapped stream entering from the west on the north side of the railway at Wetland F. Flow from this stream continued south through a culvert northeast of Wetland G. Flow was observed at a depth of 2-3 inches and a width of 2 feet (Figure 6E).

Stream 9 is an unmapped stream identified flowing from the west on the northern side of the railway through Wetland I and exiting south through a culvert under the railway. Flow was observed at a depth of 2-3 inches and a width of 1-2 feet (Figure 6E).

Stream 10 is a NYSDEC mapped stream identified as Tributary 10 of the Ashokan Reservoir (Waters Index Number H-171-P 848-10). The stream was observed flowing northwest to the southeast. Observed water depth in the channel was 6-14 inches with a channel width of approximately 15 feet. This stream is a Class A stream with A(T) standards (Figure 6F).

Stream 11 is an unmapped stream that was observed flowing from north to south through a culvert under the railway. This stream held approximately 2-4 inches depth of water. The stream channel was approximately 2-3 feet wide and exhibited a silt cobble substrate. Outside and to the south of the Project Corridor, the stream was observed to widen to a channel width of approximately 15 feet (Figure 6F).

Stream 12 is a NYSDEC mapped stream identified as Tributary 9a of the Ashokan Reservoir (Waters Index Number H-171-P 848-9a). This stream held approximately 3 inches of water with a silt substrate and channel width of 1-3 feet. This resource is Class A with A(T) Standards (Figure 6G).

Stream 13 is an unmapped stream that was observed collecting drainage from the east and west of the northern boundary of the rail to the south through a culvert under the railway (Figure 6H). This stream held approximately 3 inches depth of water. The stream channel was approximately 3 feet wide and exhibited a silt substrate.

Stream 14 is a NYSDEC mapped stream identified as Butternut Creek (Waters Index Number H-171-P 848-9), the 9th Tributary of the Ashokan Reservoir. It is important to note that unlike the NYSDEC mapping, the two channels (Tributary 1 of Butternut Creek and Butternut Creek itself) converge north of the railway, not south as shown. The stream was observed flowing northeast to the southwest. Observed water depth in the channel was 3-5 inches with a channel width of approximately 15 feet. This stream is a Class A stream with A(T) standards (Figure 6H).

Stream 15 is an unmapped stream that was observed collecting drainage from the northern boundary of the rail and flowing to the south through a culvert under the railway (Figure 6H). This stream held approximately ½ -3 inches of water. The stream channel was approximately 3 feet wide and exhibited a silt and rocky cobble substrate (Figure 6I).

Stream 16 is an unmapped stream that was observed collecting drainage from the eastern boundary of the rail and continuing to the southwest through a culvert under the railway. This stream held approximately 4 inches depth of water. The stream channel was approximately 3 feet wide and exhibited a rocky cobble substrate (Figure 6I).

Stream 17 is a NYSDEC mapped stream identified as the Esopus Creek (Waters Index No. H-171). The stream was observed flowing northeast to the southwest. Observed water depth in the channel was 3-12 inches with a channel width of approximately 200 feet. This stream is a Class A stream with A(T) standards (Figure 6J).

6.3 Wetland and Surface Water Labeling

A total of 16 wetlands were identified and delineated adjacent to the Project Corridor as part of this wetland delineation field effort. Figures 6A through 6J show the locations of wetlands delineated as part of the Ashokan Rail Trail field walkover, as well as the location of the 17 observed Waters of the U.S. Table 5, below, provides the coordinates of each wetland and stream located within the Project Corridor. Identified wetland areas were individually labeled as A through P. Streams observed within the project area were labeled as Stream 1 through Stream 17. The data collected in the field were recorded on field data sheets provided in Appendix A. Color photographs of various portions of the delineated wetland resources are included in Appendix B.

Table 5. Wetland and Stream Locations					
Resource Type of Resource		Lat/Long Coordinates (NAD83)			
Α	Wetland	41°59'36.01"N, 74° 5'27.64"W			
В	Wetland	42° 0'5.23"N, 74° 7'47.75"W			
С	Wetland	41°59'42.48"N, 74° 5'32.51"W			
D	Wetland	41°59'42.19"N, 74° 5'31.42"W			
Е	Wetland	41°59'44.24"N, 74° 9'14.53"W			
F	Wetland	41°58'49.68"N, 74°10'57.76"W			
G	Wetland	41°58'48.99"N, 74°10'59.81"W			
Н	Wetland	41°58'40.09"N, 74°11'21.86"W			
I	Wetland	41°58'35.38"N, 74°11'34.48"W			
J	Wetland	41°58'20.23"N, 74°12'15.83"W			
К	Wetland	41°58'17.03"N, 74°12'24.42"W			
L	Wetland	41°58'17.69"N, 74°12'24.47"W			
M	Wetland	41°58'10.89"N, 74°12'40.99"W			
N	Wetland	41°58'10.72"N, 74°12'40.71"W			
0	Wetland	41°58'20.68"N, 74°14'37.94"W			
Р	Wetland	42° 0'2.59"N, 74°16'12.76"W			

Table 5. Wetland and Stream Locations					
Resource ID	Type of Resource	Lat/Long Coordinates (NAD83)			
1	Stream	42°0'3.955"N, 74°7'35.846"W			
2	Stream	42°0'4.43"N, 74°7'50.57"W			
3	Stream	42°0'3.126"N, 74°8'5.448"W			
4	Stream	41°59'57.381"N, 74°8'51.728"W			
5	Stream	41°59'43.523"N, 74°9'14.097"W			
6	Stream	41°59'29.018"N, 74°9'45.409"W			
7	Stream	41°58'51.309"N, 74°10'51.827"W			
8	Stream	41°58'49.08"N, 74°10'57.858"W			
9	Stream	41°58'36.267"N, 74°11'34.791"W			
10	Stream	41°58'27.057"N, 74°11'55.15"W			
11	Stream	41°58'24.273"N, 74°12'4.192"W			
12	Stream	41°58'1.983"N, 74°13'10.877"W			
13	Stream	41°58'2.626"N, 74°13'44.729"W			
14	Stream	41°58'13.383"N, 74°14'23.43"W			
15	Stream	41°58'26.086"N, 74°14'54.98"W			
16	Stream	41°58'44.687"N, 74°15'28.768"W			
17	Stream	41°59'56.32"N, 74°16'14.05"W			

7.0 Summary and Conclusions

This wetland and stream delineation effort was completed to determine the locations of freshwater wetlands and waters within and adjacent to the Ashokan Rail Trail Project Corridor, located in the Towns of Hurley and Olive, Ulster County, New York. Based on the field observations and data associated with each delineated wetland, 13 wetlands (A-L and P) meet the criteria for federal wetland jurisdiction and are regulated by the USACE under Section 404 of the Clean Water Act. Wetlands M, N, and O are presumed to be isolated due to lack of bed and bank features, or observed connectivity to any additional Waters of the U.S. Wetlands M and N appear to function as localized drainage ditches, while Wetland O was observed with no inlet or outlet in a topographic low spot within the center of the trail alignment. Regardless of field observations and conclusions, the USACE has the final determination regarding federal resource jurisdiction. The Project Corridor travels through one NYSDEC mapped wetland (AS-20) and adjacent to another, NYSDEC mapped wetland (AS-19). An Article 24 permit will be required for proposed disturbance within delineated Wetlands K and L (as they are associated with NYSDEC mapped Wetland AS-20) and for disturbance within the 100-foot buffer of NYSDEC mapped Wetlands AS-19 and AS-20. A summary table of the wetlands delineated within the Project Corridor, and their recorded characteristics and federal indicators, is provided below.

Table 6. Wetland Data Plot Information and Federal Wetland Criteria							
Wetland ID	Wetland Cover Type Class	Hydrologic Indicators	Dominant Vegetation	Hydrophytic Vegetation Indicator	Hydric Soil Indicator		
Α	Emergent	A2, A3, D2, D5	Broom sedge, shallow sedge, pinkweed	Dominance test	S1		
В	Emergent	A2, A3, D1, D5	Shallow sedge, broom sedge	Dominance test	F6		
С	Emergent	A2, A3, D2, D5	American bur-reed	Dominance test	F3		
D	Emergent	A2, A3, D2, D5	Speckled alder, Japanese stilt grass, prickly sedge	Dominance test	F3		
Е	Emergent	A3, B10, D2, D5	Green bulrush, arrow-leaf tearthumb, Japanese stilt grass	Dominance test	F6		
F	Emergent	A2, A3, D2, D5	Jewelweed, pinkweed, silver maple, red maple	Dominance test	F6		
G	Emergent	A2, A3, B10, D2, D5	Jewelweed, prickly sedge, red maple, white ash, American beech	Dominance test	F6		
Н	Emergent	A3, B10, D2, D5	Jewelweed, Japanese stilt grass, red maple	Dominance test	F6		
I	Emergent	A3, B10, D2, D5	Jewelweed	Dominance test	F6		
J	Forested/ Scrub-shrub	A2, A3, D5	Red osier dogwood, rattlesnake grass, shallow sedge	Dominance test	F6		
K	Emergent	A2, A3, D2, D5	Common reed	Dominance test	F6		
L	Emergent	A2, A3, D5	Speckled alder, red osier dogwood, common reed	Dominance test	F6		
М	Emergent	A2, A3, D2, D5	Japanese stilt grass, rattlesnake grass	Dominance test	F6		
N	Emergent	A2, A3, D2, D5	Broom sedge, shallow sedge, soft rush Dominance test		F3		
0	Emergent	A2, A3, C1, D5	Jewelweed Dominance test		F8		
Р	Emergent	A3, B10, D2, D5	Japanese stilt grass, jewelweed, white ash	Dominance test	F6		

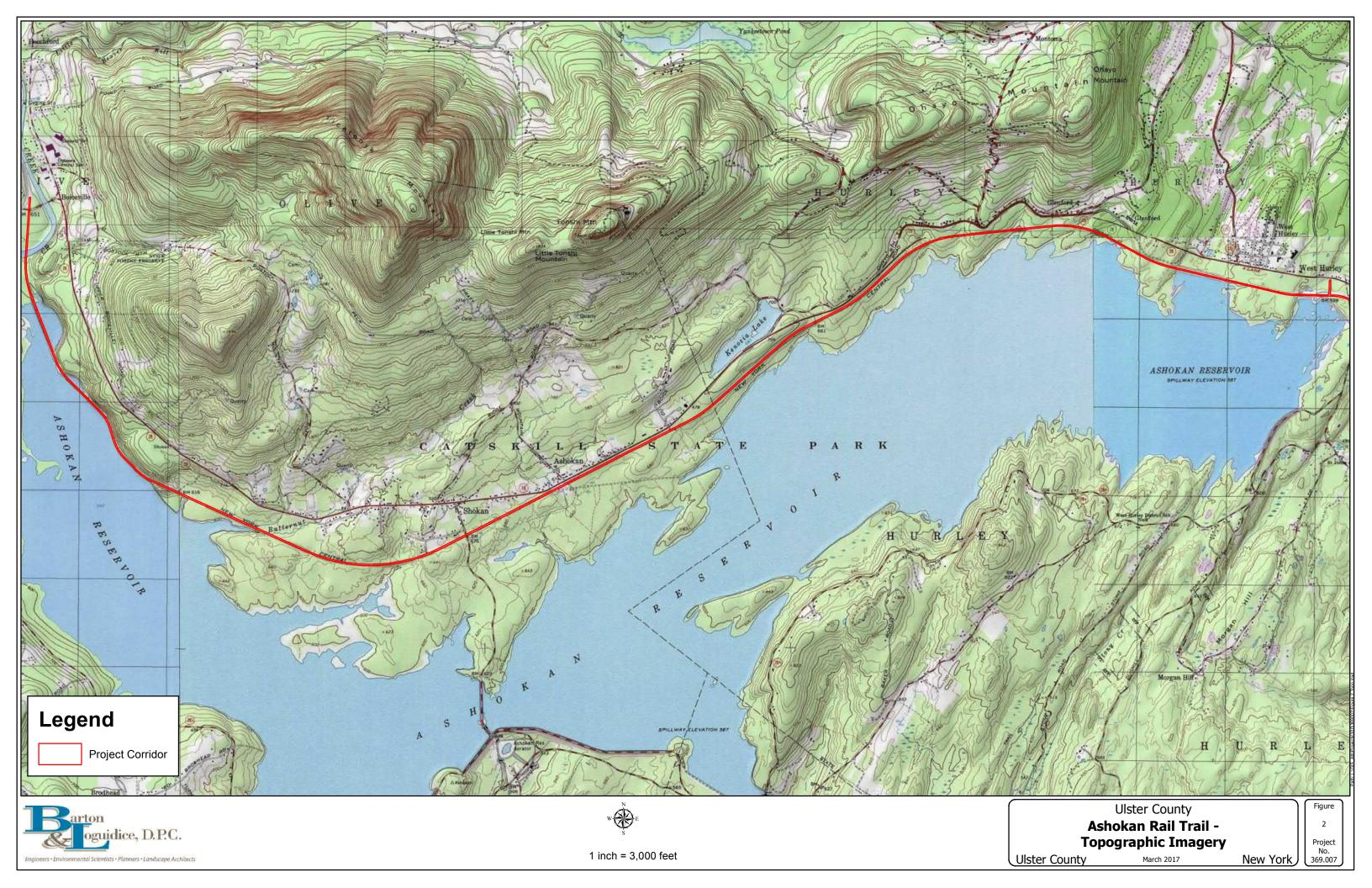
During the field walkover, stream resources identified within the Project Corridor that met the definition of Waters of the U.S. were recorded. These resources, a total of 17, are assumed to be regulated by the USACE under Section 404 of the Clean Water Act. In addition, six of these streams constitute NYSDEC mapped and protected streams, each with a Class A designation. While eight NYSDEC mapped streams were indicated during the preliminary site investigation (Section 3.5), one stream, Tributary 8 of the Ashokan Reservoir (H-171-P 848-8), was not observed during the field walkover, and a second stream, Tributary 1 of Butternut Creek (H-171-P 848-9-1), was observed outside (north) of the Project Corridor and was therefore not included in the field delineation. In addition to the six NYSDEC mapped streams, 11 unmapped water resources were identified during the site walkover, and were observed to meet criteria to be recognized as federally regulated Waters of the U.S. These 11 tributaries are assumed to be Class A waters, since unmapped streams typically assume the water quality classification of the water body into which they discharge. The mapped streams are regulated by the NYSDEC under the Protection of Waters Program (Article 15) due to their high quality and contribution to a drinking water source. The stream and wetland resources delineated within the Project Corridor will also be reviewed and permitted, if impacted, by the NYCDEP.

A Section 404 Permit from the USACE and a Section 401 Water Quality Certification from the NYSDEC will be required if any temporary or permanent impacts to these wetlands or streams are proposed as part of the project. Wetlands and Waters of the U.S. will be avoided and impacts minimized to the extent possible. Specific resource and location impacts will be determined during the detailed design phase. Feasible mitigative options will be reviewed and identified if greater than 0.1-acre of wetland will be permanently impacted, or permanent impacts to stream resources and aquatic function will occur. Applicable state and federal permits will be identified during the detailed design phase based on the calculated impacts, and a Joint Application for Permit will be assembled and submitted to the USACE, NYSDEC, and NYCDEP to request permit issuance in support of the proposed Ashokan Rail Trail project.

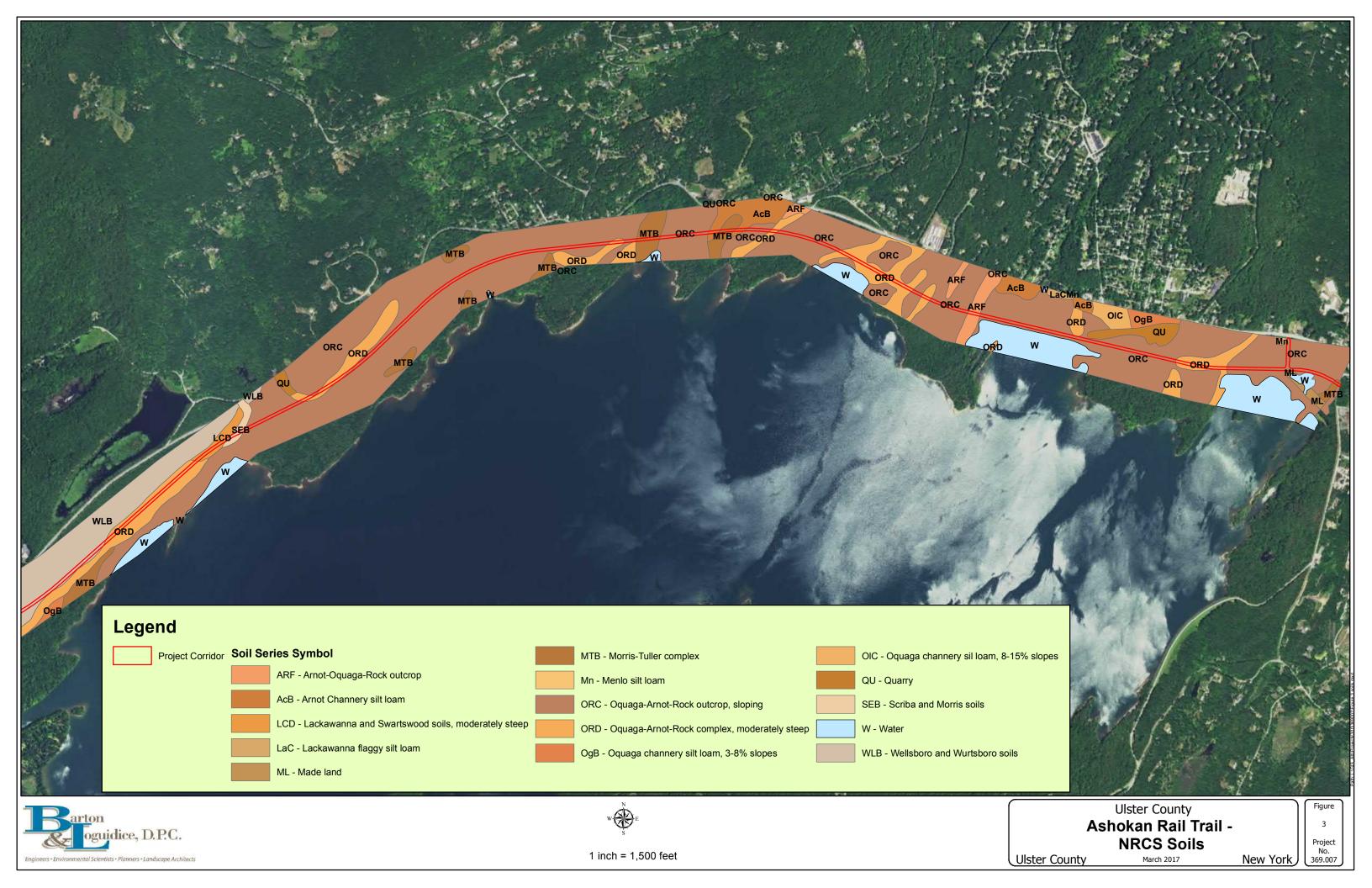
8.0 Bibliography

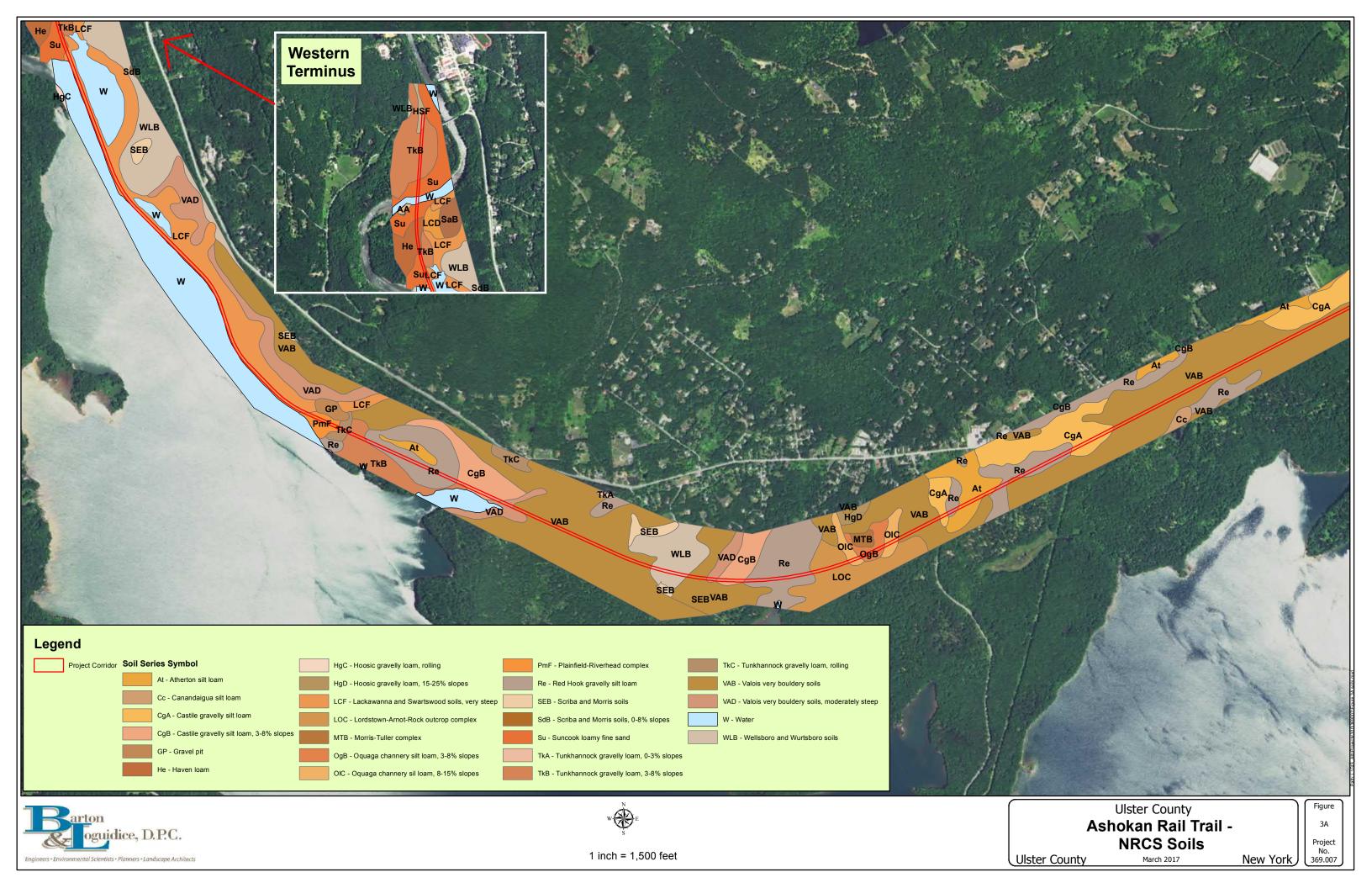
- Cowardin, et. al. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service Report No. FWS/OBS/-79/31.Washington, D.C.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. Technical Report Y-87. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.
- Lichvar, R.W., Butterwick M., Norman M.C., Kirchner W.N. 2014. *The National Wetland Plant List: 2016 wetland ratings. Phytoneuron* 2016-41: 1-42.
- Munsell Color. 2009 revised edition. *Munsell Soil Color Charts*. Macbeth Division of Kollmorgen Instruments Corporation, Baltimore, Maryland.
- Newcomb, L. 2011. *Newcomb's Wildflower Guide*. Little, Brown and Company. United States of America. Boston.
- New York State Codes, Rules, and Regulations (NYCRR). Title 6 Department of Environmental Conservation. Chapter X Division of Water Resources. Subchapter A, Article 10, Lower Hudson River Drainage Basin Series, Part 862. Accessed June 2016.

 <a href="https://govt.westlaw.com/nycrr/Browse/Home/NewYork/NewYorkCodesRulesandRegulations?guid=I26731020b5a111dda0a4e17826ebc834&originationContext=documenttoc&transitionType=Default&contextData=(sc.Default)
- New York State Department of Environmental Conservation (NYSDEC). 2008. Ecological Zones New York State KML/KMZ File Format. NYSDEC, Albany, N.Y., Published July 3, 2008.
- New York State Department of Environmental Conservation (NYSDEC). 2016. Environmental Resource Mapper. NYSDEC, Albany, N.Y., Published July 3, 2008. http://www.dec.ny.gov/imsmaps/ERM/viewer.htm.
- U.S. Army Corps of Engineers. 2011. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0), ed. J.S. Wakeley, R. W. Lichvar, and C.V. Noble, and J.F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- United States Department of Agriculture (USDA). 2016. Natural Resource Conservation Service. Web Soil Survey Geographic Database. Accessed: June 2016. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
- U.S. Fish and Wildlife Service (USFWS). 2016. National Wetlands Inventory (NWI) Mapping. http://www.fws.gov/wetlands/Wetlands-Mapper.html.

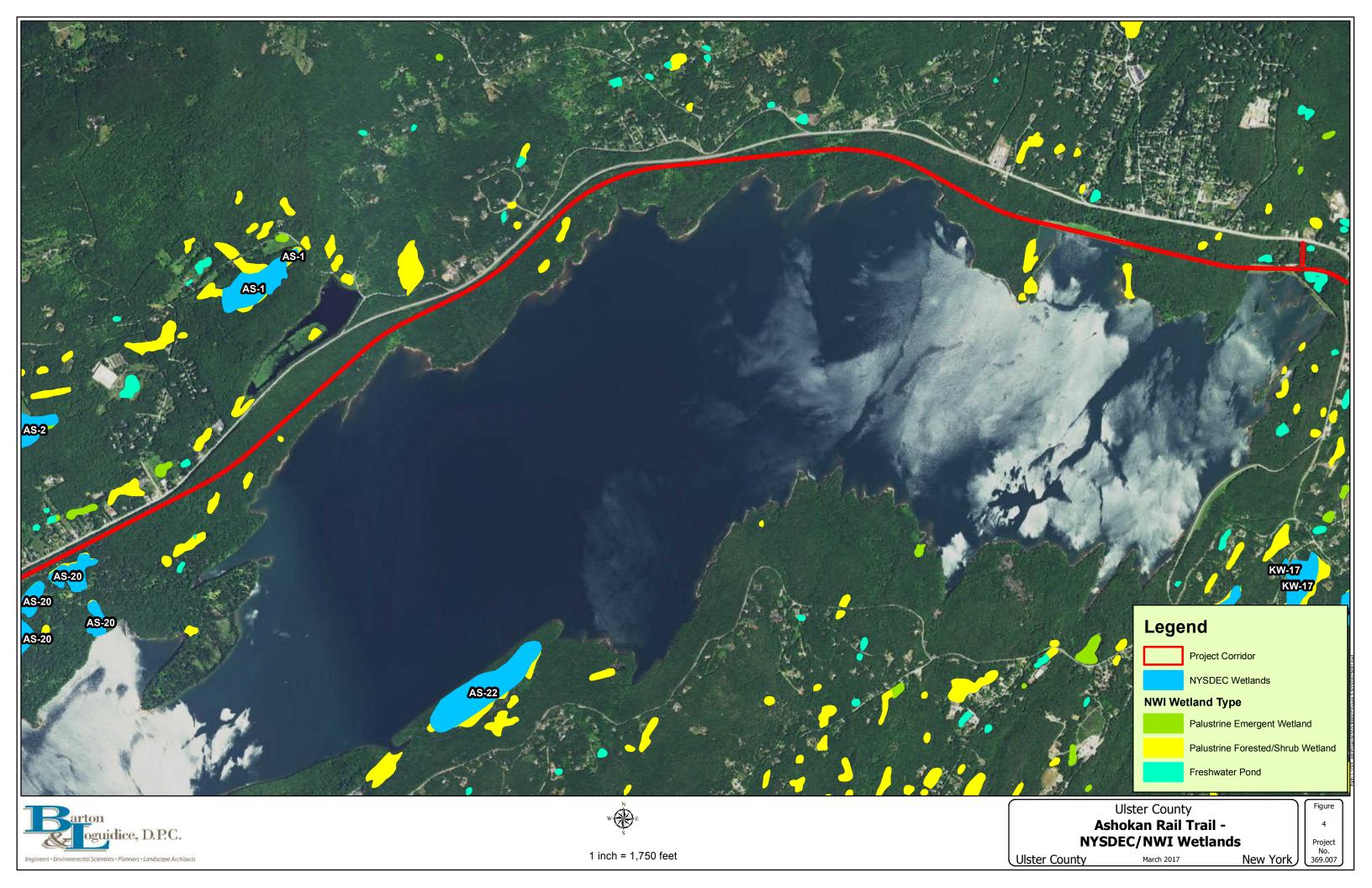

Figure 1

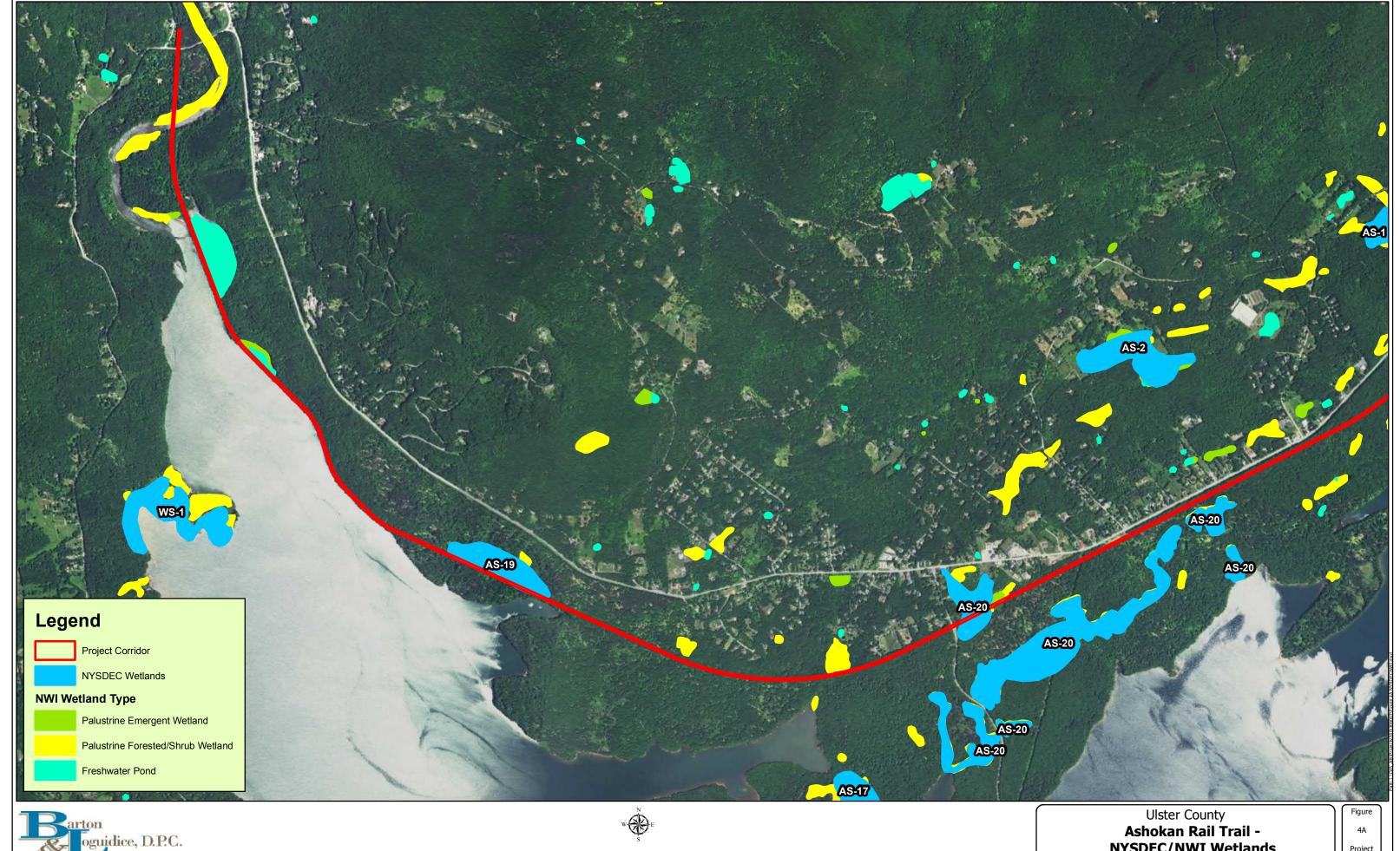
Site Location Map – Aerial Imagery


Figure 2


Site Location Map – Topographic Imagery

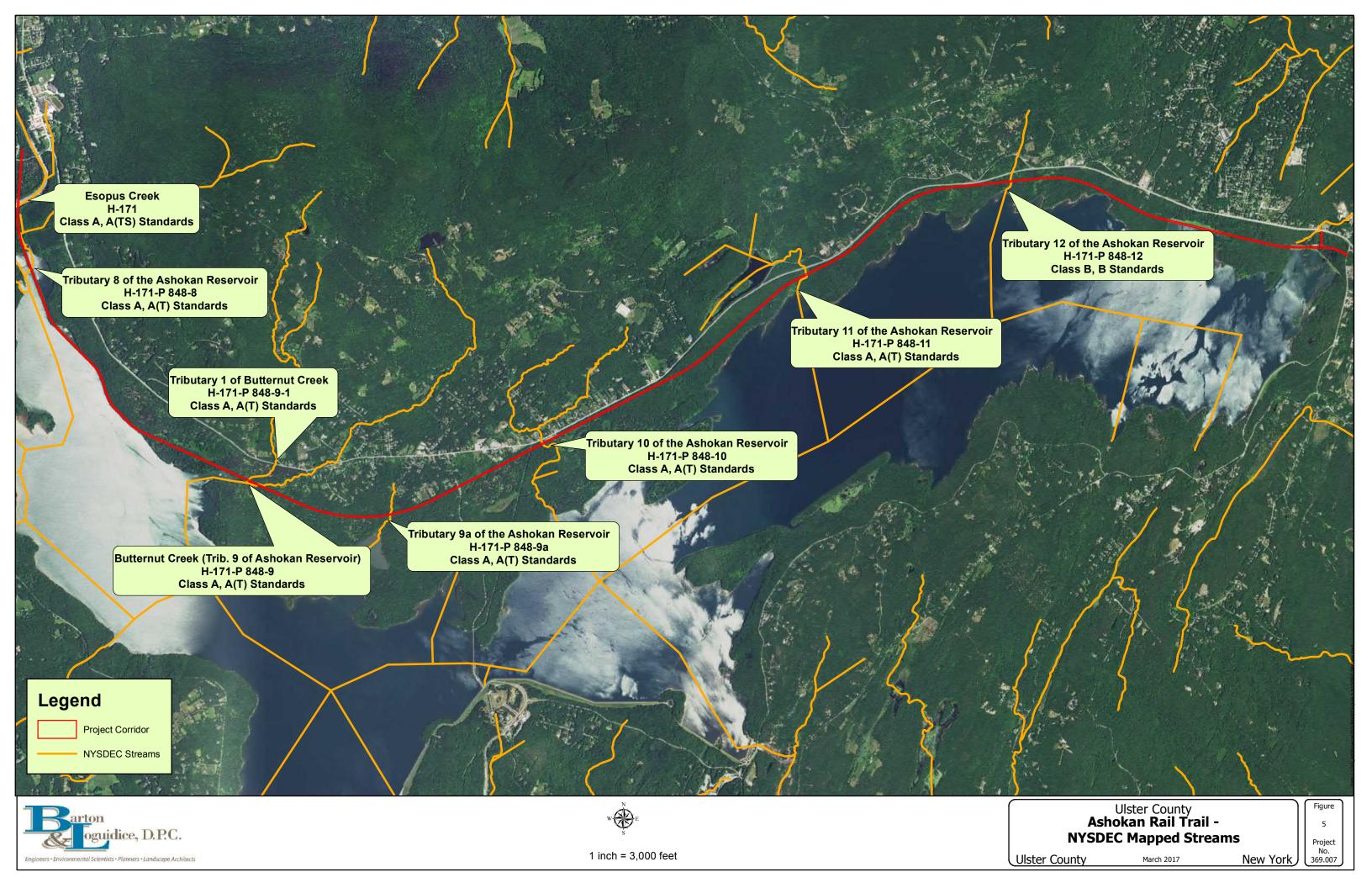
Figures 3 and 3A


NRCS Mapped Soils



Figures 4 and 4A

NYSDEC/NWI Wetlands


1 inch = 1,750 feet

oguidice, D.P.C.

NYSDEC/NWI Wetlands

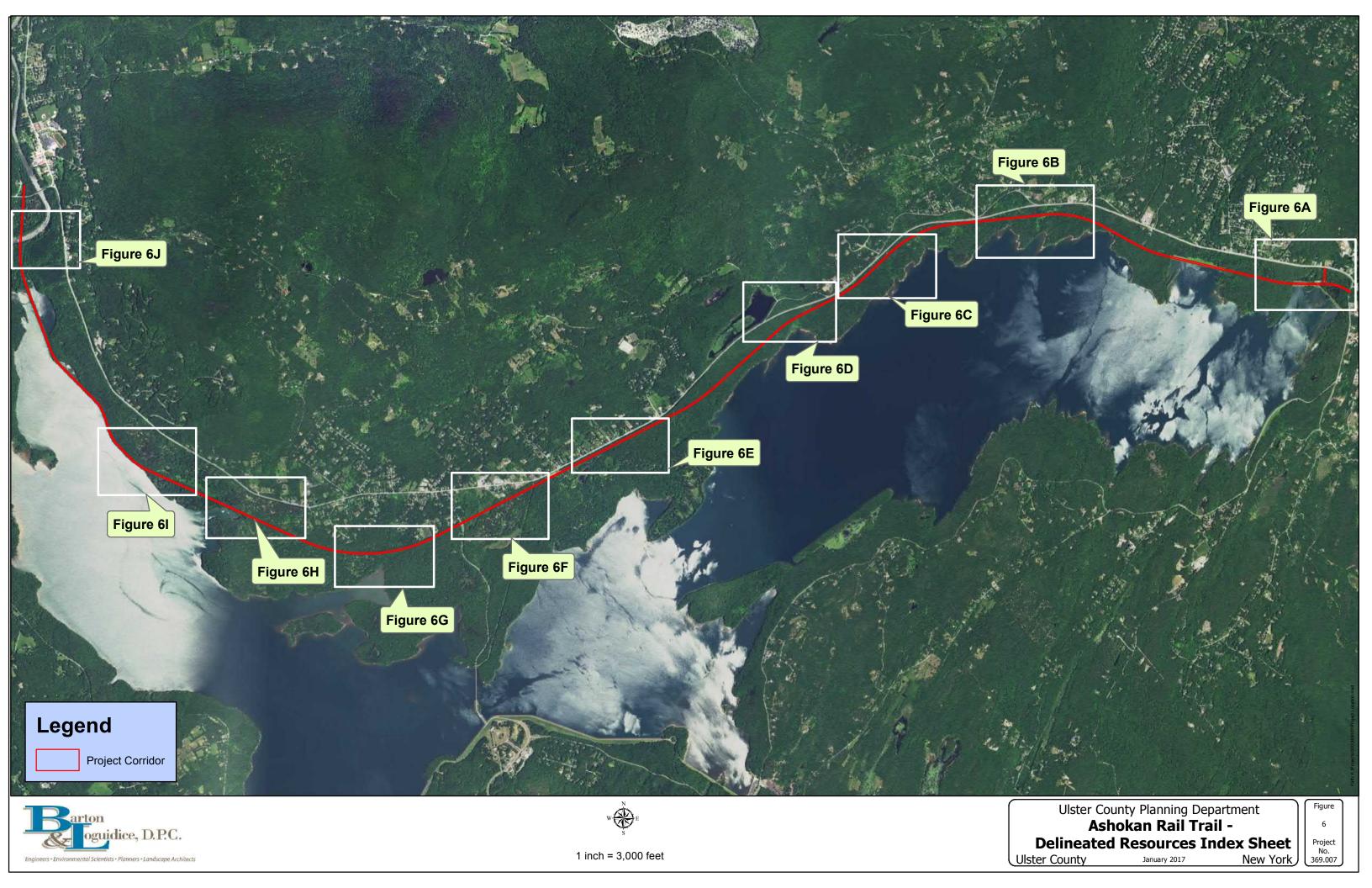
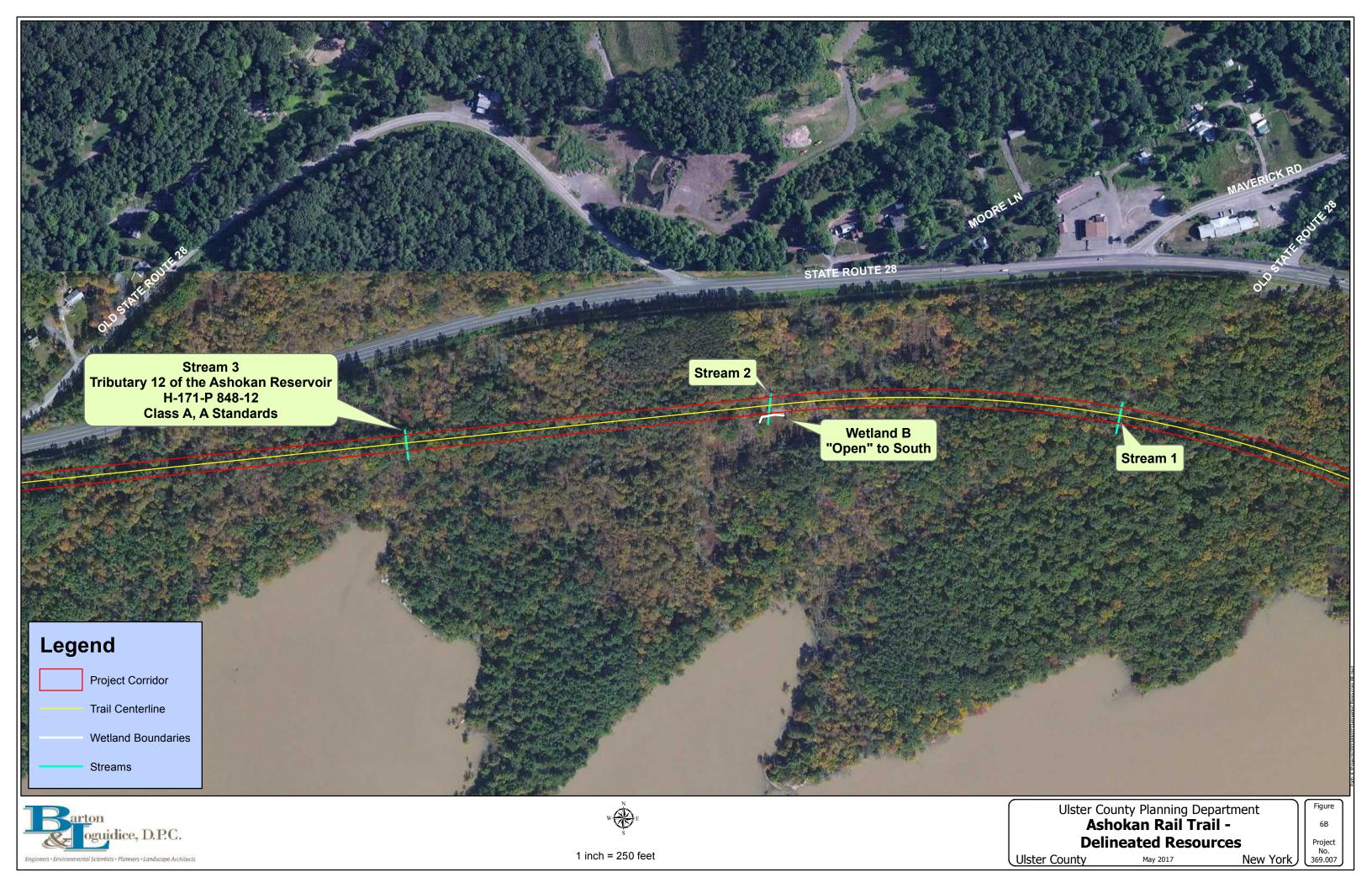

New York Ulster County

Figure 5 NYSDEC Mapped Streams

Figures 6A-6J

Delineated Resources



Ashokan Rail Trail
Delineated Resources

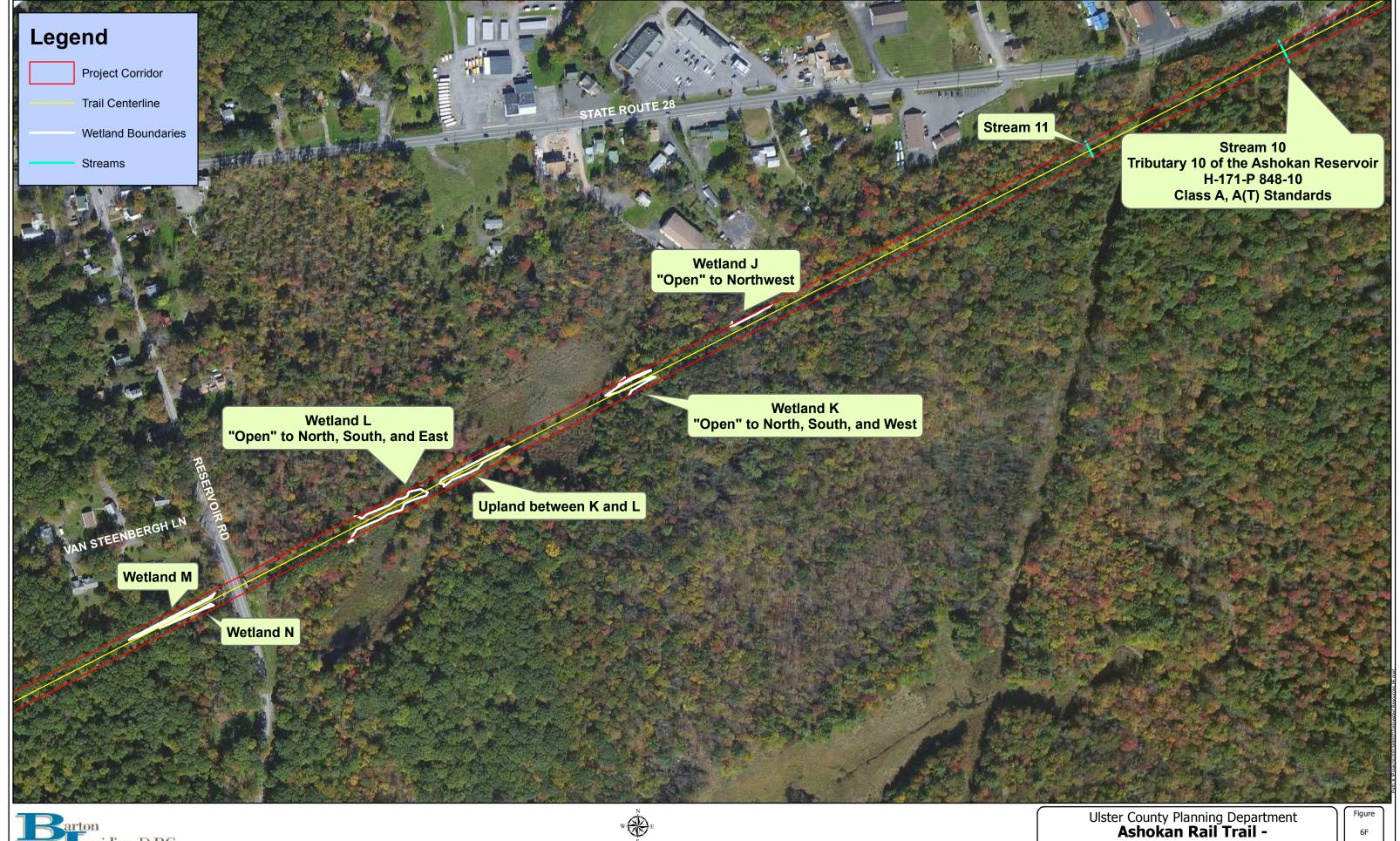
Ulster County May 2017

6A
Project
No.
369.007

Delineated Resources

Ulster County

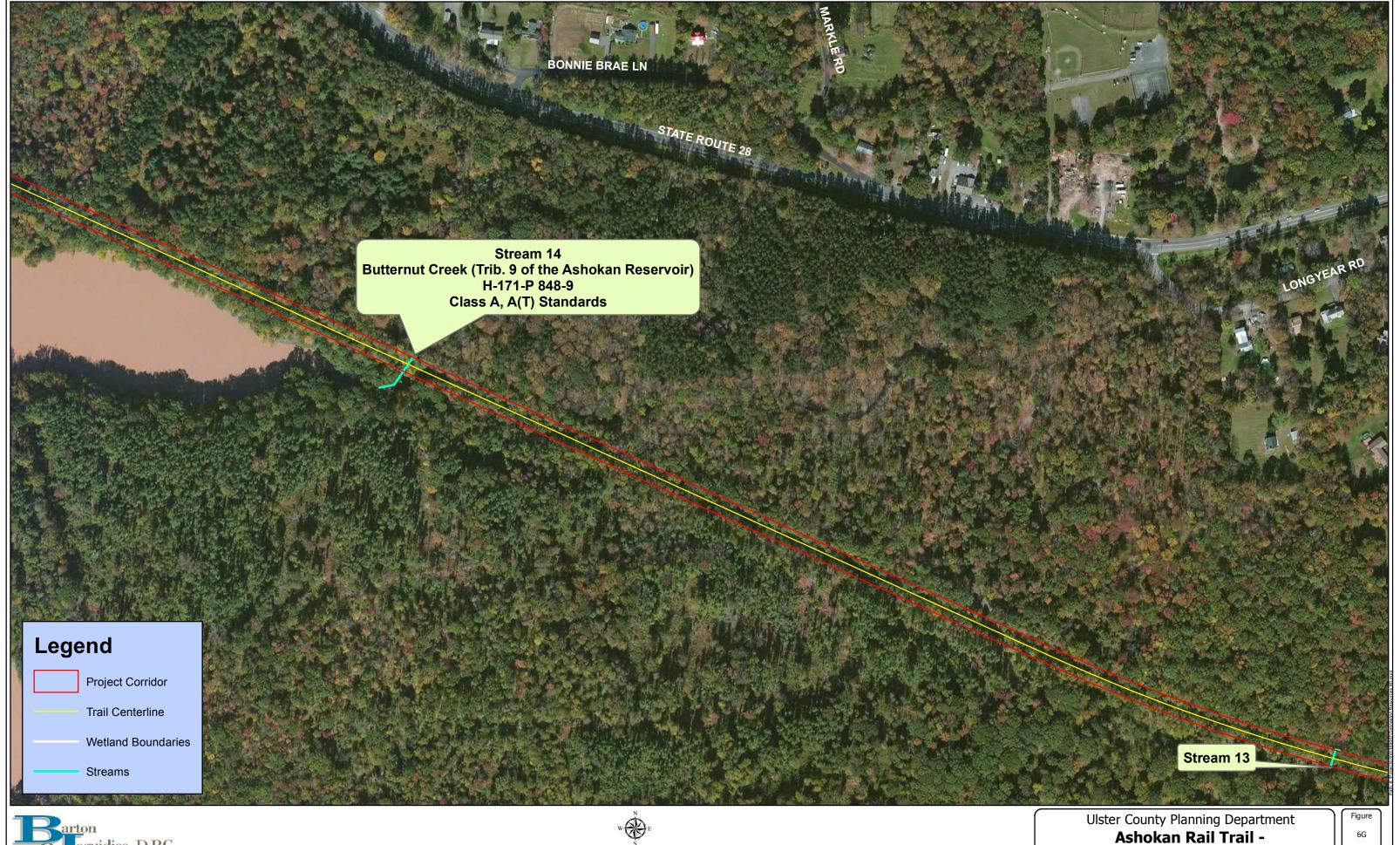
New York


Delineated Resources
May 2017 Ulster County

oguidice, D.P.C.

Delineated Resources Ulster County

Project No. 369.007 New York


oguidice, D.P.C.

1 inch = 250 feet

Delineated Resources

Project No. 369.007

oguidice, D.P.C.

1 inch = 250 feet

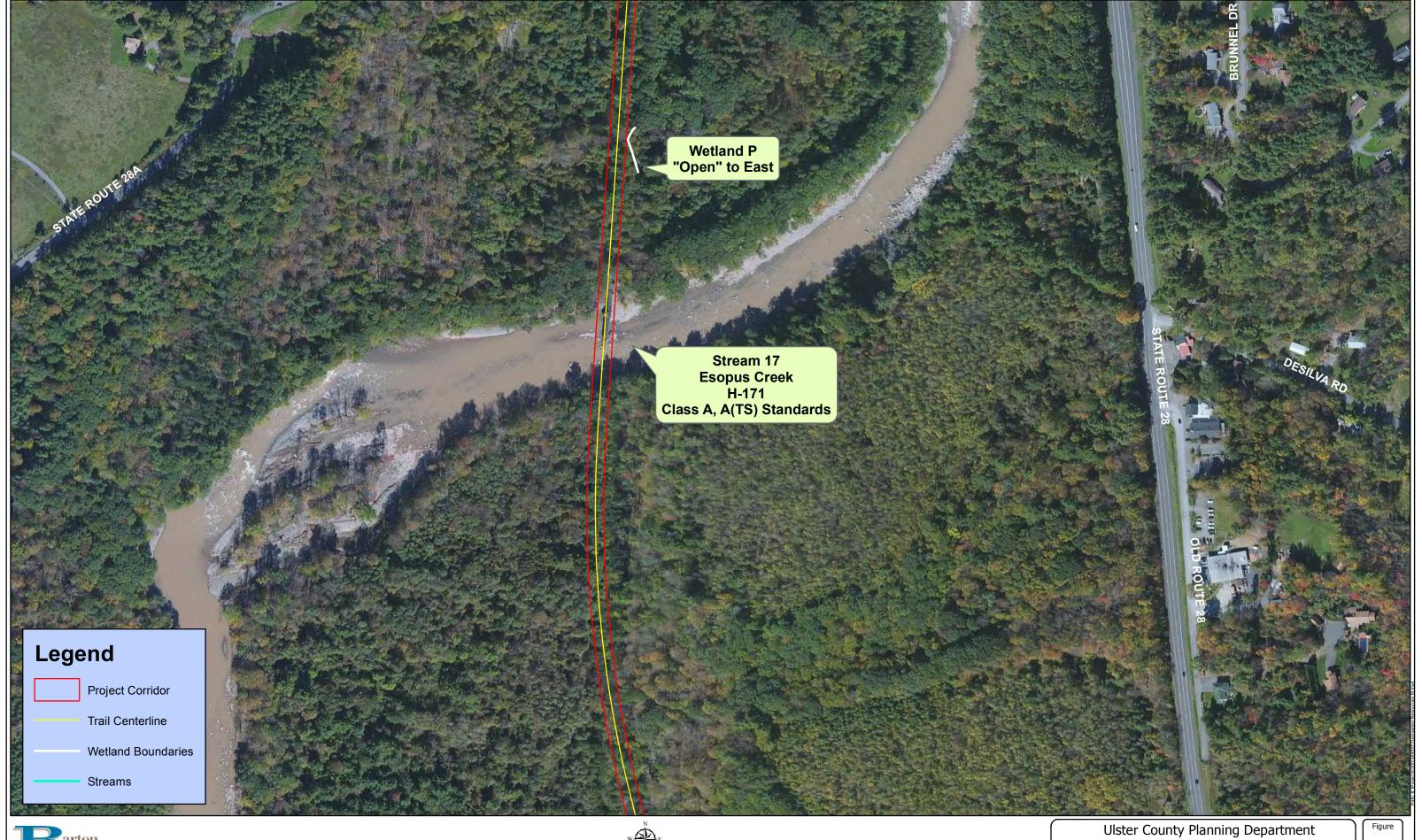
Delineated Resources

Ulster County New York

Project No. 369.007

Delineated Resources Ulster County

Project No. 369.007 New York



1 inch = 250 feet

Delineated Resources Ulster County New York

Project No. 369.007

Ulster County Planning Department

Ashokan Rail Trail
Delineated Resources

Ulster County

January 2017

New

New York

Project
No.
369.00

Appendix A

Wetland/Upland Field Delineation Datasheets

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet A					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local	I relief (concave, convex, none): concave Slope %: 30					
Subregion (LRR or MLRA): LRR R Lat: 41°59'36.01"N	Long: 74° 5'27.64"W Datum: NAD '83					
Soil Map Unit Name: Oquaga-arnot-rock outcrop complex	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur						
Are Vegetation, Soil, or Hydrology naturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.) Located on south side of trail, just northeast of Ashokan Reservoir and the Woodstock Dike. Area is an impoundment of water, mostly likely fed by seepage from the reservoir and is mapped by the NWI.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves ((B9) Drainage Patterns (B10)					
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3)Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor						
Sediment Deposits (B2) Oxidized Rhizospheres	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced Ir	<u> </u>					
Algal Mat or Crust (B4) Recent Iron Reduction in	· , , , , , , , , , , , , , , ,					
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remains						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No _X Depth (inches)	r:					
Water Table Present? Yes X No Depth (inches)):0					
Saturation Present? Yes X No Depth (inches)	:0 Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks: Hydrology present at surface. Ponding potentially fed by Ashokan reservoi inundated with depths of water ranging from 2"-12+".	r. Water table was noted to be at surface; the majority of wetland was					

VEGETATION – Use scientific names of plants. Sampling Point: Wet A Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover **Dominance Test worksheet:** Species? Status 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 3 (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 45 x 2 = 0 2. FAC species x 3 = 0 0 3. FACU species x 4 =4. UPL species 0 x 5 = 0 5. Column Totals: 75 120 Prevalence Index = B/A = 1.60 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) X 2 - Dominance Test is >50% Carex scoparia Yes **FACW** X 3 - Prevalence Index is ≤3.0¹ 2. 20 OBL 4 - Morphological Adaptations (Provide supporting Carex Iurida Yes data in Remarks or on a separate sheet) 3. Persicaria pensylvanica 20 Yes **FACW** 4. Lemna minor 10 No OBL Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 75 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) All vegetation noted was hydrophytic, with duckweed present on surface waters.

SOIL Sampling Point Wet A

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Depth Matrix Redox Features								
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-3	10YR 2/1						Muck	50% Organic material	
3-6	10YR 2/1	80	10YR 5/4	20	С	M	Mucky Sand	Distinct redox concentrations	
6-8	10YR 3/2	80	10YR 6/8	20	С	<u>M</u>	Mucky Sand	Prominent redox concentrations	
8-10	2.5YR 5/4	100					Mucky Sand		
10-22	2.5YR 6/4	90	7.5YR 4/6	10	С	<u>M</u>	Mucky Sand	Prominent redox concentrations	
¹ Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	1S=Mas	ked Sand	d Grains.		L=Pore Lining, M=Matrix.	
Hydric Soil	Indicators:						Indicators for	or Problematic Hydric Soils ³ :	
Histosol			Polyvalue Belo		ce (S8) (I	LRR R,		uck (A10) (LRR K, L, MLRA 149B)	
	oipedon (A2)		MLRA 149B	•			Coast Prairie Redox (A16) (LRR K, L, R)		
	istic (A3)		Thin Dark Surfa						
	en Sulfide (A4)		High Chroma S			-	Polyvalue Below Surface (S8) (LRR K, L)		
	d Layers (A5)		Loamy Mucky I			R K, L)	Thin Dark Surface (S9) (LRR K, L)		
	d Below Dark Surface	(A11)	Loamy Gleyed		F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
Thick Dark Surface (A12) Depleted Matrix (F3)			Piedmont Floodplain Soils (F19) (MLRA 149B)						
X Sandy Mucky Mineral (S1) Redox Dark Surface (F6)			Mesic Spodic (TA6) (MLRA 144A, 145, 149B)						
	Sandy Gleyed Matrix (S4) X Sandy Redox (S5) Depleted Dark Surface (F7) Redox Depressions (F8)			Red Parent Material (F21)					
				,	5)		Very Shallow Dark Surface (F22) Other (Explain in Remarks)		
Stripped Matrix (S6)Marl (F10) (LRF Dark Surface (S7)			IX IX, L)			Other (E	Apiain in Kemarks)		
Bank Gu	11400 (01)								
³ Indicators o	f hydrophytic vegetati	on and w	etland hydrology mu	ıst be pr	esent, ur	nless dist	urbed or problematic.		
	Layer (if observed):								
Type:									
Depth (ii	nches):						Hydric Soil Prese	nt? Yes X No	
Remarks:									
								vithin the upper 6" of the soil. The top	
layers were	primarily dark muck tr	nat snifted	i to a much lighter n	natrix be	elow 6". I	nere wer	e rew, but prominent,	redox concentrations present.	

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL A					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Slope Local	relief (concave, convex, none): Slope %:					
· · · · · · · · · · · · · · · · · · ·	Long: 74° 5'27.64"W Datum: NAD '83					
Soil Map Unit Name: OrC	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur	· · · · · · · · · · · · · · · · ·					
Are Vegetation, Soil, or Hydrology naturally problems						
						
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)						
Located on south side of trail, just west of Ashokan Reservoir.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I						
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of						
Drift Deposits (B3) Presence of Reduced Iro	<u> </u>					
Algal Mat or Crust (B4) Recent Iron Reduction ir	• • • • • • • • • • • • • • • • • • • •					
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar	· · · · · · · · · · · · · · · · ·					
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes No X Depth (inches):						
Saturation Present? Yes No X Depth (inches):	:0 Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Demodra						
Remarks:						

UPL A **VEGETATION** – Use scientific names of plants. Sampling Point: Absolute Dominant Indicator Tree Stratum (Plot size: 30) Status **Dominance Test worksheet:** % Cover Species? Pinus strobus **FACU Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 25.0% (A/B) Prevalence Index worksheet: 7. 45 =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = Populus tremuloides FACU **FACW** species 0 x 2 = 2. FAC species 15 x 3 = 45 3. FACU species 55 x 4 = 220 4. UPL species 30 x 5 = 5. Column Totals: 100 415 Prevalence Index = B/A =4.15 6. **Hydrophytic Vegetation Indicators:** 7. 10 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: 5 2 - Dominance Test is >50% UPL Fragaria vesca Yes 3 - Prevalence Index is ≤3.01 15 Yes 2. Microstegium vimineum FAC 4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 45 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL A

Profile Desc	Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth	Matrix		Redox Features						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-4	10YR 4/2	100							
4-10	10YR 5/2	100							
10-24	10YR 5/2	90	10YR 5/3	10				_	
			_						
	-								
	· -								
¹ Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	//S=Masl	ked Sand	l Grains.	² Location: PL=Por	e Lining, M=Matrix.	
Hydric Soil	Indicators:						Indicators for Pro	blematic Hydric Soils ³ :	
Histosol	(A1)		Polyvalue Belo	w Surfac	ce (S8) (I	LRR R,	2 cm Muck (A1	10) (LRR K, L, MLRA 149B)	
Histic Ep	pipedon (A2)		MLRA 149B	5)			Coast Prairie F	Redox (A16) (LRR K, L, R)	
Black Hi	istic (A3)		Thin Dark Surf	ace (S9)	(LRR R,	, MLRA	149B)5 cm Mucky P	eat or Peat (S3) (LRR K, L, R)	
Hydroge	en Sulfide (A4)		High Chroma S	Sands (S	311) (LRF	R K, L)	Polyvalue Belo	ow Surface (S8) (LRR K, L)	
Stratified	d Layers (A5)		Loamy Mucky	Mineral ((F1) (LRF	R K, L)	Thin Dark Surf	ace (S9) (LRR K, L)	
Depleted	d Below Dark Surface	(A11)	Loamy Gleyed	Matrix (F2)		Iron-Manganes	se Masses (F12) (LRR K, L, R)	
Thick Da	ark Surface (A12)		Depleted Matri	x (F3)			Piedmont Floo	dplain Soils (F19) (MLRA 149B)	
Sandy M	Mucky Mineral (S1)		Redox Dark St	urface (F	6)		Mesic Spodic ((TA6) (MLRA 144A, 145, 149B)	
Sandy C	Bleyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Parent Material (F21)		
Sandy R	Redox (S5)		Redox Depres	sions (F	3)		Very Shallow Dark Surface (F22)		
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Explain in Remarks)		
Dark Su	rface (S7)								
³ Indicators o	ıf hydronhytic vegetati	on and w	etland hydrology mi	ist he nr	esent ur	nless dist	urbed or problematic.		
	Layer (if observed):	on and w	etiana nyarology mi	ust be pi	esent, ui	iless dist	dibed of problematic.		
Type:	Layer (ii observea).								
Depth (ii	nches):						Hydric Soil Present?	Yes No_X_	
Remarks:									
	rm is revised from No	rthcentral	and Northeast Reg	ional Su	pplement	t Version	2.0 to include the NRCS Fie	eld Indicators of Hydric Soils	
version 7.0 M	March 2013 Errata. (h	ttp://www.	nrcs.usda.gov/Inter	rnet/FSE	_DOCUN	MENTS/r	rcs142p2_051293.docx)	-	

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet B					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 42° 0'5.23"N	Long: 74° 7'47.75"W Datum: NAD 83					
Soil Map Unit Name: Morris Tuller complex	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrologysignificantly disturl						
Are Vegetation, Soil, or Hydrology naturally problema						
SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Hydric Soil Present? Yes X No Yes X No Wetland Hydrology Present? Yes X No	Is the Sampled Area within a Wetland? If yes, optional Wetland Site ID: Wetland B					
Remarks: (Explain alternative procedures here or in a separate report.) Wetland B is located at the toe of slope on the south side of the abandoned rail line. North of this location, Old State Route 28 converges with the current State Route 28 and it is just east of Maverick Cove. No mapped wetlands are indicated in this area but an unmapped stream resources runs through from north to south. The wetland continues southward, toward the Ashokan Reservoir.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (E						
X High Water Table (A2) Aquatic Fauna (B13) And Reposition (B45)	Moss Trim Lines (B16)					
X Saturation (A3)Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (· · · · · · · · · · · · · · · · · · ·					
Sediment Deposits (B2) Oxidized Rhizospheres of Deposits (B2)						
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction in	. , , , ,					
Iron Deposits (B5)Thin Muck Surface (C7)	Shallow Aquitard (D3) Microtopographic Relief (D4)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes X No Depth (inches):						
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						

VEGETATION – Use scientific names of plants. Sampling Point: Wet B Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 2 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: OBL species x 1 = Lonicera **FACW** species 25 x 2 = 0 2. FAC species x 3 = 0 0 3. FACU species x 4 =4. UPL species 0 x 5 = 0 5. Column Totals: 95 120 Prevalence Index = B/A = 1.26 6. **Hydrophytic Vegetation Indicators:** 7. 2 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: ____) X 2 - Dominance Test is >50% Carex lurida Yes OBL X 3 - Prevalence Index is ≤3.0¹ 2. 25 **FACW** 4 - Morphological Adaptations (Provide supporting Carex scoparia Yes data in Remarks or on a separate sheet) 10 3. Juncus effusus No OBL 2 4. Glyceria No Problematic Hydrophytic Vegetation¹ (Explain) 5. Poaceae No ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 99 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Prominent wetland vegetation evident.

SOIL Sampling Point Wet B

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix		Redox	Featur	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-6	10YR 3/1	85	5YR 4/6	15	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations	
6-8	10YR 3/2	98	10YR 6/8	2	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
8-12	10YR 3/2	85	10YR 6/8	15	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
12-18	10YR 3/2	88	10YR 4/6	10	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations	
			10YR 5/8	2					
18-23	10YR 4/3	70	10YR 5/8	30	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
1							2		
	ncentration, D=Deple	etion, RM	=Reduced Matrix, M	S=Mas	ked Sand	d Grains.		PL=Pore Lining, M=Matrix.	
Hydric Soil I			Daharaksa Balas	u Curfo	aa (CO) (I	DD D		or Problematic Hydric Soils ³ :	
Histosol (pedon (A2)		Polyvalue Belov MLRA 149B)		ce (So) (I	LKK K,		uck (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R)	
Black His			Thin Dark Surfa		/I DD D	мі ра		ucky Peat or Peat (S3) (LRR K, L, R)	
	Sulfide (A4)		High Chroma S				· —	ie Below Surface (S8) (LRR K, L)	
	Layers (A5)		Loamy Mucky N			-		rk Surface (S9) (LRR K, L)	
	Below Dark Surface	(A11)	Loamy Gleyed I			· · · · · · · · · · · · · · · · · · ·		nganese Masses (F12) (LRR K, L, R)	
	rk Surface (A12)	(/(1/)	Depleted Matrix		· <i>-</i>)			nt Floodplain Soils (F19) (MLRA 149B)	
	ucky Mineral (S1)		X Redox Dark Sur	` '	6)		Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	eyed Matrix (S4)		Depleted Dark S	•	•		Red Parent Material (F21)		
Sandy Re			Redox Depress				Very Shallow Dark Surface (F22)		
	Matrix (S6)		Marl (F10) (LRF	`	-,		Other (Explain in Remarks)		
Dark Sur		Wall (1 10) (LKK K, L)							
_									
		on and w	etland hydrology mu	st be pr	esent, ur	nless dist	turbed or problematic.		
	ayer (if observed):								
Type:	-h \.						Uhadaia Cail Busasa	was V Na	
Depth (in							Hydric Soil Prese	nt? Yes X No	
Remarks: The hydric soil indicator F6 (redox dark surface) was satisfied within the first layer of soil (1-6"), which had a color of 10YR 3/1 with 15% redox									
-					-			r less and chroma of 1 or less with at	
	ore distinct or promi			y within	ше арре	,, 12 , 110	is a matrix value of 5 o	riess and emorna or 1 or less with at	
	·		·						

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL B					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
	relief (concave, convex, none): Slope %:					
	Long: 74° 7'47.75"W Datum: NAD 83					
Soil Map Unit Name: MtB	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrologysignificantly disturb						
Are Vegetation, Soil, or Hydrologynaturally problema	ttic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)	711,11					
Tromaine. (Explain alternative procedures note of in a separate report)						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (E						
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)					
Sediment Deposits (B2) Oxidized Rhizospheres of	<u> </u>					
Drift Deposits (B3) Presence of Reduced Iro	on (C4) Stunted or Stressed Plants (D1)					
Algal Mat or Crust (B4)Recent Iron Reduction in	. ,					
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No Depth (inches):						
Water Table Present? Yes No Depth (inches):						
Saturation Present? Yes No Depth (inches):	Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:					
Remarks:						
Remarks.						

UPL B **VEGETATION** – Use scientific names of plants. Sampling Point: Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 0 (A) 3. Total Number of Dominant (B) 4. Species Across All Strata: 2 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: OBL species x 1 = Quercus rubra FACU **FACW** species 0 x 2 = 0 2. FAC species x 3 = 0 3. FACU species 15 x 4 = 4. UPL species 0 x 5 = 5. Column Totals: 15 (A) Prevalence Index = B/A = 4.00 6. **Hydrophytic Vegetation Indicators:** 7. 15 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: _____) 2 - Dominance Test is >50% Poaceae Yes 3 - Prevalence Index is ≤3.01 2. 4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 60 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL B

		to the de				tor or co	onfirm the absence of i	indicators.)
Depth	Matrix			x Featur		. 2	- .	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	10YR 3/4							
								_
								_
¹ Type: C=Co	oncentration, D=Depl	etion RM	I=Reduced Matrix N	/S-Mas	ked Sand	Grains	² Location: PL	=Pore Lining, M=Matrix.
Hydric Soil		otion, rev	i–rteadea matrix, r	VIO-IVIAO	itou Ourio	oranio.		Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo	w Surfa	ca (SR) (I	DD D		k (A10) (LRR K, L, MLRA 149B)
			MLRA 149B		ce (30) (I	-NN N,		
	pipedon (A2)			•	/I DD D	MI DA 4		irie Redox (A16) (LRR K, L, R)
Black Hi			Thin Dark Surf					ky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S			-		Below Surface (S8) (LRR K, L)
	I Layers (A5)		Loamy Mucky			R K, L)		Surface (S9) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Mang	anese Masses (F12) (LRR K, L, R)
Thick Da	rk Surface (A12)		Depleted Matri	x (F3)			Piedmont	Floodplain Soils (F19) (MLRA 149B)
Sandy M	lucky Mineral (S1)		Redox Dark Su	urface (F	6)		Mesic Spo	odic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Parer	nt Material (F21)
Sandy R	edox (S5)		Redox Depres	sions (F	3)		Very Shall	ow Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Exp	olain in Remarks)
Dark Sui	rface (S7)							
³ Indicators of	f hydrophytic vegetat	ion and w	etland hydrology mi	ust be pr	esent, ur	less dist	urbed or problematic.	
	_ayer (if observed):							
Type:	Balla	ast						
Depth (ir	nches):	2					Hydric Soil Present	? Yes No X
							,	<u> </u>
Remarks:	m is revised from No	rth a antral	and Northagat Dag	ional Cu	nnlamant	\/oroion	2 0 to include the NDCG	C Field Indicators of Lludric Coils
							z.0 to include the NRC3 rcs142p2_051293.docx)	S Field Indicators of Hydric Soils
version 7.0 K	naich 2013 Eilaia. (il	ittp.// www.	.mcs.usua.gov/mte	illet/i oL	DOCON	/ILINI O/III	103 142p2_00 1290.u00x	

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet C					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local r	relief (concave, convex, none): concave Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 41°59'42.48"N	Long: 74° 5'32.51"W Datum: NAD 83					
Soil Map Unit Name: Oquaga-Arnot-Rock outcrop complex	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation , Soil , or Hydrology significantly disturb						
<u> </u>						
Are Vegetation, Soil, or Hydrologynaturally problema SUMMARY OF FINDINGS – Attach site map showing sam						
SOMMARY OF FINDINGS - Attach site map showing sam	pling point locations, transects, important reatures, etc.					
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland C					
Remarks: (Explain alternative procedures here or in a separate report.) Wetland C is ponded on west side of reservoir access roadway near the Woodstock and Glenford Dike areas, and is parallel to Wetland D. Both wetlands are mapped by NWI. A stream resource feeds this wetland from the north; a culvert under the access drive allows for hydrology to pass to Wetland D.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (E	Drainage Patterns (B10)					
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres o						
Drift Deposits (B3) Presence of Reduced Iro	<u> </u>					
Algal Mat or Crust (B4) Recent Iron Reduction in	• • • • • • • • • • • • • • • • • • • •					
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4)						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes X No Depth (inches):						
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No					
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	avious inspections) if available:					
Describe Necorded Data (Stream gauge, monitoring well, aerial priotos, pre	vious inspections), ii available.					
Remarks:						
At wetland plot, high water table and saturation at surface were noted. Wetl deeper in spots.	land also features considerable ponding of surface water, from 2-4" and					

VEGETATION – Use scientific names of plants. Sampling Point: Wet C Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. Total Number of Dominant 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = 7 **FACW** species x 2 = 0 FAC species x 3 = 0 0 3. FACU species x 4 =0 x 5 = 4. UPL species 5. Column Totals: 62 (A) 1.11 Prevalence Index = B/A = 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: X 2 - Dominance Test is >50% Sparganium americanum 50 Yes OBL X 3 - Prevalence Index is ≤3.0¹ 5 2. No **FACW** 4 - Morphological Adaptations (Provide supporting Eupatorium perfoliatum data in Remarks or on a separate sheet) 3. Lemna minor 5 No OBL 2 4. Impatiens capensis No **FACW** Problematic Hydrophytic Vegetation¹ (Explain) 5. Galium No ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 64 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Prominent wetland vegetation evident.

SOIL Sampling Point Wet C

	Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)							
Depth	Matrix			k Featur		. 2		
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 2/1	100					Muck	15% organic material
4-6	7.5YR 4/2	95	7.5YR 4/6	5	<u>C</u>	M	Mucky Loam/Clay	Prominent redox concentrations
6-12	2.5Y 6/2	70	2.5Y 5/6	30	С	M	Mucky Loam/Clay	Prominent redox concentrations
12-24	2.5Y 6/3	80	2.5Y 6/8	20	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations
¹Type: C=Co	oncentration, D=Deple	etion, RM	======================================	IS=Mas	ked Sand	Grains.	. ² Location: PL	=Pore Lining, M=Matrix.
Hydric Soil I	Indicators:						Indicators fo	r Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm Mud	ck (A10) (LRR K, L, MLRA 149B)
Histic Ep	pipedon (A2)		MLRA 149B))			Coast Pra	airie Redox (A16) (LRR K, L, R)
Black His			Thin Dark Surfa					cky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S					Below Surface (S8) (LRR K, L)
	Layers (A5)	(444)	Loamy Mucky I			R K, L)		Surface (S9) (LRR K, L)
	l Below Dark Surface ark Surface (A12)	(A11)	Loamy Gleyed X Depleted Matrix		F2)			ganese Masses (F12) (LRR K, L, R) : Floodplain Soils (F19) (MLRA 149B)
	lucky Mineral (S1)		Redox Dark Su		·6)			odic (TA6) (MLRA 144A, 145, 149B)
	leyed Matrix (S4)		Depleted Dark					nt Material (F21)
	edox (S5)		Redox Depress					llow Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Ex	plain in Remarks)
Dark Sur	rface (S7)							
3								
		on and w	etland hydrology mu	ist be pr	esent, ur	nless dis	turbed or problematic.	
Type:	_ayer (if observed):							
-								
Depth (in	ncnes):						Hydric Soil Present	t? Yes <u>X</u> No
Remarks:	oil indicator F2 (donla	tad matri	w) was mat when he	th oritori	a (0" with		r C" or C" within upper 10	of coll with observe of 2 or local A
-								O" of soil with chroma of 2 or less). A ayers from 6" to 24" depth.
			· · - · · · · · · · · · · · · · · · · ·					2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL C/D					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
• • • • • • • • • • • • • • • • • • • •	relief (concave, convex, none): concave Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 41°59'42.48"N	Long: 74° 5'32.51"W Datum: NAD 83					
Soil Map Unit Name: OrC	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur						
Are Vegetation, Soil, or Hydrologynaturally problems SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.) Wetland C on west side of reservoir access roadway.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) — Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres						
Drift Deposits (B3) Presence of Reduced In						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes No _X Depth (inches):						
Saturation Present? Yes No X Depth (inches)	: Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet D					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local i	relief (concave, convex, none): concave Slope %: 10					
Subregion (LRR or MLRA): LRR R Lat: 41°59'42.19"N	Long: 74° 5'31.42"W Datum: NAD 83					
Soil Map Unit Name: Oquaga-Arnot-Rock outcrop complex	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrologysignificantly disturb	bed? Are "Normal Circumstances" present? Yes X No					
Are Vegetation, Soil, or Hydrologynaturally problema	atic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID:					
Wetland D is ponded on the east side of reservoir access roadway near the Woodstock and Glenford Dike areas, and is parallel to Wetland C. Both wetlands are mapped by NWI. An offsite stream resource feeds wetland C from the north; a culvert under the access drive allows for hydrology to pass to Wetland D.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (E						
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) — Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (· · · · · · · · · · · · · · · · · · ·					
Sediment Deposits (B2) Oxidized Rhizospheres of						
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4)Recent Iron Reduction in						
Iron Deposits (B5) — Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7)Other (Explain in Remark						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):	·					
Water Table Present? Yes X No Depth (inches):	2					
Saturation Present? Yes X No Depth (inches):	0 Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks: At wetland plot, high water table and saturation at surface were noted. Wetl deeper in spots.	land also features considerable ponding of surface water, from 2-4" and					

VEGETATION – Use scientific names of plants. Sampling Point: Wet D Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 3 (A) 3. **Total Number of Dominant** (B) 4. Species Across All Strata: 3 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = Alnus incana **FACW FACW** species 10 x 2 = 20 2. FAC species 60 x 3 = 180 0 3. FACU species x 4 = 0 0 4. UPL species x 5 = 0 5. Column Totals: 100 Prevalence Index = B/A =2.30 6. **Hydrophytic Vegetation Indicators:** 7. 10 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: X 2 - Dominance Test is >50% Microstegium vimineum Yes FAC X 3 - Prevalence Index is ≤3.0¹ 20 2. OBL 4 - Morphological Adaptations (Provide supporting Carex stipata Yes data in Remarks or on a separate sheet) 3. Scirpus atrovirens 10 No OBL 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 90 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Prominent hydrophytic vegetation present.

SOIL Sampling Point Wet D

Profile Descripe Depth	ription: (Describe t Matrix	o the dep		ument th x Featur		ator or c	onfirm the absence of	indicators.)
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2		100						Organic Matter
2-6	10YR 2/1	100					Mucky Loam/Clay	
6-8	10YR 2/1	75	10YR 6/8	25	С	M	Mucky Loam/Clay	Distinct redox concentrations
8-14	2.5Y 6/2	85	10YR 6/8	15	С	М	Mucky Loam/Clay	Distinct redox concentrations
14-24	2.5Y 6/3	80	2.5Y 6/6	20	С	M	Loamy/Clayey	Distinct redox concentrations
		:						
¹Type: C=Co	ncentration, D=Deple	etion, RM:	=Reduced Matrix, N	MS=Masl	ked Sand	Grains		
Black His Hydroger Stratified Depleted Thick Dar Sandy Mt Sandy Gl Sandy Re Stripped I Dark Surf	A1) pedon (A2) tic (A3) s Sulfide (A4) Layers (A5) Below Dark Surface rk Surface (A12) ucky Mineral (S1) eyed Matrix (S4) edox (S5) Matrix (S6) face (S7)		Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR R, MLRA High Chroma Sands (S11) (LRR K, L) Loamy Mucky Mineral (F1) (LRR K, L) Loamy Gleyed Matrix (F2) X Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Marl (F10) (LRR K, L) wetland hydrology must be present, unless dis				2 cm Muc Coast Pra Polyvalue Thin Dark Iron-Mane Piedmont Mesic Sp Red Pare Very Sha Other (Ex	r Problematic Hydric Soils ³ : ck (A10) (LRR K, L, MLRA 149B) airie Redox (A16) (LRR K, L, R) cky Peat or Peat (S3) (LRR K, L, R) e Below Surface (S8) (LRR K, L) c Surface (S9) (LRR K, L) ganese Masses (F12) (LRR K, L, R) et Floodplain Soils (F19) (MLRA 149B) odic (TA6) (MLRA 144A, 145, 149B) ent Material (F21) Illow Dark Surface (F22) cplain in Remarks)
Type: _ Depth (in	ches):						Hydric Soil Presen	t? Yes <u>X</u> No
•			•		•		r 10" of soil with chroma vere noted in all layers fr	of 2 or less). A chroma of 2 or less from 6" to 24" depth.

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet E					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
• • • • • • • • • • • • • • • • • • • •	relief (concave, convex, none): Concave Slope %: 15					
Subregion (LRR or MLRA): LRR R Lat: 41°59'44.24"N	Long: 74° 9'14.53"W Datum:					
Soil Map Unit Name: Oquaga-Arnot-Rock outcrop complex	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly disturb						
Are Vegetation, Soil, or Hydrology naturally problema						
SUMMARY OF FINDINGS – Attach site map showing sam						
Lludrophutia Vagatatian Procent2 Vag. V. No.	Is the Sampled Area					
Hydrophytic Vegetation Present? Hydric Soil Present? Yes X No Yes X No	Is the Sampled Area within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland E					
Remarks: (Explain alternative procedures here or in a separate report.)	ii yoo, opiionai vvoilana olio ib. <u>vvoilana E</u>					
Wetland E was located on the south side of the rail corridor and continued southeast beyond the delineated limits. No wetland mapping is recorded in this area.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (B	B9) X Drainage Patterns (B10)					
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor ((C1) Crayfish Burrows (C8)					
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3)Presence of Reduced Iro	on (C4) Stunted or Stressed Plants (D1)					
Algal Mat or Crust (B4)Recent Iron Reduction ir	n Tilled Soils (C6) X Geomorphic Position (D2)					
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):	. <u>. </u>					
Water Table Present? Yes No _X Depth (inches):	. <u>. </u>					
Saturation Present? Yes X No Depth (inches):	4 Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks: Saturation was present within 4" of the soil surface. Visible drainage pattern water passage.	ns were noted in bare patches of soil as well as bent vegetation suggesting					

VEGETATION – Use scientific names of plants. Sampling Point: Wet E Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) **Dominance Test worksheet:** % Cover Species? Status 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 3 (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = 2. FAC species 15 x 3 = 45 5 3. FACU species x 4 = 4. UPL species 0 x 5 = 5. Column Totals: 60 105 Prevalence Index = B/A = 1.75 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) X 2 - Dominance Test is >50% 1. Scirpus atrovirens Yes OBL X 3 - Prevalence Index is ≤3.0¹ 2. 15 OBL 4 - Morphological Adaptations (Provide supporting Persicaria sagittata Yes data in Remarks or on a separate sheet) 3. Microstegium vimineum 15 Yes FAC 4. Phleum pratense No **FACU** Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 60 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) A dominance of wetland vegetation was present. The invasive Japanese stiltgrass was present throughout the corridor and on the wetland E fringe.

SOIL Sampling Point Wet E

Profile Desc Depth	ription: (Describe t Matrix	o the dep		ıment tl x Featur		ator or co	onfirm the absence o	f indicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 2/1	90	2.5Y 7/8	10	С	М	Loamy/Clayey	Prominent redox concentrations	
2-6	10YR 3/2	85	5YR 4/6	10	С	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
			2.5Y 7/8	5	С	<u>M</u>		Prominent redox concentrations	
6-14	5YR 3/2	90	5YR 4/6	10	С	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
14-22	5YR 4/3	90	7.5YR 5/8	10	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
				<u> </u>					
				_					
		_							
	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	IS=Mas	ked Sand	d Grains.		PL=Pore Lining, M=Matrix.	
Hydric Soil I								or Problematic Hydric Soils ³ :	
Histosol	• •		Polyvalue Belov		ce (S8) (LRR R,		uck (A10) (LRR K, L, MLRA 149B)	
	pipedon (A2)		MLRA 149B)	•	\	MIDA		rairie Redox (A16) (LRR K, L, R)	
Black His	` ,		Thin Dark Surfa					ucky Peat or Peat (S3) (LRR K, L, R)	
	n Sulfide (A4)		High Chroma Sands (S11) (LRR K, L)				Polyvalue Below Surface (S8) (LRR K, L)		
	l Layers (A5)	(//11)	Loamy Mucky Mineral (F1) (LRR K, L) Loamy Gleyed Matrix (F2)				Thin Dark Surface (S9) (LRR K, L)		
	l Below Dark Surface irk Surface (A12)	(A11)	Depleted Matrix		F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
	lucky Mineral (S1)		X Redox Dark Su	` '	· 6)		Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	leyed Matrix (S4)		Depleted Dark	`	,			rent Material (F21)	
	edox (S5)		Redox Depress				Very Shallow Dark Surface (F22)		
	Matrix (S6)		Marl (F10) (LRI		- /		Other (Explain in Remarks)		
	face (S7)		(* 10) (=11	, _,				,	
³ Indicators of	hydrophytic vegetati	ion and w	etland hydrology mu	ıst be pı	resent, ui	nless dist	urbed or problematic.		
	ayer (if observed):								
Type:									
Depth (in	nches):						Hydric Soil Prese	nt? Yes X No	
	oil indicator F6 (redo e noted throughout al			e upper	r 14" dem	nonstrated	d a value of 3 with a ch	nroma of 2 or less in all layers. Redox	

Project/Site: Ashokan Rail Trail	City/County: Hurley/Ulster Sampling Date: 6/28/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL E					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.):	relief (concave, convex, none): Slope %:					
Subregion (LRR or MLRA): LRR R Lat:	Long: Datum:					
Soil Map Unit Name: OrC	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrologysignificantly distur						
Are Vegetation, Soil, or Hydrologynaturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres						
Drift Deposits (B3) Presence of Reduced In	• · · / <u>—</u>					
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)	· · · · · · · · · · · · · · · · · · ·					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No Depth (inches):	:					
Water Table Present? Yes No Depth (inches):						
Saturation Present? Yes No Depth (inches):						
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						
1						

VEGETATION – Use scientific names of plants. Sampling Point: UPL E Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 0 (A) 3. Total Number of Dominant 4. Species Across All Strata: 1 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = 2. FAC species 10 x 3 = 30 3. FACU species 60 x 4 = 240 4. UPL species 0 x 5 = 0 5. Column Totals: 70 Prevalence Index = B/A =3.86 6. 7. **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: 5 2 - Dominance Test is >50% Phleum pratense Yes **FACU** 3 - Prevalence Index is ≤3.01 10 2. Microstegium vimineum No FAC 4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 70 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL E

		o the de	-			tor or co	onfirm the absence of i	indicators.)
Depth	Matrix			x Featur		12	Taratama	Demonde
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2	10YR 3/2							
2-12	10YR 4/2							
12-18	10YR 4/3							
								_
							<u></u>	_
1- 0.0							2,	
Type: C=Co	oncentration, D=Depl	etion, RM	1=Reduced Matrix, N	//S=Mas	ked Sand	Grains.		=Pore Lining, M=Matrix. Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo	ow Surfa	ce (S8) (I	_RR R.		k (A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B		() (-	- ,		irie Redox (A16) (LRR K, L, R)
Black Hi	stic (A3)		Thin Dark Surf	ace (S9)	(LRR R,	MLRA 1	49B) 5 cm Mucl	ky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S			-	Polyvalue	Below Surface (S8) (LRR K, L)
	l Layers (A5)		Loamy Mucky			R K, L)		Surface (S9) (LRR K, L)
	Below Dark Surface	(A11)	Loamy Gleyed		F2)			anese Masses (F12) (LRR K, L, R)
	ark Surface (A12)		Depleted Matri		·c)			Floodplain Soils (F19) (MLRA 149B)
	lucky Mineral (S1) leyed Matrix (S4)		Redox Dark Some Depleted Dark					odic (TA6) (MLRA 144A, 145, 149B) at Material (F21)
	edox (S5)		Redox Depres					ow Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LR		<i>-</i> ,			plain in Remarks)
	rface (S7)			, ,				,
	f hydrophytic vegetati	on and w	etland hydrology m	ust be pr	esent, ur	less distu	urbed or problematic.	
Type:	Layer (if observed):							
Depth (ir	nches).						Hydric Soil Present	? Yes No X
							Tiyano con i resent	. 165 <u></u> 166 <u></u>
Remarks: This data for	m is revised from No	rthcentra	and Northeast Reg	ional Su	pplement	Version	2.0 to include the NRCS	S Field Indicators of Hydric Soils
							rcs142p2_051293.docx)	

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet F					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %: 10					
Subregion (LRR or MLRA): LRR R Lat: 41°58'49.68"N	Long: 74°10'57.76"W Datum: NAD 83					
Soil Map Unit Name: Valois very bouldery soils	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur						
Are Vegetation, Soil, or Hydrologynaturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes X No Hydric Soil Present? Yes X No	Is the Sampled Area within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland F					
Remarks: (Explain alternative procedures here or in a separate report.) Wetland F was located on the north side of the railroad tracks, south of the intersection of Dubois Road and Route 28. Wetland G was located on the south side of the tracks, at the western end of Wetland F.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1)Water-Stained Leaves (I	ter-Stained Leaves (B9) Drainage Patterns (B10)					
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced Iro	<u> </u>					
Algal Mat or Crust (B4) Recent Iron Reduction ir	• • • • • • • • • • • • • • • • • • • •					
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar	<u> </u>					
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No _X Depth (inches):						
Water Table Present? Yes X No Depth (inches):						
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Deventor						
Remarks: Soil was saturated at surface, with the water table within 1 inch of the surfa	200					
Soli was saturated at surface, with the water table within 1 men of the surface	106.					

 VEGETATION – Use scientific names of plants.
 Sampling Point:
 Wet F

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer saccharinum	50	Yes	FACW	
2. Acer rubrum	45	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
		103	TAO	That Are OBE, I AOW, OF AO.
4				Total Number of Dominant Species Across All Strata: 4 (B)
				Species Across Air Strata. 4 (b)
5		· ——		Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 100.0% (A/B)
7		T-1-1 0		Prevalence Index worksheet:
0 1: (01 1 0: (01	95	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species 10 x 1 = 10
1.				FACW species 115 x 2 = 230
2				FAC species 45 x 3 = 135
3				FACU species 0 x 4 = 0
4		·		UPL species 0 x 5 = 0
5		·		Column Totals:(A)(B)
6.				Prevalence Index = B/A = 2.21
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
Impatiens capensis	45	Yes	FACW	X 3 - Prevalence Index is ≤3.0 ¹
2. Persicaria pensylvanica	15	Yes	FACW	4 - Morphological Adaptations (Provide supporting
3. Persicaria sagittata	5	No	OBL	data in Remarks or on a separate sheet)
4. Lemna minor	5	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Pilea pumila	5	No	FACW	¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree Mandy plants 2 in (7.6 cm) or mars in
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				Ocalia alcharda Wasaka alaata laas than Ois DDII
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	75	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30)				
1.				Woody vines – All woody vines greater than 3.28 ft in height.
2.				neight.
3.				Hydrophytic
4.				Vegetation Present? Yes X No
4.		Total Cavar		riesent: ies 🔨 NO
Describes (Include whate		=Total Cover		L
Remarks: (Include photo numbers here or on a separ Prominent hydrophytic vegetation noted with the domi				
2, 2, 2				

SOIL Sampling Point Wet F

Profile Desc Depth	cription: (Describe) Matrix	to the de	-	ument tl ox Featur		ator or c	onfirm the absence o	f indicators.)
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2								Organic detritus
2-4	10YR 2/2	95	10YR 6/8	5	С	М	Mucky Loam/Clay	Prominent redox concentrations
4-10	10YR 2/2	85	10YR 6/8	15	С	M	Mucky Loam/Clay	Prominent redox concentrations
	10111 2/2		1011(0/0	10		101	Widoky Loani/Olay	Trommon redex concentrations
			-				- <u></u>	
1T C. C.		DA	A. Dadwaad Matrix I		Lead Can		21	N. Dans Links M. Matrix
Hydric Soil	oncentration, D=Depl	etion, Riv	/I=Reduced Matrix, I	vi5=ivias	ked Sand	Grains		PL=Pore Lining, M=Matrix. or Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo	ow Surfa	ce (S8) (LRR R.		uck (A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149E		() (,		rairie Redox (A16) (LRR K, L, R)
Black Hi			Thin Dark Sur	face (S9)	(LRR R	, MLRA		ucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		High Chroma	Sands (S	811) (LR I	R K, L)	Polyvalu	ie Below Surface (S8) (LRR K, L)
Stratified	l Layers (A5)		Loamy Mucky Mineral (F1) (LRR K, L)				Thin Dar	rk Surface (S9) (LRR K, L)
Depleted	d Below Dark Surface	e (A11)	Loamy Gleyed	d Matrix (F2)		Iron-Mar	nganese Masses (F12) (LRR K, L, R)
	ark Surface (A12)		Depleted Matr					nt Floodplain Soils (F19) (MLRA 149B)
	lucky Mineral (S1)		X Redox Dark S					podic (TA6) (MLRA 144A, 145, 149B)
	ileyed Matrix (S4)		Depleted Dark					ent Material (F21) allow Dark Surface (F22)
	edox (S5) Matrix (S6)		Redox Depres Marl (F10) (LF		0)			Explain in Remarks)
	rface (S7)			((((((((((((((((((((Outlot (E	Apiair in Remarks)
_	()							
	, , , ,	ion and v	vetland hydrology m	ust be pr	esent, u	nless dis	turbed or problematic.	
	_ayer (if observed):							
Type:	Balla	ast						
Depth (ir	nches):	10					Hydric Soil Presei	nt? Yes X No
Remarks:								
				rs exhibit	ed a valu	ue of 2 w	rith a chroma of 2 with 5	5-15% redox concentrations present. All
were within 1	0 inches as ballast p	pronibited	turtner deptn.					

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL F					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
• ''	relief (concave, convex, none): Slope %:					
Subregion (LRR or MLRA): LRR R Lat:	Long: Datum:					
Soil Map Unit Name: VaB	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur	\ \					
Are Vegetation, Soil, or Hydrology naturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No_X_					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I						
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced In						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No _X Depth (inches):						
Water Table Present? Yes No X Depth (inches):						
Saturation Present? Yes No X Depth (inches):	: Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						

VEGETATION – Use scientific names of plants. Sampling Point: UPL F Absolute Dominant Indicator Tree Stratum (Plot size: 30) Status **Dominance Test worksheet:** % Cover Species? Acer rubrum FAC **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 33.3% (A/B) Prevalence Index worksheet: Multiply by: 20 =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = FAC species 20 x 3 = 60 3. FACU species 30 x 4 = 120 4. UPL species 50 x 5 = 5. Column Totals: 100 Prevalence Index = B/A =4.30 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) 2 - Dominance Test is >50% UPL Fragaria vesca Yes 3 - Prevalence Index is ≤3.01 20 2. Yes **FACU** 4 - Morphological Adaptations (Provide supporting Galium aparine data in Remarks or on a separate sheet) 10 3. Alliaria petiolata No **FACU** 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 80 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL F

		to the de	-			tor or co	onfirm the absence of indi	icators.)
Depth	Matrix			x Featur		12	Tantona	Demonstra
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2	10YR 3/2						Loamy/Clayey	
2-20	10YR 4/2						Loamy/Clayey	
¹ Type: C=Co	oncentration, D=Depl	etion RM	1=Reduced Matrix N	IS=Mas	ked Sand	I Grains	² Location: PL=Pc	ore Lining, M=Matrix.
Hydric Soil		0.1011, 1.11	i–rtoddodd ividains, fe	10-11140	nou ounc	· Oranio.		oblematic Hydric Soils ³ :
Histosol			Polyvalue Belo	w Surfa	ce (S8) (I	_RR R,		(10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B		. , .			Redox (A16) (LRR K, L, R)
Black Hi	stic (A3)		Thin Dark Surf	ace (S9)	(LRR R	MLRA 1	49B) 5 cm Mucky F	Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		High Chroma S	Sands (S	311) (LRF	R K, L)	Polyvalue Bel	ow Surface (S8) (LRR K, L)
Stratified	l Layers (A5)		Loamy Mucky	Mineral	(F1) (LR F	R K, L)	Thin Dark Su	rface (S9) (LRR K, L)
Depleted	d Below Dark Surface	(A11)	Loamy Gleyed	Matrix (F2)		Iron-Mangane	ese Masses (F12) (LRR K, L, R)
Thick Da	ark Surface (A12)		Depleted Matri	x (F3)			Piedmont Flo	odplain Soils (F19) (MLRA 149B)
Sandy M	lucky Mineral (S1)		Redox Dark Su				Mesic Spodic	(TA6) (MLRA 144A, 145, 149B)
	ileyed Matrix (S4)		Depleted Dark				Red Parent M	
	edox (S5)		Redox Depress		8)			Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Explain	n in Remarks)
Dark Su	rface (S7)							
³ Indicators of	f hydrophytic vegetati	ion and w	vetland hydrology mu	ist he nr	esent ur	iless disti	irhed or problematic	
	Layer (if observed):		onana nyarotogy mi	20 р.	555111, 41		and a problemator	
Type:	Balla	st						
Depth (ir	nches):	10					Hydric Soil Present?	Yes NoX_
Remarks:								
								eld Indicators of Hydric Soils
version 7.0 N	/larch 2013 Errata. (h	ttp://www	nrcs.usda.gov/Inter/	net/FSE		/IENTS/n	rcs142p2_051293.docx)	

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet G					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %: 5					
Subregion (LRR or MLRA): LRR R Lat: 41°58'48.99"N	Long: 74°10'59.81"W Datum: NAD 83					
Soil Map Unit Name: Valois very bouldery soils	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly disturb	· · · · · · · · ·					
	<u> </u>					
Are Vegetation, Soil, or Hydrologynaturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland G					
Remarks: (Explain alternative procedures here or in a separate report.)						
Wetland G was located on the south side of the rail corridor, opposite from	Wetland F's western edge.					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (B	(B9) X Drainage Patterns (B10) Moss Trim Lines (B16)					
X High Water Table (A2) Aquatic Fauna (B13) August Denseits (B45)						
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (· · · · · · · · · · · · · · · · · · ·					
Sediment Deposits (B2) Oxidized Rhizospheres of Reduced Irre						
Drift Deposits (B3) Presence of Reduced Iro	<u> </u>					
Algal Mat or Crust (B4) Recent Iron Reduction in This Music Surface (C7)	· / · · · · · · · · · · · · · · · · ·					
Iron Deposits (B5) Thin Muck Surface (C7) Thin Muck Surface (C7) Other (Explain in Remove	Shallow Aquitard (D3) Microtopographic Relief (D4)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	X FAC-Neutral Test (D5)					
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes X No Depth (inches):						
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						
The soil surface was saturated and water table was within 2" of the surface	Drainage natterns were also visible					
The soil surface was saturated and water table was within 2. Of the surface	. Drainage patterns were also visible.					

VEGETATION – Use scientific names of plants.

Sampling Point: Wet G

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	15	Yes	FAC	
2. Fraxinus americana	15	Yes	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
3.		· ———		
4.				Total Number of Dominant Species Across All Strata: 5 (B)
5.				
6				Percent of Dominant Species That Are OBL, FACW, or FAC: 60.0% (A/B)
7.		·		Prevalence Index worksheet:
	30	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)		-		OBL species 45 x 1 = 45
1. Fagus grandifolia	10	Yes	FACU	FACW species 40 x 2 = 80
2.				FAC species 15 x 3 = 45
3.				FACU species 25 x 4 = 100
4.				UPL species 0 x 5 = 0
5.	1	<u> </u>		Column Totals: 125 (A) 270 (B)
6		·		Prevalence Index = B/A = 2.16
7.	(Hydrophytic Vegetation Indicators:
	10	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)		-		X 2 - Dominance Test is >50%
1. Impatiens capensis	40	Yes	FACW	X 3 - Prevalence Index is ≤3.0 ¹
Carex stipata	30	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
Glyceria canadensis	15	No	OBL	data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
		· ——		<u> </u>
		· ——		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7		· ——		Definitions of Vegetation Strata:
		· ——		
0		· ——		Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.		· ——		Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.		· ——		and greater than or equal to 3.20 it (1 iii) tall.
12.	85	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30)	- 65	= Total Cover		of size, and woody plants less than 3.20 it tall.
· · · · · · · · · · · · · · · · · · ·				Woody vines – All woody vines greater than 3.28 ft in
1.				height.
2.				Hydrophytic
3.		· ——		Vegetation Present? Yes X No
4		Tatal Causa		Present? Yes X No No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa The dominance test was indicated for hydrophytic veg				
, , , , , , , , , , , , , , , , , , , ,	,			

SOIL Sampling Point Wet G

Profile Desc Depth	ription: (Describe Matrix	to the dep		ument t l x Featur		ator or co	onfirm the absence o	f indicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 2/2	100					Loamy/Clayey		
2-6	10YR 3/2	60	10YR 5/8	20	C	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
			10YR 6/8	20	C	<u>M</u>		Prominent redox concentrations	
6-10	10YR 3/2	60	10YR 6/8	25	C	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
			10YR 5/8	15	<u>C</u>	M		Prominent redox concentrations	
10-23	10YR 3/3	70	10YR 4/6	30	С	M	Loamy/Clayey	Distinct redox concentrations	
		· ——							
¹Type: C=Co	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	/IS=Mas	ked Sand	d Grains.	² Location: P	L=Pore Lining, M=Matrix.	
Hydric Soil I								or Problematic Hydric Soils ³ :	
Histosol	` '		Polyvalue Belo		ce (S8) (LRR R,		uck (A10) (LRR K, L, MLRA 149B)	
	pipedon (A2)		MLRA 149B	,				rairie Redox (A16) (LRR K, L, R)	
Black His	` '		Thin Dark Surf	` '		•	<i>'</i>	ucky Peat or Peat (S3) (LRR K, L, R)	
	n Sulfide (A4)		High Chroma Sands (S11) (LRR K, L)					ie Below Surface (S8) (LRR K, L)	
	Layers (A5)		Loamy Mucky			R K, L)		rk Surface (S9) (LRR K, L)	
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Mar	nganese Masses (F12) (LRR K, L, R)	
Thick Da	rk Surface (A12)		Depleted Matri	x (F3)			Piedmor	nt Floodplain Soils (F19) (MLRA 149B)	
Sandy M	ucky Mineral (S1)		X Redox Dark Su				Mesic S	podic (TA6) (MLRA 144A, 145, 149B)	
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Par	rent Material (F21)	
	edox (S5)		Redox Depress	sions (F	8)		Very Shallow Dark Surface (F22)		
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Explain in Remarks)		
Dark Sur	face (S7)								
³ Indicators of	hydrophytic vegetat	tion and w	etland hydrology mu	ust be pi	esent, ui	nless dist	urbed or problematic.		
Restrictive L Type:	_ayer (if observed):								
Depth (ir	nches):						Hydric Soil Prese	nt? Yes X No	
Remarks:	· 								
	•	,		first 6" o	f soil. Bo	th layers	had a matrix of 3 or le	ss and chroma of 2 or less; from 2-6",	
prominent re	dox concentrations v	vere prese	nt, totalling 40%.						

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL G					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.):	Local relief (concave, convex, none): Slope %:					
Subregion (LRR or MLRA): LRR R Lat:						
Soil Map Unit Name: VaB	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of y						
Are Vegetation, Soil, or Hydrology significantly						
Are Vegetation, Soil, or Hydrology naturally pro						
	sampling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No _X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No _X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate repo	rt.)					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Lea						
High Water Table (A2) Aquatic Fauna (B1)						
Saturation (A3) Marl Deposits (B1)	·					
Water Marks (B1) Hydrogen Sulfide						
<u> </u>						
						
	of Reduced Iron (C4) Stunted or Stressed Plants (D1) on Reduction in Tilled Soils (C6) Geomorphic Position (D2)					
<u> </u>	· / · · · · /					
Iron Deposits (B5) Thin Muck Surface Other (Forther in F						
Inundation Visible on Aerial Imagery (B7) Other (Explain in F	· · · · · · · · · · · · · · · · ·					
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (in						
Water Table Present? Yes No _X Depth (in	ches):					
Saturation Present? Yes No X Depth (in	ches): Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photo	os, previous inspections), if available:					
Remarks:						

UPL G **VEGETATION** – Use scientific names of plants. Sampling Point: Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) Status **Dominance Test worksheet:** % Cover Species? 1. Yes **Number of Dominant Species** 2. 15 Yes That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant**

4. Species Across All Strata: 6 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 16.7% (A/B) Prevalence Index worksheet: 30 =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = FAC species 25 x 3 = 75 3. FACU species 10 x 4 = 4. UPL species 15 x 5 = 5. Column Totals: 50 190 Prevalence Index = B/A =3.80 6. **Hydrophytic Vegetation Indicators:** 7. 10 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: 2 - Dominance Test is >50% 1. Microstegium vimineum 20 Yes FAC 3 - Prevalence Index is ≤3.01 2. 15 UPL 4 - Morphological Adaptations (Provide supporting Fragaria vesca Yes data in Remarks or on a separate sheet) 3. Quercus rubra 10 Yes **FACU** 4. Toxicodendron radicans 5 No FAC Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 50 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Yes __ Present? No X

=Total Cover

Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL G

		o the de	-			tor or co	onfirm the absence of i	ndicators.)	
Depth	Matrix			x Featur		. 2	- .		
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 2/2								
2-6	10YR 4/2					—			
6-18	10YR 4/3								
								_	
						—			
¹Type: C=Co	oncentration D=Denk	etion RM	——————————————————————————————————————	/S-Mas	ked Sand	Grains	² l ocation: Pl =	Pore Lining, M=Matrix.	
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Hydric Soil Indicators:						r Oramo.		Problematic Hydric Soils ³ :	
Histosol (A1)			Polyvalue Below Surface (S8) (LRR R,					(A10) (LRR K, L, MLRA 149B)	
Histic Epipedon (A2)			MLRA 149B)				Coast Prai	rie Redox (A16) (LRR K, L, R)	
Black Histic (A3)			Thin Dark Surface (S9) (LRR R, MLRA 1				49B)5 cm Muck	y Peat or Peat (S3) (LRR K, L, R)	
Hydrogen Sulfide (A4)			High Chroma Sands (S11) (LRR K, L)			-		Below Surface (S8) (LRR K, L)	
Stratified Layers (A5)			Loamy Mucky Mineral (F1) (LRR K, L)			R K, L)		Surface (S9) (LRR K, L)	
Depleted Below Dark Surface (A11)			Loamy Gleyed Matrix (F2)					anese Masses (F12) (LRR K, L, R)	
Thick Dark Surface (A12) Sandy Mucky Mineral (S1)			Depleted Matrix (F3) Redox Dark Surface (F6)					Floodplain Soils (F19) (MLRA 149B) dic (TA6) (MLRA 144A, 145, 149B)	
Sandy Gleyed Matrix (S4)			Depleted Dark Surface (F7)					t Material (F21)	
Sandy Redox (S5)			Redox Depressions (F8)				Very Shallow Dark Surface (F22)		
Stripped Matrix (S6)			Marl (F10) (LRR K, L)				Other (Exp	lain in Remarks)	
Dark Sur		_							
31 11 1									
³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed):									
Type:	Layer (II observed).								
Depth (ir	nches).						Hydric Soil Present?	Yes No X	
							Tiyano don't resent.	105 100_X_	
Remarks: This data for	m is revised from No	rthcentra	and Northeast Red	ional Su	pplement	Version	2.0 to include the NRCS	Field Indicators of Hydric Soils	
This data form is revised from Northcentral and Northeast Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils version 7.0 March 2013 Errata. (http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051293.docx)									

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16								
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet H								
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:								
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %: 15								
Subregion (LRR or MLRA): LRR R Lat: 41°58'40.09"N	Long: 74°11'21.86"W Datum:								
Soil Map Unit Name: Valois very bouldery soils	NWI classification: PEM								
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)								
									
Are Vegetation, Soil, or Hydrologysignificantly disturbed?									
Are Vegetation, Soil, or Hydrologynaturally problems									
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area								
Hydric Soil Present? Yes X No	within a Wetland? Yes X No								
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland H								
Remarks: (Explain alternative procedures here or in a separate report.)									
Wetland H was located south of the railroad corridor in a drainage swale. T	his drainage feature likely feeds Wetland G.								
HYDROLOGY									
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)								
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)								
Surface Water (A1) Water-Stained Leaves (I									
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)								
X Saturation (A3) — Marl Deposits (B15)	Dry-Season Water Table (C2)								
Water Marks (B1) Hydrogen Sulfide Odor (
	Oxidized Rhizospheres on Living Roots (C3)Saturation Visible on Aerial Imagery (C9)								
	Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1)								
<u> </u>	Recent Iron Reduction in Tilled Soils (C6) X Geomorphic Position (D2)								
Iron Deposits (B5) Thin Muck Surface (C7)									
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar									
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)								
Field Observations:									
Surface Water Present? Yes No X Depth (inches):									
Water Table Present? Yes No X Depth (inches):									
Saturation Present? Yes X No Depth (inches):	:4 Wetland Hydrology Present? Yes X No								
(includes capillary fringe)									
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:								
Deventor									
Remarks: Saturation was present within 4 inches of the soil surface, and visible drain	nage natterns were noted								
Saturation was present within 4 mones of the soil surface, and visible drain	age patterns were noted.								

VEGETATION – Use scientific names of plants. Sampling Point: Wet H Absolute Dominant Indicator Tree Stratum (Plot size: 30) Status **Dominance Test worksheet:** % Cover Species? Acer rubrum **FAC Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 3 (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: 90 =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 45 x 2 = 2. FAC species 120 x 3 = 360 0 3. FACU species x 4 = 0 0 4. UPL species x 5 = 0 5. Column Totals: 165 450 Prevalence Index = B/A =2.73 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) X 2 - Dominance Test is >50% Impatiens capensis Yes **FACW** X 3 - Prevalence Index is ≤3.0¹ 2. 30 FAC 4 - Morphological Adaptations (Provide supporting Microstegium vimineum Yes data in Remarks or on a separate sheet) 10 3. Persicaria pensylvanica No **FACW** 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 75 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in

=Total Cover

Remarks: (Include photo numbers here or on a separate sheet.)
A dominance of hydric vegetation was present within the wetland.

1.

2.

No ____

Yes X

height.

Hydrophytic Vegetation

Present?

SOIL Sampling Point Wet H

Profile Desc	ription: (Describe t	o the de				ator or co	onfirm the absence of	indicators.)	
Depth	Matrix			x Featur		. 2	_		
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 3/2								
2-6	10YR 3/2	85	10YR 6/8	15	С	M	Loamy/Clayey	Prominent redox concentrations	
6-14	10YR 3/2	85	10YR 4/6	15	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
14-22	10YR 3/3	80	10YR 5/6	20	<u>C</u>	M	Loamy/Clayey	Distinct redox concentrations	
¹Type: C=Co	oncentration, D=Deple	etion RM	=Reduced Matrix M	IS=Mas	ked Sand	d Grains	² I ocation: PI	L=Pore Lining, M=Matrix.	
Hydric Soil I		011011, 1111	-reduced many, n	10-11140	nou curre	<u> </u>		or Problematic Hydric Soils ³ :	
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,		ck (A10) (LRR K, L, MLRA 149B)	
Histic Ep	pipedon (A2)		MLRA 149B)			Coast Pra	airie Redox (A16) (LRR K, L, R)	
Black His			Thin Dark Surfa					cky Peat or Peat (S3) (LRR K, L, R)	
	n Sulfide (A4)		High Chroma S			-		e Below Surface (S8) (LRR K, L)	
	Layers (A5)	(4.4.4)	Loamy Mucky			R K, L)	Thin Dark Surface (S9) (LRR K, L)		
	Below Dark Surface	(A11)	Loamy Gleyed		F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
	ark Surface (A12) lucky Mineral (S1)		Z Redox Dark Su		·e)		Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	leyed Matrix (S4)		Depleted Dark					ent Material (F21)	
	edox (S5)		Redox Depress				Very Shallow Dark Surface (F22)		
	Matrix (S6)		Marl (F10) (LR		,		Other (Explain in Remarks)		
Dark Sur	rface (S7)								
3									
	hydrophytic vegetati ayer (if observed):	on and w	etland hydrology mu	ist be pr	esent, ur	nless dist	urbed or problematic.		
Type:	Layer (II Observed).								
Depth (ir	nches):						Hydric Soil Presen	nt? Yes_X_ No	
Remarks:	<u> </u>								
		dark sur	face) was satisfied v	when the	layer be	etween 2-	6" had a value of 3 and	d chroma of 2, with prominent redox	
concentration	ns of 15%.								

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16						
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL H						
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:						
	relief (concave, convex, none): Slope %:						
Subregion (LRR or MLRA): LRR R Lat: 41°58'40.09"N	Long: 74°11'21.86"W Datum:						
Soil Map Unit Name: VaB	NWI classification:						
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydrologysignificantly distur							
Are Vegetation, Soil, or Hydrologynaturally problems							
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes 0 No X	Is the Sampled Area						
Hydric Soil Present? Yes No X	within a Wetland? Yes No_X_						
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:						
Remarks: (Explain alternative procedures here or in a separate report.)							
HYDROLOGY							
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)						
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)						
Surface Water (A1)Water-Stained Leaves (I							
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)						
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)						
Water Marks (B1) Hydrogen Sulfide Odor ((C1) Crayfish Burrows (C8)						
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)						
Drift Deposits (B3) Presence of Reduced Iro	ron (C4) Stunted or Stressed Plants (D1)						
Algal Mat or Crust (B4)Recent Iron Reduction in	in Tilled Soils (C6) Geomorphic Position (D2)						
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar							
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)						
Field Observations:							
Surface Water Present? Yes No _X Depth (inches):							
Water Table Present? Yes No X Depth (inches):							
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes No X						
(includes capillary fringe)	— I						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:						
Remarks:							

 VEGETATION – Use scientific names of plants.
 Sampling Point:

 UPL H

<u>Tree Stratum</u> (Plot size:	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	100	Yes	FAC	Dominance rest worksheet.
2.	100	103	TAO	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
				That Are OBL, FACW, or FAC:1 (A)
3.		· ——		Total Number of Dominant
4				Species Across All Strata: 3 (B)
5				Percent of Dominant Species
6		<u> </u>		That Are OBL, FACW, or FAC: 33.3% (A/B)
7		·		Prevalence Index worksheet:
	100	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size:)				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2				FAC species 115 x 3 = 345
3.				FACU species 70 x 4 = 280
4				UPL species0 x 5 =0
5.				Column Totals: 185 (A) 625 (B)
6.				Prevalence Index = B/A = 3.38
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size:)		•		2 - Dominance Test is >50%
1. Alliaria petiolata	35	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
Rosa multiflora	25	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Urtica dioica	15	No	FAC	data in Remarks or on a separate sheet)
-	10	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
	10	INU	PACU	Problematic Hydrophytic Vegetation (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7		· ——		Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9		<u> </u>		diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	85	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)	_		

SOIL Sampling Point UPL H

		to the de	=			tor or co	onfirm the absence of in	dicators.)
Depth	Matrix			x Featur		. 2		
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2	10YR 2/1	100					Loamy/Clayey	
								_
¹ Type: C=Co	oncentration, D=Depl	etion, RN	/=Reduced Matrix, N	√S=Mas	ked Sand	Grains.	² Location: PL=F	Pore Lining, M=Matrix.
Hydric Soil		,	,					Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo	w Surfa	ce (S8) (I	LRR R,		(A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B		, , ,	,		ie Redox (A16) (LRR K, L, R)
Black Hi			Thin Dark Surf	•	(LRR R	, MLRA 1		Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S					selow Surface (S8) (LRR K, L)
	Layers (A5)		Loamy Mucky			-		Surface (S9) (LRR K, L)
	d Below Dark Surface	e (A11)	Loamy Gleyed			, ,		nese Masses (F12) (LRR K, L, R)
	ark Surface (A12)	,	Depleted Matri		,			loodplain Soils (F19) (MLRA 149B)
	lucky Mineral (S1)		Redox Dark Su		- 6)			lic (TA6) (MLRA 144A, 145, 149B)
	ileyed Matrix (S4)		Depleted Dark					Material (F21)
Sandy R	edox (S5)		Redox Depres	sions (F	8)		Very Shallo	w Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Expla	ain in Remarks)
Dark Su	rface (S7)							,
³ Indicators of	f hydrophytic vegetat	ion and w	vetland hydrology mi	ust be pr	esent, ur	nless dist	urbed or problematic.	
	_ayer (if observed):							
Type:	Balla	ıst						
Depth (ir	nches):	2					Hydric Soil Present?	Yes No X
Remarks:	<u> </u>							
	m is revised from No	rthcentra	I and Northeast Red	ional Su	pplement	t Version	2.0 to include the NRCS	Field Indicators of Hydric Soils
							rcs142p2_051293.docx)	
			-					

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16						
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet I						
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:						
3,	relief (concave, convex, none): concave Slope %: 5						
Subregion (LRR or MLRA): LRR R Lat: 41°58'35.38"N	Long: 74°11'34.48"W Datum: NAD 83						
Soil Map Unit Name: Valois very bouldery soils	NWI classification: PEM						
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydrology significantly disturb	 						
Are Vegetation, Soil, or Hydrology naturally problema							
SUMMARY OF FINDINGS – Attach site map showing sam							
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area						
Hydrophytic Vegetation Present? Yes X No Hydric Soil Present? Yes X No	within a Wetland? Yes X No						
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland I						
Remarks: (Explain alternative procedures here or in a separate report.) Wetland I was located on the north side of the rail corridor in a drainage swale.							
HYDROLOGY							
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)						
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)						
Surface Water (A1) Water-Stained Leaves (E	Stained Leaves (B9) X Drainage Patterns (B10)						
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)						
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)						
Water Marks (B1) Hydrogen Sulfide Odor ((C1) Crayfish Burrows (C8)						
Sediment Deposits (B2) Oxidized Rhizospheres of							
Drift Deposits (B3) Presence of Reduced Iro	Iron (C4) Stunted or Stressed Plants (D1)						
Algal Mat or Crust (B4)Recent Iron Reduction in	in Tilled Soils (C6) X Geomorphic Position (D2)						
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark							
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)						
Field Observations:							
Surface Water Present? Yes No _X Depth (inches):							
Water Table Present? Yes No X Depth (inches):							
Saturation Present? Yes X No Depth (inches):	0 Wetland Hydrology Present? Yes X No						
(includes capillary fringe)							
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:						
Remarks: Soils were saturated at surface and visible drainage patterns were present.							

Absolute	Dominant	Indiantar	Sampling Point: Wet I
% Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
			Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
			Total Number of Dominant Species Across All Strata: 1 (B)
			Species Across All Strata: 1 (B)
			Percent of Dominant Species
_			That Are OBL, FACW, or FAC: 100.0% (A/I
_			Prevalence Index worksheet:
	=Total Cover		Total % Cover of: Multiply by:
)			OBL species 0 x 1 = 0
_			FACW species 95 x 2 = 190
			FAC species 0 x 3 = 0
_			FACU species 0 x 4 = 0
			UPL species 0 x 5 = 0
			Column Totals: 95 (A) 190 (
			Prevalence Index = B/A = 2.00
			Hydrophytic Vegetation Indicators:
	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
	-10tal 0010l		X 2 - Dominance Test is >50%
00	V	E4 0)4/	
-			X 3 - Prevalence Index is ≤3.0 ¹
-			4 - Morphological Adaptations (Provide support data in Remarks or on a separate sheet)
2	No	FACW	
			Problematic Hydrophytic Vegetation ¹ (Explain)
_			¹ Indicators of hydric soil and wetland hydrology mus
_			be present, unless disturbed or problematic.
			Definitions of Vegetation Strata:
			Tree – Woody plants 3 in. (7.6 cm) or more in
_			diameter at breast height (DBH), regardless of heigh
			On the state of the Control of the C
			Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
05	-Total Cover		Herb – All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall.
	= Total Cover		of size, and woody plants less than 3.20 it tall.
			Woody vines – All woody vines greater than 3.28 ft
			height.
_			Hydrophytic
			Vegetation
			Present? Yes X No
_			Tresent: Tes X No
	90 3 2	=Total Cover =Total Cover =Total Cover 90	=Total Cover =Total Cover =Total Cover 90

SOIL Sampling Point Wet I

Profile Desc Depth	cription: (Describe) Matrix	to the de		ument t l x Featur		ator or co	onfirm the absence o	f indicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 2/1	100					Loamy/Clayey	25% organic matter	
2-6	10YR 3/2	83	10YR 5/8	15	С	М	Loamy/Clayey	Prominent redox concentrations	
			5Y 7/8	2	<u>C</u>	M		Prominent redox concentrations	
6-12	10YR 3/2	60	10YR 5/6	20	С	M	Loamy/Clayey	Prominent redox concentrations	
			5Y 7/6	10	<u>C</u>	M		Prominent redox concentrations	
12-22	10YR 6/4	60	10YR 5/6	20	С	M	Loamy/Clayey	Distinct redox concentrations	
			5Y 7/6	10	С	М		Prominent redox concentrations	
			_						
	oncentration, D=Depl	letion, RM	=Reduced Matrix, N	/IS=Mas	ked Sand	d Grains.		PL=Pore Lining, M=Matrix.	
Hydric Soil Histosol			Polyvalue Belo	w Surfa	ca (S8) (I RR R		or Problematic Hydric Soils ³ : uck (A10) (LRR K, L, MLRA 149B)	
	pipedon (A2)		MLRA 149B		ce (30) (LIXIX IX,		rairie Redox (A16) (LRR K, L, R)	
Black Hi			Thin Dark Surface (S9) (LRR R, MLRA 14					ucky Peat or Peat (S3) (LRR K, L, R)	
	n Sulfide (A4)		High Chroma S					ue Below Surface (S8) (LRR K, L)	
Stratified	l Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin Da	rk Surface (S9) (LRR K, L)	
Depleted	d Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
Thick Da	ark Surface (A12)		Depleted Matri	x (F3)			Piedmoi	nt Floodplain Soils (F19) (MLRA 149B)	
	lucky Mineral (S1)		X Redox Dark Su				Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	lleyed Matrix (S4)		Depleted Dark				Red Parent Material (F21)		
	edox (S5)		Redox Depress		8)		Very Shallow Dark Surface (F22)		
	Matrix (S6) rface (S7)		Marl (F10) (LR	R K, L)			Other (Explain in Remarks)		
Dark Su	nace (S7)								
³ Indicators of	f hydrophytic vegetat	tion and w	etland hydrology mu	ust be pi	esent, ui	nless dist	urbed or problematic.		
	Layer (if observed):								
Type:									
Depth (ir	nches):						Hydric Soil Prese	nt? Yes X No	
Remarks:	. == (- W	
The soil indic	cator F6 (redox dark	surface) w	as met between 2-6	o", which	n exhibite	d a matri	x of 3 and chroma of 2	2 with 17% redox concentrations.	

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL I					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
	relief (concave, convex, none): concave Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 41°58'35.38"N	Long: 74°11'34.48"W Datum: NAD 83					
Soil Map Unit Name: VaB	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur						
Are Vegetation, Soil, or Hydrology naturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)	<u> </u>					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I						
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) — Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):	: <u> </u>					
Water Table Present? Yes No X Depth (inches):	: <u></u> -					
Saturation Present? Yes No X Depth (inches):	: Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						

VEGETATION – Use scientific names of plants. Sampling Point: UPL I Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) Status **Dominance Test worksheet:** % Cover Species? Carya ovata **FACU Number of Dominant Species** FAC That Are OBL, FACW, or FAC: 2. Acer rubrum 0 (A) 3. **Total Number of Dominant** (B) 4. Species Across All Strata: 2 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: Multiply by: 20 =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 2 x 2 = 0 FAC species x 3 = 0 3. FACU species 80 x 4 = 320 4. UPL species 0 x 5 = 5. Column Totals: 82 Prevalence Index = B/A =3.95 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) 2 - Dominance Test is >50% Poaceae spp. 50 Yes **FACU** 3 - Prevalence Index is ≤3.01 10 2. No **FACU** 4 - Morphological Adaptations (Provide supporting Rosa multiflora data in Remarks or on a separate sheet) 3. Persicaria pensylvanica 2 No **FACW** 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 62 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: __ 15 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL I

		the dep				tor or co	onfirm the absence of ind	licators.)
Depth (inches)	Matrix Color (moist)	%	Color (moist)	x Featur %	es Type ¹	Loc ²	Texture	Remarks
(IIICHES)	Color (moist)		Coloi (moist)	/0	Туре	LUC		Remarks
0-2							Loamy/Clayey	
			_					
			_					
			_					
							· · · · · · · · · · · · · · · · · · ·	
¹ Type: C=Co	ncentration, D=Deple	tion. RM:	=Reduced Matrix. N	/S=Mas	ked Sand	Grains.	² I ocation: PI =P	ore Lining, M=Matrix.
Hydric Soil I			. roduoodax,			<u> </u>		roblematic Hydric Soils ³ :
Histosol			Polyvalue Belo	w Surfa	ce (S8) (I	RR R,		A10) (LRR K, L, MLRA 149B)
	ipedon (A2)	-	MLRA 149B		, , ,	•		e Redox (A16) (LRR K, L, R)
Black His	stic (A3)		Thin Dark Surf	ace (S9)	(LRR R,	MLRA 1	49B) 5 cm Mucky	Peat or Peat (S3) (LRR K, L, R)
Hydroger	n Sulfide (A4)		High Chroma S	Sands (S	311) (LRF	R K, L)	Polyvalue Be	elow Surface (S8) (LRR K, L)
Stratified	Layers (A5)		Loamy Mucky	Mineral	(F1) (LRF	R K, L)	Thin Dark Su	urface (S9) (LRR K, L)
Depleted	Below Dark Surface	(A11)	Loamy Gleyed	Matrix (F2)		Iron-Mangan	ese Masses (F12) (LRR K, L, R)
Thick Da	rk Surface (A12)	-	Depleted Matri	x (F3)			Piedmont Flo	oodplain Soils (F19) (MLRA 149B)
	ucky Mineral (S1)	-	Redox Dark Su					c (TA6) (MLRA 144A, 145, 149B)
	leyed Matrix (S4)	-	Depleted Dark					Material (F21)
	edox (S5)	-	Redox Depress		3)			Dark Surface (F22)
	Matrix (S6)	-	Marl (F10) (LR	R K, L)			Other (Expla	in in Remarks)
Dark Sur	face (S7)							
3Indicators of	hydrophytic vogototic	n and w	stland hydrology my	iot ha nr	occut ur	Joog diet	urbad or problematic	
	ayer (if observed):	ni anu we	tiana nyarology mi	ist be pi	esent, ui	iless dist	urbed or problematic.	
Type:	ayer (ii observeu).							
- · · -	ah a a \.						Undria Cail Draggart	Van Na V
Depth (in	cnes):						Hydric Soil Present?	Yes No _X_
Remarks:			111 (1 (5)				001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							rcs142p2_051293.docx)	ield Indicators of Hydric Soils
VC151011 7.0 1V	aron 2010 Enata. (In	ιρ.// !! !!	moo.uouu.gov/mici	11001 02		/ILIVIO/II	100142p2_001200.d00x)	

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet J					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %: 10					
Subregion (LRR or MLRA): LRR R Lat: 41°58'20.23"N	Long: 74°12'15.83"W Datum: NAD 83					
Soil Map Unit Name: Red hook gravelly silt loam	NWI classification: PSS/PFO					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur	` ` <u></u> ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `					
						
Are Vegetation, Soil, or Hydrologynaturally problems SUMMARY OF FINDINGS – Attach site map showing sam						
	T					
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland J					
Remarks: (Explain alternative procedures here or in a separate report.) Wetland J was located in a drainage swale north of the corridor, just east o	of watlands Land K					
Welland 3 was located in a drainage swale flortif of the confdor, just east of	ii Welianus L anu K.					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I						
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (· · · · · · · · · · · · · · · · · · ·					
Sediment Deposits (B2) Oxidized Rhizospheres of Particular (B2)						
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes X No Depth (inches):						
Saturation Present? Yes X No Depth (inches):	<u>2</u> Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						
The water table was present at 3 inches, with saturation at 2.						

VEGETATION – Use scientific names of plants. Sampling Point: Wet J Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: 30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 3 (A) 3. Total Number of Dominant 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = Cornus alba 25 **FACW FACW** species 25 x 2 = 2 2. FAC species x 3 = 6 0 3. FACU species x 4 =x 5 = 4. UPL species 0 5. Column Totals: 92 (A) 121 Prevalence Index = B/A = 1.32 6. **Hydrophytic Vegetation Indicators:** 7. 25 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: 5) X 2 - Dominance Test is >50% 1. Glyceria canadensis 30 Yes OBL X 3 - Prevalence Index is ≤3.0¹ 2. 15 OBL 4 - Morphological Adaptations (Provide supporting Carex Iurida Yes data in Remarks or on a separate sheet) 3. Sparganium americanum 10 No OBL 4. Typha angustifolia 10 No OBL Problematic Hydrophytic Vegetation¹ (Explain) 5. Toxicodendron radicans No FAC ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 67 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No____ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Dominant wetland vegetation was present.

SOIL Sampling Point Wet J

Profile Desc Depth	ription: (Describe t Matrix	to the de	=	ıment tl < Featur		ator or co	onfirm the absence of i	ndicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 2/1	98	5YR 4/6	2	С	М	Loamy/Clayey	Prominent redox concentrations	
2-12	10YR 2/1	80	5YR 4/6	20	С	M	Loamy/Clayey	Prominent redox concentrations	
12-23	10YR 3/2	85	5YR 4/6	15	С	М	Loamy/Clayey	Prominent redox concentrations	
	oncentration, D=Depl	etion, RN	1=Reduced Matrix, M	IS=Mas	ked Sand	d Grains.		=Pore Lining, M=Matrix.	
Hydric Soil I Histosol			Polyvalue Belov	w Surfa	ce (S8) (I RR R		Problematic Hydric Soils ³ :	
	pipedon (A2)		MLRA 149B)		ce (50) (LIXIX IX,	2 cm Muck (A10) (LRR K, L, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R)		
Black Hi			Thin Dark Surfa) (LRR R	, MLRA 1		ky Peat or Peat (S3) (LRR K, L, R)	
Hydroge	n Sulfide (A4)		High Chroma Sands (S11) (LRR K, L)					Below Surface (S8) (LRR K, L)	
Stratified	Layers (A5)		Loamy Mucky N	Mineral	(F1) (LR	R K, L)	Thin Dark	Surface (S9) (LRR K, L)	
	Below Dark Surface	(A11)	Loamy Gleyed		F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
	ark Surface (A12)		Depleted Matrix		,		Piedmont Floodplain Soils (F19) (MLRA 149B)		
	lucky Mineral (S1)		X Redox Dark Su				Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	leyed Matrix (S4) edox (S5)		Depleted Dark Redox Depress				Red Parent Material (F21) Very Shallow Dark Surface (F22)		
	Matrix (S6)		Marl (F10) (LRI		0)		Other (Explain in Remarks)		
	rface (S7)			, =/				Jan III (Cinano)	
31			rational bridge is a constant			-11:-4			
	_ayer (if observed):	on and w	retiand nydrology mu	ist be pr	resent, u	niess dist	urbed or problematic.		
Type:	.,								
Depth (ir	nches):						Hydric Soil Present	? Yes X No	
Remarks:					<i>"</i>		1333 1 1 60		
	oils indicator F6 (redons 20 percent in the 2			ithin the	e first 12'	', the soils	s exhibited a value of 2 a	and chroma of 1, with redox	
	p	, -							

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL J					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
	relief (concave, convex, none): Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 41°58'20.23"N	Long: 74°12'15.83"W Datum: NAD 83					
Soil Map Unit Name: Re	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur	<u> </u>					
Are Vegetation, Soil, or Hydrology naturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No X					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I						
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3)Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of the control of th						
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
? Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No _X Depth (inches):						
Water Table Present? Yes No X Depth (inches):						
Saturation Present? Yes No X Depth (inches):	: Wetland Hydrology Present? Yes No _X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						
Remarks.						

UPL J **VEGETATION** – Use scientific names of plants. Sampling Point: Absolute Dominant Indicator Tree Stratum (Plot size: ____ 30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 0 (A) 3. **Total Number of Dominant** (B) 4. Species Across All Strata: 3 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: 7. Multiply by: Total % Cover of: =Total Cover Sapling/Shrub Stratum (Plot size: OBL species x 1 = Quercus rubra **FACU FACW** species 2 x 2 = 0 2. Lonicera tatarica 15 Yes **FACU** FAC species x 3 =0 3. FACU species 50 x 4 = 200 4. UPL species 0 x 5 = 5. Column Totals: 52 204 Prevalence Index = B/A =3.92 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 2 - Dominance Test is >50% Dryopteris carthusiana **FACW** 3 - Prevalence Index is ≤3.01 2. 4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 2 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 10 1. Vitis aestivalis **FACU** height. 2. Hydrophytic 3. Vegetation Yes __ Present? No X 10 =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL J

Profile Description: (Describe to the d	-			tor or co	onfirm the absence of inc	dicators.)
Depth Matrix		K Featur		12	Taratama	Describe
(inches) Color (moist) %	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2 10YR 3/2					Loamy/Clayey	_
2-20 10YR 4/2						
	·					
	·					
¹ Type: C=Concentration, D=Depletion, R	M=Reduced Matrix. M	IS=Masl	ked Sand	Grains.	² Location: PL=P	ore Lining, M=Matrix.
Hydric Soil Indicators:	,	-				roblematic Hydric Soils ³ :
Histosol (A1)	Polyvalue Belo	w Surfac	ce (S8) (I	RR R,		A10) (LRR K, L, MLRA 149B)
Histic Epipedon (A2)	MLRA 149B))			Coast Prairie	e Redox (A16) (LRR K, L, R)
Black Histic (A3)	Thin Dark Surfa	ace (S9)	(LRR R,	MLRA 1	49B) 5 cm Mucky	Peat or Peat (S3) (LRR K, L, R)
Hydrogen Sulfide (A4)	High Chroma S			-	Polyvalue Be	elow Surface (S8) (LRR K, L)
Stratified Layers (A5)	Loamy Mucky I			R K, L)		urface (S9) (LRR K, L)
Depleted Below Dark Surface (A11)	Loamy Gleyed		F2)			nese Masses (F12) (LRR K, L, R)
Thick Dark Surface (A12)	Depleted Matrix		.0)			oodplain Soils (F19) (MLRA 149B)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4)	Redox Dark Su Depleted Dark					c (TA6) (MLRA 144A, 145, 149B) Material (F21)
Sandy Redox (S5)	Redox Depress					v Dark Surface (F22)
Stripped Matrix (S6)	Marl (F10) (LR	•	<i>3</i> ,			in in Remarks)
Dark Surface (S7)		, ,				,
						
³ Indicators of hydrophytic vegetation and	wetland hydrology mu	ıst be pr	esent, un	less dist	urbed or problematic.	
Restrictive Layer (if observed):						
Туре:						
Depth (inches):					Hydric Soil Present?	Yes No _X
Remarks:						
This data form is revised from Northcentr						Field Indicators of Hydric Soils
version 7.0 March 2013 Errata. (http://ww	w.nrcs.usda.gov/Inter	net/FSE	:_DOCUN	/IENTS/n	rcs142p2_051293.docx)	

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet K					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Flat plain Local r	relief (concave, convex, none): concave Slope %: 0					
Subregion (LRR or MLRA): LRR R Lat: 41°58'17.03"N	Long: 74°12'24.42"W Datum: NAD 83					
Soil Map Unit Name: Atherton silt loam	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly disturb						
Are Vegetation, Soil, or Hydrologynaturally problemate						
SUMMARY OF FINDINGS – Attach site map showing samp						
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland K					
Remarks: (Explain alternative procedures here or in a separate report.) This wetland is located on the across the entire width of the project corridor and is open to the west, north, and south. It is mapped as NYSDEC wetland AS-20. The wetland K line represents the eastern boundary of AS-20 and wetland L represents the western boundary, with one upland island between.						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (B	Drainage Patterns (B10)					
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (C	C1) Crayfish Burrows (C8)					
Sediment Deposits (B2) Oxidized Rhizospheres o						
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark						
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes X No Depth (inches): Saturation Present? Yes X No Depth (inches):						
Water Table Present? Yes X No Depth (inches):						
	0 Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, prev	vious inspections), if available:					
Remarks: Areas of the wetland were ponded with up to 3" of water. The soils were sat	turated at surface and the water table was evident at 1".					

VEGETATION – Use scientific names of plants. Sampling Point: Wet K Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = 180 **FACW** species 90 x 2 = 2 2. FAC species x 3 = 6 0 3. FACU species x 4 =4. UPL species 0 x 5 = 0 5. Column Totals: 94 188 Prevalence Index = B/A = 2.00 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) X 2 - Dominance Test is >50% Phragmites australis Yes **FACW** X 3 - Prevalence Index is ≤3.0¹ 10 2. No **FACW** 4 - Morphological Adaptations (Provide supporting Onoclea sensibilis data in Remarks or on a separate sheet) 2 3. Carex lurida No OBL 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 92 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. Vitis riparia FAC height. 2. Hydrophytic 3. Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) The invasive phragmites dominated this wetland.

SOIL Sampling Point Wet K

Profile Desc Depth	ription: (Describe t Matrix	o the de		i ment th Feature		ator or c	onfirm the absence of	f indicators.)
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2	7.5YR 2.5/2	90	7.5YR 4/6	10	С	М	Mucky Loam/Clay	Prominent redox concentrations
2-8	10YR 3/2	80	10YR 4/6	20	С	M	Mucky Loam/Clay	Prominent redox concentrations
8-16	10YR 3/2	60	7.5YR 6/8	40	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations
16-22	10YR 4/2	60	7.5YR 6/8	40	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations
		_						
¹ Type: C=Co	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	IS=Masl	ked Sand	d Grains	² Location: Pl	L=Pore Lining, M=Matrix.
Black His Hydroge Stratified Depleted Thick Da Sandy M Sandy G Sandy R Stripped Dark Sur	(A1) sipedon (A2) stic (A3) n Sulfide (A4) I Layers (A5) I Below Dark Surface ark Surface (A12) lucky Mineral (S1) leyed Matrix (S4) edox (S5) Matrix (S6) face (S7)		Polyvalue Belor MLRA 149B) Thin Dark Surfa High Chroma S Loamy Mucky N Loamy Gleyed Depleted Matrix X Redox Dark Su Depleted Dark Redox Depress Marl (F10) (LRI	ace (S9) ands (S dineral (Matrix (I (F3) rface (F Surface sions (F8 R K, L)	(LRR R 611) (LRI (F1) (LRI F2) 6) (F7)	, MLRA R K, L) R K, L)	2 cm Mu Coast Pr 149B) 5 cm Mu Polyvalue Thin Dari Iron-Man Piedmon Mesic Sp Red Pare Very Sha	or Problematic Hydric Soils ³ : ck (A10) (LRR K, L, MLRA 149B) airie Redox (A16) (LRR K, L, R) cky Peat or Peat (S3) (LRR K, L, R) e Below Surface (S8) (LRR K, L) k Surface (S9) (LRR K, L) ganese Masses (F12) (LRR K, L, R) et Floodplain Soils (F19) (MLRA 149B) bodic (TA6) (MLRA 144A, 145, 149B) ent Material (F21) allow Dark Surface (F22) explain in Remarks)
Type:							Hydric Soil Presen	nt? Yes X No
Remarks:	oil indicator F6 (redox	dark sur	face) was met within	the firs	t 8" of so	il with va	1	nroma of 2 and redox concentrations

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL K					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
	relief (concave, convex, none): Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 41°58'17.03"N	Long: 74°12'24.42"W Datum: NAD 83					
Soil Map Unit Name: At, Re, CgA	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrologysignificantly distur						
Are Vegetation, Soil, or Hydrologynaturally problems						
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area					
Hydric Soil Present? Yes No X	within a Wetland? Yes No_X_					
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)	, . , . ,					
Tremarks. (Explain alternative procedures here of in a separate report.)						
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I	B9) Drainage Patterns (B10)					
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor ((C1) Crayfish Burrows (C8)					
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction in						
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No Depth (inches):						
Water Table Present? Yes No Depth (inches):						
Saturation Present? Yes No Depth (inches):	Wetland Hydrology Present? Yes No X					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						

 VEGETATION – Use scientific names of plants.
 Sampling Point:
 UPL K

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Pinus strobus	100	Yes	FACU	
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
4				Total Number of Dominant Species Across All Strata: 3 (B)
6				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
	100	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)		•		OBL species 0 x 1 = 0
1.				FACW species 0 x 2 = 0
2.				FAC species 4 x 3 = 12
3.				FACU species 100 x 4 = 400
4.				UPL species 37 x 5 = 185
5.				Column Totals: 141 (A) 597 (B)
6.				Prevalence Index = B/A = 4.23
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)		-		2 - Dominance Test is >50%
1. Malva neglecta	25	Yes	UPL	3 - Prevalence Index is ≤3.0 ¹
2. Fragaria vesca	10	Yes	UPL	4 - Morphological Adaptations (Provide supporting
3. Toxicodendron radicans	2	No	FAC	data in Remarks or on a separate sheet)
Verbascum thapsus	2	No	UPL	Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				_
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	39	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30)		•		
1. Vitis riparia	2	No	FAC	Woody vines – All woody vines greater than 3.28 ft in height.
2.				
3.				Hydrophytic
4.				Vegetation Present? Yes No X
	2	=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)			
	,			

SOIL Sampling Point UPL K

Profile Des	cription: (Describe t	o the de	oth needed to docu	ıment th	ne indica	tor or co	onfirm the absence of indi	cators.)
Depth	oth Matrix Redox Features							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	7.5YR 4/2	100					Loamy/Clayey	
2-7	7.5YR 4/3	100					Loamy/Clayey	
7-20	7.5YR 3/4							
			_					
								_
			_					
								_
-								
¹ Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	1S=Masl	ked Sand	l Grains.	² Location: PL=Po	re Lining, M=Matrix.
Hydric Soil	Indicators:						Indicators for Pro	oblematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	w Surfac	ce (S8) (I	_RR R,	2 cm Muck (A	10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	,				Redox (A16) (LRR K, L, R)
	istic (A3)		Thin Dark Surf					Peat or Peat (S3) (LRR K, L, R)
	en Sulfide (A4)		High Chroma S			-		ow Surface (S8) (LRR K, L)
	d Layers (A5)	(044)	Loamy Mucky			R K, L)		face (S9) (LRR K, L)
	d Below Dark Surface ark Surface (A12)	(A11)	Loamy Gleyed Depleted Matri		F2)			se Masses (F12) (LRR K, L, R) odplain Soils (F19) (MLRA 149B)
	Mucky Mineral (S1)		Redox Dark Su		6)			(TA6) (MLRA 144A, 145, 149B)
	Gleyed Matrix (S4)		Depleted Dark	`	,		Red Parent M	
	Redox (S5)		Redox Depress					Dark Surface (F22)
	Matrix (S6)		 Marl (F10) (LR		,		Other (Explain	
Dark Su	rface (S7)							
	f hydrophytic vegetati	ion and w	etland hydrology mu	ıst be pr	esent, un	less dist	urbed or problematic.	
	Layer (if observed):							
Type:								
Depth (i	nches):						Hydric Soil Present?	Yes No _X_
Remarks:								
			•					eld Indicators of Hydric Soils
version 7.0 i	viarch 2013 Efrata. (n	ttp://www	.nrcs.usaa.gov/inter	net/FSE	_DOCOK	/IEIN I S/II	rcs142p2_051293.docx)	

City/County: Olive/Ulster Sampling Date: 6/29/16						
State: NY Sampling Point: Wet L						
Section, Township, Range:						
relief (concave, convex, none): concave Slope %: 0						
Long: 74°12'24.47"W Datum: NAD 83						
NWI classification: PEM						
Yes X No (If no, explain in Remarks.)						
rbed? Are "Normal Circumstances" present? Yes X No						
atic? (If needed, explain any answers in Remarks.)						
npling point locations, transects, important features, etc.						
Is the Sampled Area						
within a Wetland? Yes X No						
If yes, optional Wetland Site ID: Wetland L						
This wetland is located on the across the entire width of the project corridor and is open to the east, north, and south. It is mapped as NYSDEC wetland AS-20. The wetland L line represents the western boundary of AS-20 and wetland L represents the western boundary, with one upland island between.						
Secondary Indicators (minimum of two required)						
Surface Soil Cracks (B6)						
(B9) Drainage Patterns (B10)						
Moss Trim Lines (B16)						
Dry-Season Water Table (C2)						
(C1) Crayfish Burrows (C8)						
on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)						
on (C4) Stunted or Stressed Plants (D1)						
n Tilled Soils (C6) Geomorphic Position (D2)						
Shallow Aquitard (D3)						
rks) Microtopographic Relief (D4)						
X FAC-Neutral Test (D5)						
: <u></u>						
: <u> </u>						
: 0 Wetland Hydrology Present? Yes X No						
evious inspections), if available:						
aturated at surface and the water table was evident at 1".						

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test v	vorksheet:		
		Орссісз	Otatus	Dominance rest v	voi käileet.		
·				Number of Domina That Are OBL, FAC		3	(A)
					•		_ (* ')
·				Total Number of Do Species Across All		3	(B)
i				Daniel of Daniel			<u> ` </u>
				Percent of Dominal That Are OBL, FAC		100.0%	(A/B
:				Prevalence Index	worksheet:		
		=Total Cover		Total % Cove	r of:	Multiply by	<u> </u>
apling/Shrub Stratum (Plot size: 15)				OBL species	0 x	1 = 0	
. Alnus incana	50	Yes	FACW	FACW species	57 x 2	2 = 114	
				FAC species	0 x	3 = 0	
				FACU species	0 x	4 = 0	
				UPL species	0 x	5 = 0	
•				Column Totals:	57 (A	114	(B
•				Prevalence	Index = B/A =	2.00	
				Hydrophytic Vege	tation Indicate	ors:	
	50	=Total Cover		1 - Rapid Test	for Hydrophytic	c Vegetation	
lerb Stratum (Plot size:5)				X 2 - Dominance	Test is >50%		
. Cornus alba	5	Yes	FACW	X 3 - Prevalence	Index is ≤3.0 ¹		
. Phragmites australis	2	Yes	FACW	4 - Morphologic	cal Adaptations	s ¹ (Provide sı	upportir
				data in Rem	arks or on a se	eparate shee	t)
				Problematic Hy	drophytic Veg	etation ¹ (Exp	lain)
				¹ Indicators of hydric	soil and wetla	and hydrolog	/ must
i				be present, unless			y mast
· ·				Definitions of Veg	etation Strata	1:	
i				Tree – Woody plan	its 3 in. (7.6 cm	n) or more in	
				diameter at breast			height
0				Sapling/shrub – V	Voody plants le	ess than 3 in.	DBH
1				and greater than or			
2				Herb – All herbace	ous (non-wood	dy) plants, red	ardles
	7	=Total Cover		of size, and woody			
Voody Vine Stratum (Plot size:)				Woody vines – All	woody vines of	reater than 3	3.28 ft i
·				height.			
3				Hydrophytic Vegetation			
l.					es X	No	
		=Total Cover					

SOIL Sampling Point Wet L

Profile Desc Depth	ription: (Describe t Matrix	to the de	=	iment th k Feature		ator or c	confirm the absence of	f indicators.)	
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks	
0-3	7.5YR 2.5/2	85	10YR 5/6	15	С	М	Mucky Loam/Clay	Prominent redox concentrations	
3-8	10YR 3/2	85	10YR 4/6	15	С	М	Mucky Loam/Clay	Prominent redox concentrations	
8-18	10YR 3/2	60	7.5YR 6/8	60	С	M	Mucky Loam/Clay	Prominent redox concentrations	
18-24	10YR 4/2	40	10YR 4/6	20	С	М	Mucky Loam/Clay	Prominent redox concentrations	
			7.5YR 6/8	20	<u>C</u>	М		Prominent redox concentrations	
								_	
								_	
		etion, RM	M=Reduced Matrix, M	S=Masl	ked Sand	d Grains		L=Pore Lining, M=Matrix.	
Hydric Soil I Histosol			Polyvalue Belov	w Surfa	ce (S8) (I RR R		or Problematic Hydric Soils ³ : ck (A10) (LRR K, L, MLRA 149B)	
	ipedon (A2)		MLRA 149B)		00 (00) (airie Redox (A16) (LRR K, L, R)	
Black His			Thin Dark Surfa	ace (S9)	(LRR R	, MLRA		cky Peat or Peat (S3) (LRR K, L, R)	
Hydroger	n Sulfide (A4)		High Chroma S	ands (S	311) (LRI	R K, L)	Polyvalu	e Below Surface (S8) (LRR K, L)	
	Layers (A5)		Loamy Mucky N			R K, L)		k Surface (S9) (LRR K, L)	
	Below Dark Surface	e (A11)	Loamy Gleyed		F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
	rk Surface (A12) ucky Mineral (S1)		X Redox Dark Su		:6)		Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A 145 149B)		
	leyed Matrix (S4)		Depleted Dark				Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Red Parent Material (F21)		
	edox (S5)		Redox Depress				Very Shallow Dark Surface (F22)		
Stripped	Matrix (S6)		Marl (F10) (LRI	R K, L)			Other (E	xplain in Remarks)	
Dark Sur	face (S7)								
³ Indicators of	hydrophytic vegetati	on and w	vetland hydrology mu	ıst be or	esent. ur	nless dis	sturbed or problematic.		
	ayer (if observed):	011 4114 11	ollaria Hydrology Illa	ос во ра	000111, 41	11000 010	Transparent problematics		
Type:									
Depth (in	iches):						Hydric Soil Preser	nt? Yes X No	
Remarks:									
The hydric so 15%.	oil indicator F6 (redox	dark sur	face) was met within	the firs	t 8" of sc	oil with va	alues of 3 or less and ch	nroma of 2 and redox concentrations at	
1576.									

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet M
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:
Landform (hillside, terrace, etc.): Toe of slope Local i	relief (concave, convex, none): concave Slope %: 2
Subregion (LRR or MLRA): LRR R Lat: 41°58'10.89"N	Long: 74°12'40.99"W Datum: NAD 83
Soil Map Unit Name: Valois very bouldery soils	NWI classification: PEM
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturb	
	<u></u>
Are Vegetation, Soil, or Hydrologynaturally problema	
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland M
Remarks: (Explain alternative procedures here or in a separate report.)	
Wetland M was a drainage ditch feature north of the railway with no visible	connections to other waters of the U.S., parallel to wetland N to the south.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (E	Drainage Patterns (B10)
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iro	on (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in	Tilled Soils (C6) X Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	-
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes X No Depth (inches):	
Saturation Present? Yes X No Depth (inches):	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	
Surface water was noted at a depth of 2 inches in locations. High water table	le was present at 1" and saturation at soil surface.

VEGETATION – Use scientific names of plants. Sampling Point: Wet M Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 2 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = 25 2. FAC species x 3 = 75 0 3. FACU species x 4 =0 0 4. UPL species x 5 = 5. Column Totals: 50 (A) 100 Prevalence Index = B/A = 2.00 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: X 2 - Dominance Test is >50% Microstegium vimineum Yes FAC X 3 - Prevalence Index is ≤3.0¹ Yes 2. Glyceria canadensis OBL 4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 50 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Sparse vegetation was hydrophytic in nature.

SOIL Sampling Point Wet M

	-	to the de	-			ator or c	onfirm the absence o	f indicators.)
Depth	Matrix			Featur		. 2	- .	5 .
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2	10YR 2/1	100	·				Mucky Loam/Clay	Org 35%
2-10	10YR 2/1	85	10YR 5/6	<u>15</u>	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations
		_		<u> </u>		_		
		_		<u> </u>	<u> </u>			
-								
1 _{Typo:} C-C	oncentration, D=Depl	otion PN			Lod Con	Croine	² l postion: D	L=Pore Lining, M=Matrix.
Hydric Soil		elion, Kiv	i=Reduced Matrix, iv	io=iviasi	keu Sanc	d Grains.		or Problematic Hydric Soils ³ :
Histosol Histic E Black H Hydroge Stratifie Deplete Thick D Sandy N Sandy F Stripped Dark Su			Polyvalue Belo MLRA 149B; Thin Dark Surfa High Chroma S Loamy Mucky I Loamy Gleyed Depleted Matri: X Redox Dark Su Depleted Dark Redox Depress Marl (F10) (LRI	ace (S9) sands (S dineral of Matrix (c (F3) rface (F Surface sions (F6 R K, L)	(LRR R 611) (LRI (F1) (LRI F2) 66) (F7)	, MLRA R K, L) R K, L)	2 cm Mu Coast Pr 5 cm Mu Polyvalu Thin Dar Iron-Mar Piedmor Mesic Sp Red Par Very Sha Other (E	rairie Redox (A16) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R) rairie Redox (A16) (LRR K, L, R) re Below Surface (S8) (LRR K, L) rk Surface (S9) (LRR K, L) rganese Masses (F12) (LRR K, L, R) rt Floodplain Soils (F19) (MLRA 149B) redoic (TA6) (MLRA 144A, 145, 149B) rent Material (F21) railiow Dark Surface (F22) rxplain in Remarks)
	Layer (if observed):		, 5,		,		İ	
Type:	Balla	st						
Depth (i	nches):	10					Hydric Soil Preser	nt? Yes X No
	et the indicator F6 (rec							noted, with redox concentrations at

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet M					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
	relief (concave, convex, none): Slope %:					
Subregion (LRR or MLRA): LRR R Lat: 41°58'10.89"N	Long: 74°12'40.99"W Datum: NAD 83					
Soil Map Unit Name: VaB	NWI classification:					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly distur						
Are Vegetation, Soil, or Hydrologynaturally problems SUMMARY OF FINDINGS – Attach site map showing sam						
	T					
Hydrophytic Vegetation Present? Hydric Soil Present? Yes No X No X	Is the Sampled Area within a Wetland? Yes No X					
Hydric Soil Present? Yes No X Wetland Hydrology Present? Yes No X	within a Wetland? Yes No _X If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)	ii yes, optional wetiand Site ib.					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (I	B9) Drainage Patterns (B10)					
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3) — Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (· · · · · · · · · · · · · · · · · · ·					
Sediment Deposits (B2) Oxidized Rhizospheres of						
Drift Deposits (B3) Presence of Reduced Iro						
Algal Mat or Crust (B4) Recent Iron Reduction ir						
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar						
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes No X Depth (inches):						
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes No _X_					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:					
Remarks:						

VEGETATION – Use scientific names of plants. Sampling Point: Wet M Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover Status **Dominance Test worksheet:** Species? 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 0 (A) 3. Total Number of Dominant (B) 4. Species Across All Strata: 2 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: Multiply by: =Total Cover Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = 0 2. FAC species x 3 = 0 25 3. FACU species x 4 = 100 4. UPL species 15 x 5 = 5. Column Totals: 40 175 Prevalence Index = B/A =4.38 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: 5 2 - Dominance Test is >50% Poaceae Yes **FACU** 3 - Prevalence Index is ≤3.01 15 Yes 2. UPL 4 - Morphological Adaptations¹ (Provide supporting Verbascum thapsus data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 40 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point Wet M

		to the de	=			tor or co	onfirm the absence of in	ndicators.)
Depth	Matrix			x Featur		. 2	- .	
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-2	10YR 2/1	100					Loamy/Clayey	
					·			
								_
					· <u> </u>			
								_
					·			
								_
1							2	
	oncentration, D=Depl	etion, RN	√ I=Reduced Matrix, N	∕IS=Mas	ked Sand	l Grains.		Pore Lining, M=Matrix.
Hydric Soil								Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo		ce (S8) (I	_RR R,		(A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	•				ie Redox (A16) (LRR K, L, R)
Black Hi			Thin Dark Surf				49B)5 cm Mucky	y Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S			-	Polyvalue E	Below Surface (S8) (LRR K, L)
	l Layers (A5)		Loamy Mucky	Mineral	(F1) (LRF	R K, L)		Surface (S9) (LRR K, L)
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Manga	inese Masses (F12) (LRR K, L, R)
Thick Da	ark Surface (A12)		Depleted Matri	ix (F3)			Piedmont F	Floodplain Soils (F19) (MLRA 149B)
Sandy M	lucky Mineral (S1)		Redox Dark Su	urface (F	6)		Mesic Spoo	dic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Parent	: Material (F21)
Sandy R	edox (S5)		Redox Depres	sions (F	B)		Very Shallo	w Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Expl	ain in Remarks)
Dark Su	rface (S7)							
³ Indicators of	f hydrophytic vegetati	ion and v	etland hydrology mi	ust be pr	esent, ur	less dist	urbed or problematic.	
Restrictive I	_ayer (if observed):							
Type:	Balla	ıst						
Depth (ir	nches):	2					Hydric Soil Present?	Yes No X
Remarks:								
	m is revised from No	rthcentra	I and Northeast Reg	ional Su	pplement	Version	2.0 to include the NRCS	Field Indicators of Hydric Soils
							rcs142p2_051293.docx)	,

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 6/29/16					
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet N					
Investigator(s): Johanna Duffy, Corinne Steinmuller	Section, Township, Range:					
Landform (hillside, terrace, etc.): Toe of slope Local i	relief (concave, convex, none): concave Slope %: 2					
Subregion (LRR or MLRA): LRR R Lat: 41°58'10.72"N	Long: 74°12'40.71"W Datum: NAD 83					
Soil Map Unit Name: Valois very bouldery soils	NWI classification: PEM					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)					
Are Vegetation , Soil , or Hydrology significantly disturb						
Are Vegetation, Soil, or Hydrology naturally problema						
SUMMARY OF FINDINGS – Attach site map showing sam						
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area					
Hydric Soil Present? Yes X No	within a Wetland? Yes X No					
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland N					
Remarks: (Explain alternative procedures here or in a separate report.)						
Wetland N was a drainage ditch feature to the south with no visible connect	tions to other waters of the U.S., parallel to wetland M to the north.					
HYDROLOGY						
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (E	Drainage Patterns (B10)					
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)					
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)					
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)					
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced Iro	Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1)					
Algal Mat or Crust (B4) Recent Iron Reduction in	Tilled Soils (C6) X Geomorphic Position (D2)					
Iron Deposits (B5) Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	Microtopographic Relief (D4)					
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)					
Field Observations:						
Surface Water Present? Yes No X Depth (inches):						
Water Table Present? Yes X No Depth (inches):	2					
Saturation Present? Yes X No Depth (inches):	0 Wetland Hydrology Present? Yes X No					
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:					
Remarks:	stad at 0" and activistics at aurices					
Surface water was noted to a depth of 3" in places. High water table was no	ned at 2 and saturation at surface.					

VEGETATION – Use scientific names of plants. Sampling Point: Wet N Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover **Dominance Test worksheet:** Species? Status 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 3 (A) 3. **Total Number of Dominant** (B) 4. Species Across All Strata: 3 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 30 x 2 = 2. FAC species 15 x 3 = 45 0 3. FACU species x 4 =0 0 4. UPL species x 5 = 0 5. Column Totals: 100 160 Prevalence Index = B/A = 1.60 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5 X 2 - Dominance Test is >50% Carex scoparia Yes **FACW** X 3 - Prevalence Index is ≤3.0¹ 2. 30 OBL 4 - Morphological Adaptations (Provide supporting Carex lurida Yes data in Remarks or on a separate sheet) 3. Juncus effusus 25 Yes OBL 4. Equisetum arvense No FAC Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 100 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) A dominance of wetland vegetation was noted.

SOIL Sampling Point Wet N

		to the de	-			ator or c	onfirm the absence o	f indicators.)	
Depth	Matrix	0/		K Featur		1 2	Tautuna	Damada	
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks	
0-3	10YR 2/1	90	10YR 5/6	10	<u>C</u>	M	Mucky Loam/Clay	Prominent redox concentrations	
3-8	10YR 4/1	90	10YR 6/6	10	<u>C</u>	<u>M</u>	Mucky Loam/Clay	Prominent redox concentrations	
_			-						
1Type: C=C	Concentration, D=Depl	etion RN	A-Reduced Matrix M	 seM-21	ked Sand		² I ocation: P	L=Pore Lining, M=Matrix.	
	Indicators:	Ction, ixi	N=NCGGCCG Watrix, W	IO-IVIAS	ica Gand	d'Orains.		or Problematic Hydric Soils ³ :	
Histoso			Polyvalue Belo	w Surfa	ce (S8) (I	LRR R,		ick (A10) (LRR K, L, MLRA 149B)	
	pipedon (A2)		MLRA 149B		` , ,	·	Coast Prairie Redox (A16) (LRR K, L, R)		
Black H	listic (A3)		Thin Dark Surface (S9) (LRR R, MLRA 1				149B) 5 cm Mu	icky Peat or Peat (S3) (LRR K, L, R)	
Hydroge	en Sulfide (A4)		High Chroma S	Sands (S	311) (LR F	R K, L)	Polyvalu	e Below Surface (S8) (LRR K, L)	
	ed Layers (A5)		Loamy Mucky			R K, L)		k Surface (S9) (LRR K, L)	
	ed Below Dark Surface	e (A11)	Loamy Gleyed Matrix (F2)				Iron-Manganese Masses (F12) (LRR K, L, R)		
	Park Surface (A12)		X Depleted Matrix (F3)				Piedmont Floodplain Soils (F19) (MLRA 149B)		
Sandy Mucky Mineral (S1)			Redox Dark Surface (F6)				Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	Gleyed Matrix (S4)		Depleted Dark Surface (F7) Redox Depressions (F8)				Red Parent Material (F21) Very Shallow Dark Surface (F22)		
Sandy Redox (S5)			Marl (F10) (LRR K, L)				Other (Explain in Remarks)		
	Stripped Matrix (S6) Dark Surface (S7)			Wan (1 10) (ERR R, E)				Apiair ir remarkoj	
³ Indicators of	of hydrophytic vegetati	ion and v	vetland hydrology mu	ıst be pr	esent, ur	nless dis	turbed or problematic.		
Restrictive	Layer (if observed):								
Type:	Balla	st							
Depth (inches):	8					Hydric Soil Prese	nt? Yes X No	
Remarks:							•		
						of 2 and	chroma of 1 were note	d, with redox concentrations at 10%.	
Soils were o	observed to a depth of	8" due to	o a restrictive layer o	f ballast	•				

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 7/7/16				
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet O				
Investigator(s): Corinne Steinmuller	Section, Township, Range:				
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %: 10				
Subregion (LRR or MLRA): LRR R Lat: 41°58'20.68"N	Long: 74°14'37.94"W Datum: NAD 83				
Soil Map Unit Name: Red Hook gravelly silt loam	NWI classification: PEM				
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)				
Are Vegetation , Soil , or Hydrology significantly disturb					
					
Are Vegetation, Soil, or Hydrologynaturally problems					
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area				
Hydric Soil Present? Yes X No	within a Wetland? Yes X No				
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland O				
Remarks: (Explain alternative procedures here or in a separate report.)					
The wetland was located in a low spot crossing the rail corridor with no obs	served inlet or outlet.				
HYDROLOGY					
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)				
Surface Water (A1) Water-Stained Leaves (I					
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)				
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)				
Water Marks (B1) X Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3) Presence of Reduced Iro	on (C4) Stunted or Stressed Plants (D1)				
Algal Mat or Crust (B4) Recent Iron Reduction in	n Tilled Soils (C6) Geomorphic Position (D2)				
Iron Deposits (B5) Thin Muck Surface (C7)	Muck Surface (C7) Shallow Aquitard (D3)				
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar	· · · · · · · · · · · · · · · · ·				
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)				
Field Observations:					
Surface Water Present? Yes No X Depth (inches):	: <u></u>				
Water Table Present? Yes X No Depth (inches):					
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No				
(includes capillary fringe)					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:				
Remarks:					
A high water table was present within 1" of the soil surface with saturation a	at surface. Additionally, hydrogen sulfide odor was noticed.				
,	,, , , , , , , , , , , , , , , , , , ,				

VEGETATION – Use scientific names of plants. Sampling Point: Wet O Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: _____30) % Cover **Dominance Test worksheet:** Species? Status 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 60 x 2 = 120 2. FAC species 25 x 3 = 75 0 3. FACU species x 4 =0 0 4. UPL species x 5 = 0 5. Column Totals: 105 215 Prevalence Index = B/A = 2.05 6. **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) X 2 - Dominance Test is >50% 1. Impatiens capensis 60 Yes **FACW** X 3 - Prevalence Index is ≤3.0¹ 2. 20 FAC 4 - Morphological Adaptations (Provide supporting Microstegium vimineum No data in Remarks or on a separate sheet) Persicaria sagittata 15 3. No OBL 5 4. Scirpus atrovirens No OBL Problematic Hydrophytic Vegetation¹ (Explain) 5. Urtica dioica No FAC ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 105 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) A prevalance of hydrophytic vegetation was located within the wetland.

SOIL Sampling Point Wet O

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix			x Featur		. 2	_		
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 2/2						Mucky Loam/Clay	Organic matter 20%	
2-4	10YR 3/2	85	10YR 5/8	15	С	M	Loamy/Clayey	Prominent redox concentrations	
4-12	10YR 3/3	85	10YR 5/6	10	С	M	Loamy/Clayey	Distinct redox concentrations	
			10YR 5/8	5	<u>C</u>	<u>M</u>		Prominent redox concentrations	
								_	
1									
	oncentration, D=Deple	etion, RN	/I=Reduced Matrix, N	//S=Masi	ked Sand	d Grains.		L=Pore Lining, M=Matrix.	
Hydric Soil I Histosol			Polyvalue Belo	w Surfa	ce (S8) (IRRR		or Problematic Hydric Soils ³ : lck (A10) (LRR K, L, MLRA 149B)	
	pipedon (A2)		MLRA 149B		00) (LIXIX IX,		rairie Redox (A16) (LRR K, L, R)	
Black Hi			Thin Dark Surf	,	(LRR R	, MLRA			
Hydroge	n Sulfide (A4)		High Chroma S	Sands (S	311) (LRI	R K, L)	Polyvalu	e Below Surface (S8) (LRR K, L)	
Stratified	I Layers (A5)		Loamy Mucky	Mineral	(F1) (LR I	R K, L)	Thin Dark Surface (S9) (LRR K, L)		
	Below Dark Surface	(A11)	Loamy Gleyed		F2)			nganese Masses (F12) (LRR K, L, R)	
	ark Surface (A12)		Depleted Matri		· • ·		Piedmont Floodplain Soils (F19) (MLRA 149B)		
	lucky Mineral (S1)		Redox Dark Surface (F6) Depleted Dark Surface (F7)				Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Red Parent Material (F21)		
	leyed Matrix (S4) edox (S5)		X Redox Depres				Very Shallow Dark Surface (F22)		
	Matrix (S6)		Marl (F10) (LR		3)		Other (Explain in Remarks)		
	rface (S7)			, ,			(, ,	
		on and w	vetland hydrology mu	ust be pr	esent, ur	nless dis	turbed or problematic.		
Type:	_ayer (if observed): Balla	et							
-		12					Hydric Soil Preser	ot? Yes Y No	
Depth (ir		12					nyunc son Freser	nt? Yes X No	
Remarks:	· F8 (redox denressio	ns) was :	also met due to the i	nresence	of low s	enot none	ding and prominent red	ox concentrations of 15% within all soil	
layers.	To (rodox doprocolo	no, mao		prodonoc	01 1011 0	por pone	ang and prominent road		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 7/7/16
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL O
Investigator(s): Corinne Steinmuller	Section, Township, Range:
	relief (concave, convex, none): Convex Slope %:
Subregion (LRR or MLRA): LRR R Lat: 41°58'20.68"N	Long: 74°14'37.94"W Datum: NAD 83
Soil Map Unit Name:	NWI classification: PEM
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
	<u> </u>
Are Vegetation, Soil, or Hydrologysignificantly distur	
Are Vegetation, Soil, or Hydrologynaturally problems	
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area
Hydric Soil Present? Yes No X	within a Wetland? Yes No_X_
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (I	
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Sediment Deposits (B2) Oxidized Rhizospheres of	
Drift Deposits (B3) Presence of Reduced Ire	
Algal Mat or Crust (B4) Recent Iron Reduction in	
Iron Deposits (B5) Thin Muck Surface (C7)	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
	(AC-Neutral Test (D3)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes No _X
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	

VEGETATION – Use scientific names of plants. Sampling Point: UPL O Absolute Dominant Indicator 30 Status **Dominance Test worksheet:** Tree Stratum (Plot size: % Cover Species? Acer pensylvanicum Yes **FACU Number of Dominant Species** 2. 10 **FACU** That Are OBL, FACW, or FAC: Robinia pseudoacacia Yes 0 (A) 3. **Total Number of Dominant** (B) 4. Species Across All Strata: 4 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: 20 =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = Acer pensylvanicum FACU **FACW** species 0 x 2 = 2. FAC species 0 x 3 = 0 3. FACU species 120 x 4 = 480 4. UPL species 0 x 5 = 5. Column Totals: 120 480 Prevalence Index = B/A =4.00 6. **Hydrophytic Vegetation Indicators:** 7. 80 =Total Cover 1 - Rapid Test for Hydrophytic Vegetation Herb Stratum (Plot size: 5 2 - Dominance Test is >50% Fallopia japonica 20 Yes **FACU** 3 - Prevalence Index is ≤3.01 2. 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 20 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL O

Profile Desc Depth	cription: (Describe to Matrix	to the de	•	ument th x Feature		ator or co	onfirm the absence of indicators.)		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remark	(S	
0-2	10YR 2/2	100					Loamy/Clayey		
2-4	10YR 3/2	100					Loamy/Clayey		
4-12	10YR 4/2	100					Loamy/Clayey		
							- <u></u>		
¹ Type: C=Co	oncentration, D=Depl	etion, RN	/I=Reduced Matrix, M	1S=Mas	ked Sand	d Grains.	² Location: PL=Pore Lining, M=Mate	rix.	
Hydric Soil							Indicators for Problematic Hydric		
Histosol	` '		Polyvalue Belo		ce (S8) (LRR R,	2 cm Muck (A10) (LRR K, L, MLRA 149B)		
Black Hi	oipedon (A2)		MLRA 149B	,	(I RR R	MI RA 1	Coast Prairie Redox (A16) (LR i 5 cm Mucky Peat or Peat (S3)	*	
	n Sulfide (A4)		Thin Dark Surface (S9) (LRR R, MLRA 1 High Chroma Sands (S11) (LRR K, L)				Polyvalue Below Surface (S8) (
	Layers (A5)		Loamy Mucky Mineral (F1) (LRR K, L)				Thin Dark Surface (S9) (LRR K, L)		
Depleted	d Below Dark Surface	e (A11)	Loamy Gleyed Matrix (F2)				Iron-Manganese Masses (F12)	(LRR K, L, R)	
Thick Da	ark Surface (A12)		Depleted Matrix (F3)				Piedmont Floodplain Soils (F19	9) (MLRA 149B)	
	lucky Mineral (S1)		Redox Dark Surface (F6)				Mesic Spodic (TA6) (MLRA 14	4A, 145, 149B)	
	ileyed Matrix (S4)		Depleted Dark Surface (F7)				Red Parent Material (F21) Very Shallow Dark Surface (F22)		
	edox (S5) Matrix (S6)		Redox Depressions (F8) Marl (F10) (LRR K, L)				Other (Explain in Remarks)		
	rface (S7)		Maii (F10) (LRR R, L)				Other (Explain in Nemarks)		
³ Indicators of	f hydrophytic vegetat	ion and v	vetland hydrology mu	ıst be pr	esent, ur	nless dist	turbed or problematic.		
	_ayer (if observed):								
Type:	Balla								
Depth (ir	nches):	12					Hydric Soil Present? Yes	No X	
			•				2.0 to include the NRCS Field Indicators of Forcs142p2_051293.docx)	Hydric Soils	

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 7/7/16
Applicant/Owner: Ulster County	State: NY Sampling Point: Wet P
Investigator(s): Corinne Steinmuller	Section, Township, Range:
Landform (hillside, terrace, etc.): Toe of slope Local	relief (concave, convex, none): concave Slope %: 20
Subregion (LRR or MLRA): LRR R Lat: 42° 0'2.59"N	Long: 74°16'12.76"W Datum: NAD 83
Soil Map Unit Name: Tunkhannock gravelly loam	NWI classification: PEM
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturb	· · · · · · · · · · · · · · · · ·
Are Vegetation, Soil, or Hydrology naturally problems	
SUMMARY OF FINDINGS – Attach site map showing sam	
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: Wetland P
Remarks: (Explain alternative procedures here or in a separate report.) At the base of a steep slope, this wetland was located north of the Esopus	Creek.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)Water-Stained Leaves (B	B9) X Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor ((C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iro	
Algal Mat or Crust (B4) Recent Iron Reduction ir	· · · · · · · · · · · · · · · · · · ·
Iron Deposits (B5) — Thin Muck Surface (C7)	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No _X Depth (inches):	·
Water Table Present? Yes No X Depth (inches):	·
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks: Saturation was present within 3" of the soil surface. Drainage patterns were	e visible in distinctly bent vegetation.

VEGETATION – Use scientific names of plants. Sampling Point: Wet P Absolute Dominant Indicator Tree Stratum (Plot size: 30) Status **Dominance Test worksheet:** % Cover Species? Fraxinus americana **FACU Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 3 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 66.7% (A/B) Prevalence Index worksheet: 10 =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 45 x 2 = FAC species 45 x 3 = 135 3. FACU species 10 x 4 = 4. UPL species 0 x 5 = 0 5. Column Totals: 107 Prevalence Index = B/A =2.54 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: X 2 - Dominance Test is >50% Microstegium vimineum Yes FAC X 3 - Prevalence Index is ≤3.0¹ 2. 45 **FACW** 4 - Morphological Adaptations (Provide supporting Impatiens capensis Yes data in Remarks or on a separate sheet) 5 3. Scirpus atrovirens No OBL 4. Juncus effusus No OBL Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in 9. diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 97 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation No ___ Present? Yes X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.) A dominance of wetland vegetation was present.

SOIL Sampling Point Wet P

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix			k Featur		. 2			
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-2	10YR 3/2						Loamy/Clayey		
2-4	10YR 3/2	80	10YR 4/6	20	С	M	Loamy/Clayey	Prominent redox concentrations	
4-10	10YR 3/2	60	10YR 4/6	40	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations	
10-22	10YR 3/2	60	10YR 5/8	40	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
¹ Type: C=Co	oncentration, D=Deple	etion, RM	1=Reduced Matrix, M	IS=Mas	ked Sand	Grains.	² Location: PL	=Pore Lining, M=Matrix.	
Hydric Soil			·					r Problematic Hydric Soils ³ :	
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm Muc	ck (A10) (LRR K, L, MLRA 149B)	
Histic Ep	pipedon (A2)		MLRA 149B))			Coast Pra	airie Redox (A16) (LRR K, L, R)	
Black Hi			Thin Dark Surfa				1 49B)5 cm Muc	cky Peat or Peat (S3) (LRR K, L, R)	
	n Sulfide (A4)		High Chroma S			-		Below Surface (S8) (LRR K, L)	
	I Layers (A5)		Loamy Mucky I			R K , L)		Surface (S9) (LRR K, L)	
	Below Dark Surface	(A11)	Loamy Gleyed		F2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
	ark Surface (A12)		Depleted Matrix		·c)		Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	lucky Mineral (S1)		X Redox Dark Su						
	leyed Matrix (S4) edox (S5)		Depleted Dark Surface (F7) Redox Depressions (F8)				Red Parent Material (F21) Very Shallow Dark Surface (F22)		
	Matrix (S6)		Marl (F10) (LRR K, L)				Other (Explain in Remarks)		
	face (S7)							plant in remaine)	
_	,								
³ Indicators of	f hydrophytic vegetati	on and w	etland hydrology mu	ıst be pr	esent, ur	nless dist	urbed or problematic.		
Restrictive I	_ayer (if observed):								
Type:									
Depth (ir	nches):						Hydric Soil Present	t? Yes <u>X</u> No	
Remarks:							<u> </u>		
		dark sur	face) was met withir	the firs	t 10" of s	oil. The v	alue was 3 and chroma	a was 2, with redox concentrations	
between 20 a	and 40%.								

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Ashokan Rail Trail	City/County: Olive/Ulster Sampling Date: 7/7/16
Applicant/Owner: Ulster County	State: NY Sampling Point: UPL P
Investigator(s): Corinne Steinmuller	Section, Township, Range:
	relief (concave, convex, none): Slope %:
·	Long: 74°16'12.76"W Datum: NAD 83
Soil Map Unit Name: TkB	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturb	
Are Vegetation, Soil, or Hydrologynaturally problema	ttic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area
Hydric Soil Present? Yes No X	within a Wetland? Yes No X
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	7.17.4
Tremains. (Explain alternative procedures here of in a separate report.)	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (E	Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iro	on (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in	Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	ks)Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes No X
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	
Nemans.	

VEGETATION – Use scientific names of plants. Sampling Point: UPL P Absolute Dominant Indicator Tree Stratum (Plot size: 30 Status **Dominance Test worksheet:** % Cover Species? Fraxinus americana **FACU Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. **Total Number of Dominant** 4. Species Across All Strata: 2 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 50.0% (A/B) Prevalence Index worksheet: 25 =Total Cover Multiply by: Total % Cover of: Sapling/Shrub Stratum (Plot size: 15 OBL species x 1 = **FACW** species 0 x 2 = FAC species 50 x 3 = 150 25 3. FACU species x 4 = 100 4. UPL species 0 x 5 = 5. Column Totals: 75 Prevalence Index = B/A =3.33 6. **Hydrophytic Vegetation Indicators:** 1 - Rapid Test for Hydrophytic Vegetation =Total Cover Herb Stratum (Plot size: 5) 2 - Dominance Test is >50% Yes Microstegium vimineum FAC 3 - Prevalence Index is ≤3.01 2. 4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet) 3. 4. Problematic Hydrophytic Vegetation¹ (Explain) 5. ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. 10. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 50 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30 Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic Vegetation Yes __ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point UPL P

	ription: (Describe t	to the de	-			tor or co	onfirm the absence of indicators.)		
Depth	Matrix			k Featur		12	Tandona	Demonstra	
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²		Remarks	
0-2	10YR 3/2						Loamy/Clayey		
2-4	10YR 3/3						Loamy/Clayey		
4-18	10YR 4/3						Loamy/Clayey		
¹Type: C=Co	oncentration, D=Depl	etion, RM	1=Reduced Matrix, N	1S=Masl	ked Sand	Grains.	² Location: PL=Pore Lining,	M=Matrix.	
Hydric Soil I	Indicators:						Indicators for Problemation	Hydric Soils ³ :	
Histosol			Polyvalue Belo		ce (S8) (I	LRR R,	2 cm Muck (A10) (LRR	•	
	pipedon (A2)		MLRA 149B		"		Coast Prairie Redox (A		
Black His			Thin Dark Surf						
	n Sulfide (A4)		High Chroma S			-	Polyvalue Below Surface		
	Layers (A5)	(044)	Loamy Mucky			R K, L)	Thin Dark Surface (S9)		
	Below Dark Surface	e (A11)	Loamy Gleyed		F2)		Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 149B)		
	ark Surface (A12) lucky Mineral (S1)		Depleted Matri Redox Dark Su		·e)				
	leyed Matrix (S4)		Depleted Dark				Mesic Spodic (TA6) (M Red Parent Material (F2	· ·	
	edox (S5)		Redox Depress				Very Shallow Dark Surf	·	
	Matrix (S6)		Marl (F10) (LR	,	5)		Other (Explain in Rema	, ,	
	face (S7)		Wall (1 10) (LI	IX IX, ∟)			Other (Explain in Nema	irs)	
Bark our	race (O7)								
³ Indicators of	f hydrophytic vegetati	ion and w	vetland hydrology mu	ıst be pr	esent, ur	nless dist	urbed or problematic.		
	_ayer (if observed):								
Type:									
Depth (ir	nches):						Hydric Soil Present? Yes	s No_X_	
Remarks:	an in marria and forces Nia		land Nambaast Dan	I C		. \ / :	2.0 to include the NDCC Field ledies	tana af Llundria Caila	
							2.0 to include the NRCS Field Indica arcs142p2_051293.docx)	tors of rigatic Soils	
VCIOIOII 7.0 IV	naron 2010 Enata. (II	ιτρ.// WW	os.uoda.gov/intoi	11001 02		VILITIO/II	192 192 <u>192 1230 (300x)</u>		

Appendix B

Site Photographs

Photo 1. Wetland A looking east.

Photo 2. Wetland B looking south.

Photo 3. Wetland C looking south.

Photo 4. Wetland D looking east.

Photo 5. Wetland E looking south.

Photo 6. Wetland F looking east.

Photo 7. Wetland G looking south.

Photo 8. Wetland J looking north.

Photo 9. Wetland K on either side of rail, looking east.

Photo 10. Wetland K looking north.

Photo 11. Wetland M looking east.

Photo 12. West of Wetlands M and N.

Photo 13. Wetland N drainage continuing northwest.

Photo 14. Wetland O looking east.

Photo 15. Wetland P looking north.

Photo 16. Typical culvert under rail.

Photo 17. Typical stream crossing south of railway, from culvert.

Photo 18. Flow of stream through large culvert.

Photo 19. Typical stream through corridor.

Photo 20. Butternut creek, looking south from failed culvert.

Barton & Loguidice, D.P.C.

Memo To: Project File Date: September 22, 2017

From: Thomas Baird, P.E. and

Corinne I. Steinmuller **Project No.:** 369.007.001

Environmental Scientist II

Subject: Threatened and Endangered Species Habitat Assessment

Ashokan Rail Trail

Project Area and Description

Barton & Loguidice, D.P.C. (B&L), has been retained by Ulster County to provide preliminary and final design services for the proposed Ashokan recreational trail located along the County-owned 11.5 mile abandoned railroad corridor on the northern shore of the Ashokan Reservoir spanning from Milepost K10 (Basin Road in West Hurley) to Milepost K21.5 (Route 28A overpass in Boiceville).

The project includes repurposing of the existing ballast, removal of rail, rail hardware, and deteriorated creosote rail ties, construction of two pedestrian bridges, and maintenance to existing culvert structures. The location of the project area is shown on the enclosed Figures 1 and 2, aerial and topographic mapping respectively. The project corridor can also be found on the USGS 7 ½-minute Kingston West, Ashokan, West Shokan, Bearsville, and Phoenicia quadrangles between 42° 0'20.87"N, 74°16'16.63"W and 41°59'5.60"N, 74° 5'13.93"W (NAD 83).

Areas adjacent to the project corridor consist of residential and commercial property to the north associated with NYS Route 28. To the south of the corridor, the Ashokan Reservoir serves as a drinking water source for New York City and is recreationally limited to fishing and non-motorized boat usage. The railway itself travels through mature mid-successional forest and will cross the Esopus Creek on a new bridge on the western end of the proposed trail.

Federally Protected Species

The U.S. Fish and Wildlife Service (USFWS) New York Field Office's website was reviewed to determine whether any federally listed endangered, threatened, or candidate species are known to inhabit the proposed project area. The USFWS' Information for Planning and Consulation (IPaC) System reported three federally protected species that could potentially inhabit the project corridor: the Indiana bat (*Myotis sodalis* – Endangered), the northern long-eared bat (*Myotis septentrionalis* – Threatened), and the bog turtle (*Clemmys muhlenbergii* – Threatened). A printout of the IPaC results is included as Attachment A.

Page 2

Critical Habitat

A review of designated critical habitat areas within New York State was completed. No such areas exist within or adjacent to the project area.

New York State Protected Species

The Natural Heritage Program (NHP) was contacted for information regarding the reported presence of any endangered species, threatened species, species of special concern, or significant natural communities within or adjacent to the project corridor. A response was received from the NHP on July 26, 2016, which indicated three records of rare or state-listed animals or plants and significant natural communities at the site or in its immediate vicinity. The bald eagle (*Haliaeetus leucocephalus*- Threatened) was identified to have nested within 400 feet of the project corridor. An Indiana bat maternity colony was identified within 250 feet of the project corridor. Additionally, a high quality occurrence of an uncommon community type, a bluestone vernal pool, was identified .5 miles east of the corridor. The NHP's response letter is included for review as Attachment B.

Availability of Suitable Habitat

A habitat assessment of the project corridor was completed by staff of B&L's Ecology Group on June 28-29 and July 7, 2016. Proposed access road sites were assessed on May 17, 2017. The main objective of this habitat assessment was to identify the presence of any state or federally protected species within or adjacent to the project corridor, or the presence of suitable habitat for any of the reported species.

Northern long-eared and Indiana bats

These bat species select roosting trees based on the tree's location, position within the landscape, bark characteristics, and ability to provide cavities or crevices. Suitable roosting and foraging habitat for the bats includes mixed age stands of trees greater than 3" diameter at breast height (DBH), with foraging habitat containing areas of open water. These habitat requirements were observed within and adjacent to the proposed project corridor. In accordance with the 2016 Range-wide Indiana Bat Summer Survey Guidelines (this document applies to both Indiana bat and northern long-eared bats), most trees greater than 3" DBH are considered potential habitat for the northern long-eared bats, and greater than 4" DBH for the Indiana bat. The dominant tree species observed within the project corridor include: red maple (Acer rubrum), striped maple (Acer pensylvanicum), shagbark hickory (Carya ovata), silver maple (Acer saccharinum), northern red oak (*Quercus rubra*), eastern white pine (*Pinus strobus*), and American beech (Fagus grandifolia). Approximately 9.2 acres of woody vegetation, including shrubs <3" intermixed with larger DBH trees, are proposed for clearing. In accordance with the aforementioned USFWS resources, trees greater than 3" DBH requiring removal are to be cut between October 1st and March 31st during the conservation cutting window timelines. Project photographs showing the characteristics of the Ashokan Rail Trail project corridor are included as Attachment C.

Page 3

Bald Eagle Review

The bald eagle was removed from the federal Endangered Species list in 2007, but is still afforded federal protection under the Bald and Golden Eagle Protection Act (BGEPA) and state protection under the Environmental Conservation Law. Accordingly, the project areas were assessed to determine whether potential impacts to this species may occur. During coordination with the NHP, breeding bald eagles were reported within 400 feet of the project corridor. A review of the 2000-2005 New York State Breeding Bird Atlas Survey (BBA) was also completed. Historical sightings of bald eagles were reported for the project corridor. A pair holding territory were reported for block 5664B, a singing male present in block 5664A, and nest with young in 5564B. Results of this record review are included as Attachment D. See Discussion and Effect Determination for further information.

Breeding Bird Atlas

During the review of Survey Blocks 5764A, 5664B, 5665D, 5664A, and 5564B of the 2000-2005 BBA, one NYS Threatened species and six NYS Species of Special Concern were identified as being observed near the project corridor. Table 1, below, lists bird species identified by the BBA Survey Blocks mentioned above to potentially inhabit the project corridor. Results of the Breeding Bird Atlas query are included as Attachment D.

NYSDEC Nature Explorer

Review of the NYSDEC Nature Explorer query resulted in restricted species. It is presumed these species are those reported by the NYNHP. Results of the Nature Explorer query are included as Attachment E.

Page 4

Table 1: 2000-2005 New York State Breeding Bird Atlas Results- Ashokan Rail Trail									
Species Name	Survey Block	Behavior Code*	NYS Legal Status	Suitable Habitat	Suitable Habitat Within proposed areas of disturbance?				
Osprey (Pandeon haliaetus)	5764A, 5664B	X1	Special Concern	Fish dependent; located near Adirondack lakes, rivers, and wetlands. Nest at the top of dead trees or artificial nesting platforms. While these characteristics are abundant surrounding these project areas, only limited impacts are expected to these habitats due to noise during construction.	Yes				
Bald eagle (Haliaeetus leucocephalus)	5664B, 5664A, 5564B	T2, S2, NY	Threatened	Bald eagles require large, undisturbed open-water areas such as rivers or lakes. Nests are typically built along the edge of these large waterbodies, in conifer or deciduous trees with large branches and open crowns. Observed within 400' of proposed disturbed area.	Yes				
Red-shouldered hawk (Buteo lineatus)	5764A, 5664B, 5665D, 5564B	T2, D2, FY, X1	Special Concern	Forest birds that prefer an open sub-canopy for hunting. Can be found in suburban areas with mixed forest and housing.	Yes				
American bittern (Botaurus lentiginosus)	5664B	P2	Special Concern	Shallow, freshwater marshes. Tend to stay hidden among dense vegetation. Freshwater wetland / marshes avoided by re-alignment of trail	No				
Sharp-shinned hawk (Accipiter striatus)	5664B, 5564B	T2, X1	Special Concern	Birds of the forest and forest edge and are not found in areas where trees are scarce, except during migration. During the breeding season this hawk can be found in dense protected, forested stands which often contain conifers.	Yes				
Whip-poor-will (Caprimulgus vociferos)	5664B, 5664A	D2, S2	Special Concern	Forests with open understory. Found in both deciduous and deciduous pine mix. Nest on forest floor and are strictly nocturnal.	No				
Common nighthawk (Chordeiles minor)	5664B	X1	Special Concern	Nest on bare soil and/or rock in forest clearings, but have also been known to nest on gravel rooftops.	No				

^{*} X1= Species observed in possible nesting habitat, but no other indication of breeding noted; singing male(s) present (or breeding calls heard) in breeding season. T2= Pair apparently holding territory. In addition to territorial singing, chasing of other individuals of same species often marks a territory. S2= Singing male present (or breeding calls heard). NY= Nest with young. FY= Adults with food for young. D2= Courtship and display, agitated behavior or anxiety calls suggesting probable presence of nearby nest or young.

Page 5

Discussion and Effect Determinations

Based on the site observations documented during the habitat assessment for the proposed Ashokan Rail Trail, potential effects to suitable habitats for the state or federal protected species listed for the project corridor are anticipated as discussed below.

Indiana and northern long-eared bats

Suitable bat roosting habitat was identified adjacent to the project corridor. Tree removal will be required in certain overgrown sections of trail, to remove dead and stressed Ash trees, and several areas where trees inhibit drainage or pose a threat to trail users. Tree removal required as part of this project will be completed during the Time of Year Conservation Cutting Window: October 1st to March 31st. To assist with USFWS' coordination, Phase 1 Summer Habitat Assessment forms are included in Attachment F. By adhering to the Conservation Cutting Window timelines as a protective measure, the proposed project is recommended to have a determination of May Affect, Not Likely to Adversely Affect the Indiana or northern long-eared bats. Additional Best Management Practices (BMPs) will be utilized during the duration of the project to limit impacts to freshwater resources adjacent to the project areas.

Bog turtle

The bog turtle, the smallest of the emydid turtles, spends much of the time buried in the mud and therefore has a reputation for being secretive. While they prefer fens, highly acidic wetlands and areas of soft, deep mud are considered suitable habitat. Several wetland complexes are adjacent to, but not within, the proposed areas of disturbance for the project. Two wetland complexes will be directly impacted as a result of the project. Field delineated Wetlands K and L, identified as correspondent to NYSDEC Mapped wetland AS-20, were emergent in nature but did not contain the deep mucky soils required by this species or microtopographic relief for basking. Additionally, a large patch of common reed (*Phragmites australis*) was noted as dominant which due to plant density prohibits basking. The other field delineated wetland to be impacted, identified as Wetland O, was also emergent but shaded over by the upland tree canopy, lacking the necessary sunlight and microtopographic relief for basking. Additionally, the soils were restricted at 12 inches with the presence of ballast. No impacts are expected to other wetlands delineated within the corridor. Therefore, a determination of No Effect is recommended for this threatened species.

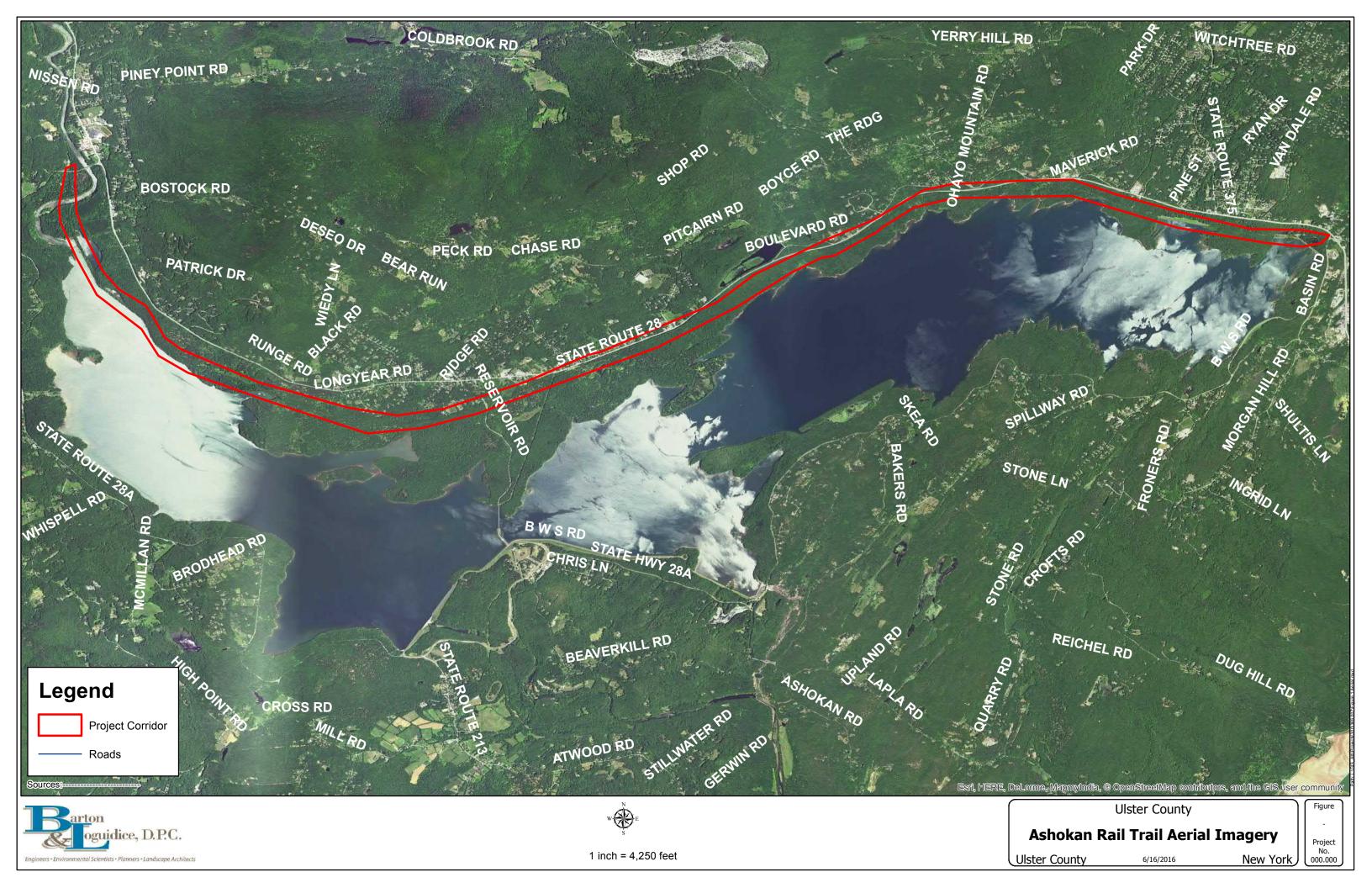
Bald Eagle

Bald eagles prefer habitat along large bodies of water and shoreline area. The project corridor is located within close proximity to the Ashokan Reservoir. Additionally, a confirmed nest with young was reported by the BBA as well as the New York City Department of Environmental Protection and the NYNHP. It is understood that impacts may occur to this species as a result of construction noises during the nesting season. Therefore, a determination of May Affect, Not Likely to Adversely Affect is recommended for this threatened species. To avoid impact and

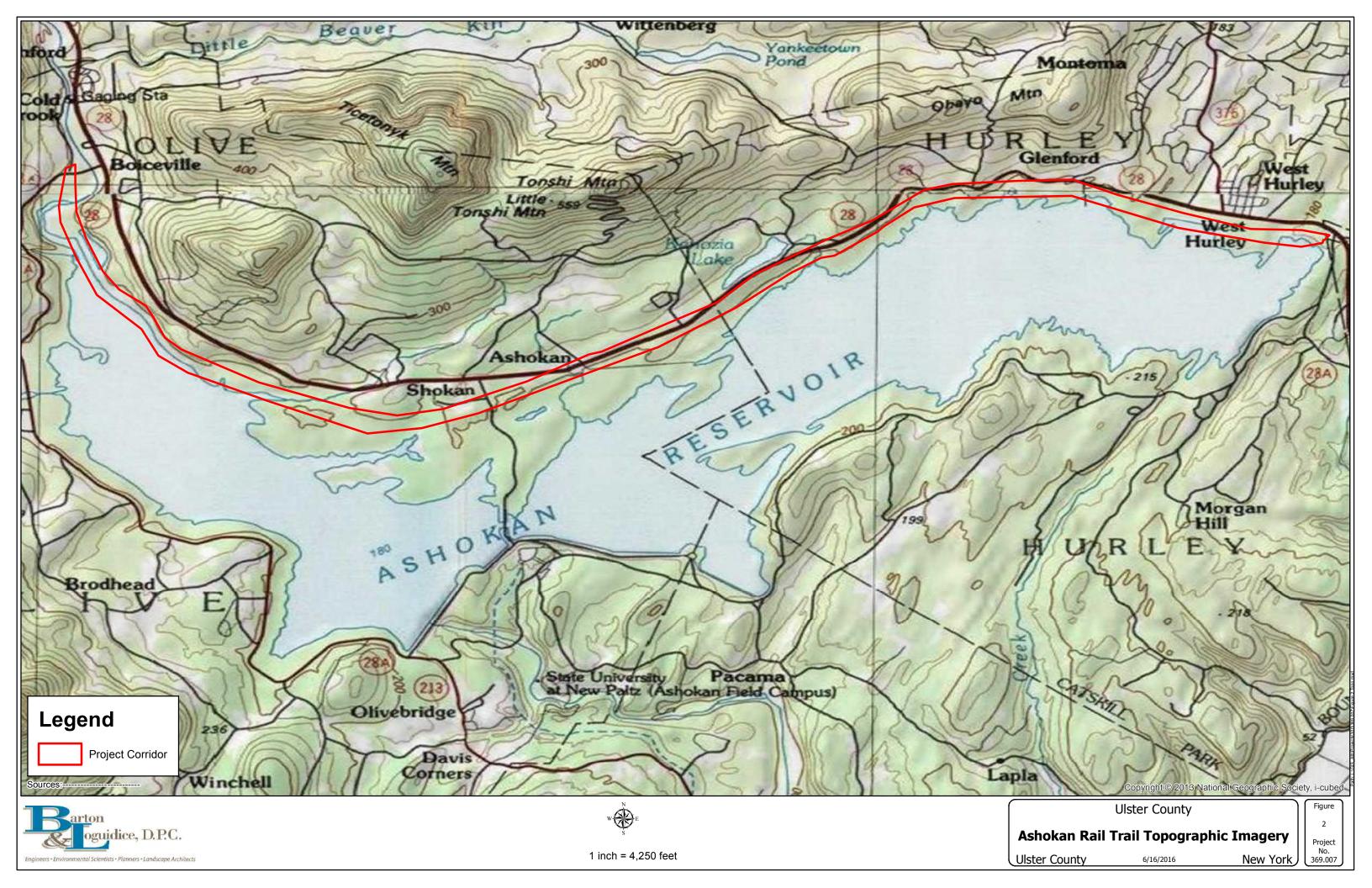
Page 6

necessity for a BGEPA permit, it is recommended that construction that will occur within sight or 660 feet of a nest occur during the non-breeding season, from mid-September to December.

Breeding Bird Atlas Species


As described in Table 1, suitable habitat was identified for all species identified by the BBA within the corridor except for the whip poor will and common nighthawk. Both species rely on an open understory and/or clearings for nesting habitat. The corridor was largely grown up with a shrubby understory and a determination of No Effect is recommended for these species due to lack of suitable habitat.

The remaining species may be impacted by construction noise and disturbance. However, this will be temporary in nature and will not affect the habitat quality long term. A May Affect, Not Likely to Adversely Affect determination is recommended for these species.


In addition, no observations of other protected species, unique plant assemblages, or significant natural communities were noted within or adjacent to the project limits. A Species Conclusion Table is included as Attachment G to summarize the results and determinations of this assessment.

CIS/ Attachments

Figure 1 Aerial Project Corridor Map

Figure 2 Topographic Project Corridor Map

Attachment A

U.S. Fish and Wildlife Service Information for Planning and Consultation (IPaC) System Results

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9349

Phone: (607) 753-9334 Fax: (607) 753-9699 http://www.fws.gov/northeast/nyfo/es/section7.htm

April 25, 2017

In Reply Refer To:

Consultation Code: 05E1NY00-2016-SLI-1925

Event Code: 05E1NY00-2017-E-05302 Project Name: Ashokan Rail Trail

3

Subject: Updated list of threatened and endangered species that may occur in your proposed

project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 et seq.). This list can also be used to determine whether listed species may be present for projects without federal agency involvement. New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list.

Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the ESA, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list. If listed, proposed, or candidate species were identified as potentially occurring in the project area, coordination with our office is encouraged. Information on the steps involved with assessing potential impacts from projects can be found at: http://www.fws.gov/northeast/nyfo/es/section7.htm

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (

http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the Services wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the ESA. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9349 (607) 753-9334

Project Summary

Consultation Code: 05E1NY00-2016-SLI-1925

Event Code: 05E1NY00-2017-E-05302

Project Name: Ashokan Rail Trail

Project Type: TRANSPORTATION

Project Description: Barton & Loguidice, D.P.C. (B&L) has been retained by Ulster County

for engineering design services for the proposed Ashokan Rail Trail. The proposed action includes the creation of an 11.5 mile recreational trail corridor on a former rail line north of the Ashokan Reservoir. The project includes repurposing the existing ballast, removal of rail ties, creation of

trailheads, and maintenance to existing culvert structures.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/41.983830714078586N74.26007196592603W

Counties: Ulster, NY

Endangered Species Act Species

There is a total of 3 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Indiana Bat (Myotis sodalis) Endangered

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/5949

Northern Long-eared Bat (Myotis septentrionalis) Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Reptiles

NAME STATUS

Bog Turtle (*Clemmys muhlenbergii*) Threatened

Population: Wherever found, except GA, NC, SC, TN, VA No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/6962

Critical habitats

There are no critical habitats within your project area.

Attachment B

Natural Heritage Program (NHP) Response

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Fish, Wildlife & Marine Resources New York Natural Heritage Program

625 Broadway, 5th Floor, Albany, New York 12233-4757

Phone: (518) 402-8935 • Fax: (518) 402-8925

Website: www.dec.ny.gov

July 26, 2016

Corinne I. Steinmuller Barton & Loguidice, D.P.C. 10 Airline Drive, Suite 200 Albany, NY 12205

Re: Ashokan Rail Trail (File: 369.007.001)

Town/City: Hurley, Olive. County: Ulster.

Dear Corinne Steinmuller:

In response to your recent request, we have reviewed the New York Natural Heritage Program database with respect to the above project.

Enclosed is a report of rare or state-listed animals and plants, and significant natural communities that our database indicates occur, or may occur, on your site or in the immediate vicinity of your site.

For most sites, comprehensive field surveys have not been conducted; the enclosed report only includes records from our database. We cannot provide a definitive statement as to the presence or absence of all rare or state-listed species or significant natural communities. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other sources may be required to fully assess impacts on biological resources.

Our database is continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

The presence of the plants and animals identified in the enclosed report may result in this project requiring additional review or permit conditions. For further guidance, and for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, as listed at www.dec.ny.gov/about/39381.html.

Sincerely,

Andrea Chaloux

Environmental Review Specialist New York Natural Heritage Program

The following state-listed animals have been documented at your project site, or in its vicinity.

The following list includes animals that are listed by NYS as Endangered, Threatened, or Special Concern; and/or that are federally listed or are candidates for federal listing.

For information about any permit considerations for your project, please contact the Permits staff at the NYSDEC Region 3 Office at dep.r3@dec.ny.gov, (845) 256-3054. For information about potential impacts of your project on these species, and how to avoid, minimize, or mitigate any impacts, contact the Region 3 Wildlife staff at Wildlife.R3@dec.ny.gov, (845) 256-3098.

The following species have been documented at your project site, or within 1 mile of the project site. Individual animals may travel 1 mile from documented locations.

COMMON NAME SCIENTIFIC NAME NY STATE LISTING FEDERAL LISTING

Birds

Bald Eagle Haliaeetus leucocephalus Threatened 1715, 14038, 10989

Breeding -- Breeding Bald Eagles are using an area through which the project site is proposed, and several Bald Eagle nests have been documented near the proposed project site, including one nest within 400 feet of the proposed project site.

The following species have been documented within 250 feet of the project site. Individual animals may travel 2.5 miles from documented locations.

COMMON NAME SCIENTIFIC NAME NY STATE LISTING FEDERAL LISTING

Mammals

Indiana Bat Myotis sodalis Endangered Endangered 11652

Maternity colony

This report only includes records from the NY Natural Heritage database. For most sites, comprehensive field surveys have not been conducted, and we cannot provide a definitive statement as to the presence or absence of all rare or state-listed species. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other sources may be required to fully assess impacts on biological resources.

If any rare plants or animals are documented during site visits, we request that information on the observations be provided to the New York Natural Heritage Program so that we may update our database.

Information about many of the listed animals in New York, including habitat, biology, identification, conservation, and management, are available online in Natural Heritage's Conservation Guides at www.guides.nynhp.org, and from NYSDEC at www.dec.ny.gov/animals/7494.html.

7/26/2016 Page 1 of 1

Report on Rare Animals, Rare Plants, and Significant Natural Communities

The following rare plants, rare animals, and significant natural communities have been documented in the vicinity of your project site.

We recommend that potential onsite and offsite impacts of the proposed project on these species or communities be addressed as part of any environmental assessment or review conducted as part of the planning, permitting and approval process, such as reviews conducted under SEQR. Field surveys of the project site may be necessary to determine the status of a species at the site, particularly for sites that are currently undeveloped and may still contain suitable habitat. Final requirements of the project to avoid, minimize, or mitigate potential impacts are determined by the lead permitting agency or the government body approving the project.

The following significant natural communities are considered significant from a statewide perspective by the NY Natural Heritage Program. They are either occurrences of a community type that is rare in the state, or a high-quality example of a more common community type. By meeting specific, documented criteria, the NY Natural Heritage Program considers these community occurrences to have high ecological and conservation value.

COMMON NAME SCIENTIFIC NAME NY STATE LISTING HERITAGE CONSERVATION STATUS

Wetland/Aquatic Communities

Vernal Pool

High-quality Occurrence of Uncommon Community Type

Bluestone, 0.5 mi east of the project site: This is a moderate-size vernal pool complex in good condition within a large natural landscape in very good condition.

13052

This report only includes records from the NY Natural Heritage database. For most sites, comprehensive field surveys have not been conducted, and we cannot provide a definitive statement as to the presence or absence of all rare or state-listed species. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other sources may be required to fully assess impacts on biological resources.

If any rare plants or animals are documented during site visits, we request that information on the observations be provided to the New York Natural Heritage Program so that we may update our database.

Information about many of the rare animals and plants in New York, including habitat, biology, identification, conservation, and management, are available online in Natural Heritage's Conservation Guides at www.guides.nynhp.org, from NatureServe Explorer at www.natureserve.org/explorer, and from USDA's Plants Database at http://plants.usda.gov/index.html (for plants).

Information about many of the natural community types in New York, including identification, dominant and characteristic vegetation, distribution, conservation, and management, is available online in Natural Heritage's Conservation Guides at www.guides.nynhp.org. For descriptions of all community types, go to www.dec.ny.gov/animals/97703.html for Ecological Communities of New York State.

7/26/2016 Page 1 of 1

Attachment C Project Corridor Photographs

Photo 1. Typical forested section adjacent to corridor.

Photo 2. Corridor looking west.

Photo 3. Corridor looking south.

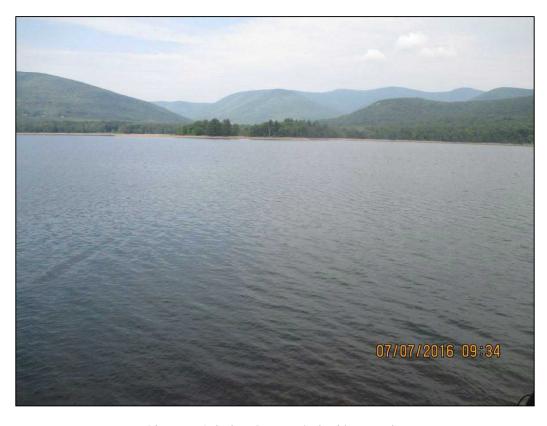


Photo 4. Ashokan Reservoir, looking south.

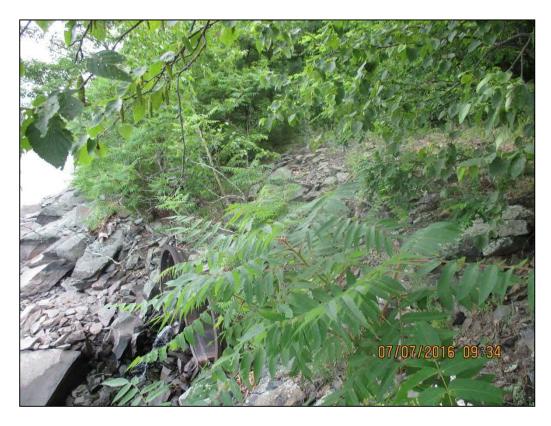


Photo 5. Bank of Reservoir immediately south of corridor.

Photo 6. Corridor looking north to causeway.

Photo 7. Various tracks in mud at causeway; toe of slope from corridor.

Photo 8. View downslope looking north of corridor.

Photo 9. View looking west at proposed Espopus crossing. "Boiceville Trestle" destroyed by Tropical Storms Irene and Lee.

Photo 10. Wetland resource north of corridor, just east of Espopus crossing. Outside of ROW/proposed work.

Photo 11. Looking southeast from corridor at Reservoir.

Photo 12. Wetland K/L (NYSDEC AS-20), to be impacted.

Photo 13. Wetland K/L to be impacted. Corridor continues straight through (see people). Note large Phragmites patch on right hand side.

Photo 14. Wetland O, to be impacted. Note heavy canopy.

Photo 15. Corridor on western side of Espopus, looking east.

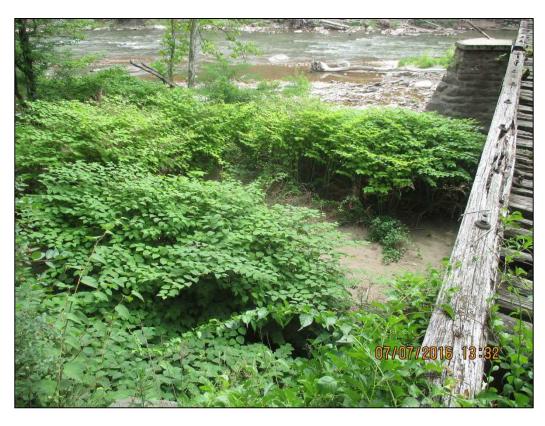


Photo 16. Patch of knotweed on western bank of Esopus at crossing.

Photo 17. Existing access road, to receive a layer of stone dust.

Photo 18. Existing access road, to receive a layer of stone dust.

Photo 19. Potential access site, looking toward NYS Route 28.

Photo 20. Potential access site, looking toward rail.

Photo 21. Former access road to be improved.

Photo 22. Former access road to be improved.

Photo 23. Potential business access site (Hotel Dylan).

Photo 24. Potential business access site (Hotel Dylan).

Photo 25. Potential business access site (Hotel Dylan).

Attachment D

2000-2005 New York State Breeding Bird Atlas Survey Results

List of Species Breeding in Atlas Block 5764A

Common Name	Scientific Name	Behavior Code	<u>Date</u>	NY Legal Status
Canada Goose	Branta canadensis	FL	6/30/2003	Game Species
Wood Duck	Aix sponsa	FL	7/12/2003	Game Species
Mallard	Anas platyrhynchos	FL	6/17/2004	Game Species
Ruffed Grouse	Bonasa umbellus	X1	7/12/2003	Game Species
Wild Turkey	Meleagris gallopavo	FL	8/9/2002	Game Species
Great Blue Heron	Ardea herodias	NY	7/7/2002	Protected
Green Heron	Butorides virescens	NY	6/17/2004	Protected
Turkey Vulture	Cathartes aura	NY	6/30/2004	Protected
Osprey	Pandion haliaetus	X1	<mark>//2004</mark>	Protected-Special Concern
Red-shouldered Hawk	Buteo lineatus	X1	7/5/2002	Protected-Special Concern
Broad-winged Hawk	Buteo platypterus	X1	6/30/2003	Protected
Red-tailed Hawk	Buteo jamaicensis	FL	6/17/2004	Protected
Killdeer	Charadrius vociferus	NE	6/3/2003	Protected
Spotted Sandpiper	Actitis macularius	X1	6/30/2003	Protected
American Woodcock	Scolopax minor	D2	4/28/2003	Game Species
Mourning Dove	Zenaida macroura	FL	6/30/2003	Protected
Yellow-billed Cuckoo	Coccyzus americanus	S2	//2004	Protected
Black-billed Cuckoo	Coccyzus erythropthalmus	T2	8/15/2003	Protected
Great Horned Owl	Bubo virginianus	X1	6/26/2003	Protected
Chimney Swift	Chaetura pelagica	P2	6/30/2003	Protected
Ruby-throated Hummingbird	Archilochus colubris	P2	6/17/2004	Protected
Belted Kingfisher	Megaceryle alcyon	P2	7/5/2002	Protected
Red-bellied Woodpecker	Melanerpes carolinus	FL	6/17/2004	Protected
Downy Woodpecker	Picoides pubescens	B2	6/17/2004	Protected

Hairy Woodpecker	Picoides villosus	X1	7/5/2002	Protected
Northern Flicker	Colaptes auratus	FY	7/3/2002	Protected
Pileated Woodpecker	Dryocopus pileatus	B2	4/28/2003	Protected
Eastern Wood-Pewee	Contopus virens	D2	8/9/2002	Protected
Acadian Flycatcher	Empidonax virescens	P2	6/3/2003	Protected
Alder Flycatcher	Empidonax alnorum	X1	8/9/2002	Protected
Willow Flycatcher	Empidonax traillii	X1	8/15/2003	Protected
Least Flycatcher	Empidonax minimus	ON	6/30/2003	Protected
Eastern Phoebe	Sayornis phoebe	D2	8/9/2002	Protected
Great Crested Flycatcher	Myiarchus crinitus	D2	6/17/2004	Protected
Eastern Kingbird	Tyrannus tyrannus	FY	6/30/2003	Protected
Yellow-throated Vireo	Vireo flavifrons	S2	//2004	Protected
Blue-headed Vireo	Vireo solitarius	X1	7/5/2002	Protected
Warbling Vireo	Vireo gilvus	T2	6/30/2003	Protected
Red-eyed Vireo	Vireo olivaceus	T2	6/3/2003	Protected
Blue Jay	Cyanocitta cristata	FL	7/8/2003	Protected
American Crow	Corvus brachyrhynchos	FL	7/12/2003	Game Species
Tree Swallow	Tachycineta bicolor	P2	6/17/2004	Protected
Northern Rough- winged Swallow	Stelgidopteryx serripennis	FL	7/12/2003	Protected
Bank Swallow	Riparia riparia	NY	7/12/2003	Protected
Black-capped Chickadee	Poecile atricapillus	FY	7/12/2003	Protected
Tufted Titmouse	Baeolophus bicolor	FY	6/3/2003	Protected
White-breasted Nuthatch	Sitta carolinensis	S2	7/7/2002	Protected
Carolina Wren	Thryothorus ludovicianus	S2	6/17/2004	Protected
House Wren	Troglodytes aedon	NY	6/17/2004	Protected
Winter Wren	Troglodytes troglodytes	X1	6/26/2003	Protected

Blue-gray Gnatcatcher	Polioptila caerulea	FL	8/15/2003	Protected
Hermit Thrush	Catharus guttatus	X1	7/12/2003	Protected
Wood Thrush	Hylocichla mustelina	D2	7/3/2002	Protected
American Robin	Turdus migratorius	FY	6/26/2003	Protected
Gray Catbird	Dumetella carolinensis	FY	7/3/2002	Protected
Northern Mockingbird	Mimus polyglottos	B2	6/17/2004	Protected
Brown Thrasher	Toxostoma rufum	X1	7/12/2003	Protected
European Starling	Sturnus vulgaris	FL	6/17/2004	Unprotected
Cedar Waxwing	Bombycilla cedrorum	FL	7/3/2002	Protected
Yellow Warbler	Dendroica petechia	T2	6/17/2004	Protected
Black-throated Green Warbler	Dendroica virens	S2	6/26/2003	Protected
Pine Warbler	Dendroica pinus	S2	//2004	Protected
Prairie Warbler	Dendroica discolor	FL	7/8/2003	Protected
Black-and-white Warbler	Mniotilta varia	S2	7/7/2002	Protected
American Redstart	Setophaga ruticilla	P2	6/3/2003	Protected
Worm-eating Warbler	Helmitheros vermivorum	FL	7/5/2002	Protected
Ovenbird	Seiurus aurocapilla	FL	6/26/2003	Protected
Louisiana Waterthrush	Seiurus motacilla	X1	6/3/2003	Protected
Common Yellowthroat	Geothlypis trichas	FY	7/3/2002	Protected
Eastern Towhee	Pipilo erythrophthalmus	FL	8/15/2003	Protected
Chipping Sparrow	Spizella passerina	FY	7/12/2003	Protected
Clay-colored Sparrow	Spizella pallida	FL	7/12/2003	Protected
Song Sparrow	Melospiza melodia	FY	6/17/2004	Protected
Scarlet Tanager	Piranga olivacea	T2	7/8/2003	Protected
Northern Cardinal	Cardinalis cardinalis	FL	7/12/2003	Protected
Rose-breasted Grosbeak	Pheucticus Iudovicianus	T2	7/3/2002	Protected

Indigo Bunting	Passerina cyanea	FY	7/12/2003	Protected
Red-winged Blackbird	Agelaius phoeniceus	FL	7/12/2003	Protected
Common Grackle	Quiscalus quiscula	FL	6/17/2004	Protected
Brown-headed Cowbird	Molothrus ater	D2	6/26/2003	Protected
Baltimore Oriole	Icterus galbula	FL	7/5/2002	Protected
Purple Finch	Carpodacus purpureus	X1	6/30/2003	Protected
House Finch	Carpodacus mexicanus	FL	7/12/2003	Protected
American Goldfinch	Spinus tristis	ON	7/31/2003	Protected
House Sparrow	Passer domesticus	ON	7/8/2003	Unprotected

List of Species Breeding in Atlas Block 5664B				
Common Name	Scientific Name	Behavior Code	<u>Date</u>	<u>NY Legal</u> <u>Status</u>
Canada Goose	Branta canadensis	FL	6/20/2002	Game Species
Wood Duck	Aix sponsa	FL	//2003	Game Species
American Black Duck	Anas rubripes	X1	6/20/2002	Game Species
Mallard	Anas platyrhynchos	FL	7/10/2002	Game Species
Common Merganser	Mergus merganser	P2	//2003	Game Species
Ruffed Grouse	Bonasa umbellus	FL	6/10/2002	Game Species
Wild Turkey	Meleagris gallopavo	FL	7/22/2002	Game Species
American Bittern	Botaurus lentiginosus	P2	8/15/2003	Protected-Special Concern
Great Blue Heron	Ardea herodias	T2	5/15/2004	Protected
Green Heron	Butorides virescens	S2	//2003	Protected
Turkey Vulture	Cathartes aura	X1	6/10/2002	Protected
Osprey	Pandion haliaetus	XI	6/7/2003	Protected-Special Concern
Bald Eagle	Haliaeetus	T2	7/21/2003	Threatened

	leucocephalus			
Sharp-shinned Hawk	Accipiter striatus	T2	7/16/2003	Protected-Special Concern
Red-shouldered Hawk	Buteo lineatus	D2	3/24/2002	Protected-Special Concern
Broad-winged Hawk	Buteo platypterus	P2	4/11/2002	Protected
Red-tailed Hawk	Buteo jamaicensis	D2	5/15/2003	Protected
American Kestrel	Falco sparverius	X1	5/31/2003	Protected
Virginia Rail	Rallus limicola	FL	7/13/2003	Game Species
Killdeer	Charadrius vociferus	T2	4/27/2002	Protected
Spotted Sandpiper	Actitis macularius	S2	//2003	Protected
American Woodcock	Scolopax minor	D2	3/17/2003	Game Species
Mourning Dove	Zenaida macroura	B2	4/26/2004	Protected
Yellow-billed Cuckoo	Coccyzus americanus	S2	6/10/2002	Protected
Eastern Screech-Owl	Megascops asio	X1	4/2/2003	Protected
Great Horned Owl	Bubo virginianus	S2	1/20/2002	Protected
Barred Owl	Strix varia	FL	8/9/2004	Protected
Common Nighthawk	Chordeiles minor	X1	5/23/2003	Protected-Special Concern
Whip-poor-will	Caprimulgus vociferus	D2	5/4/2002	Protected-Special Concern
Chimney Swift	Chaetura pelagica	B2	5/24/2003	Protected
Ruby-throated Hummingbird	Archilochus colubris	ON	//2002	Protected
Belted Kingfisher	Megaceryle alcyon	P2	//2002	Protected
Red-bellied Woodpecker	Melanerpes carolinus	B2	4/27/2002	Protected
Yellow-bellied Sapsucker	Sphyrapicus varius	X1	6/8/2001	Protected
Downy Woodpecker	Picoides pubescens	P2	//2003	Protected
Hairy Woodpecker	Picoides villosus	ON	4/26/2004	Protected
Northern Flicker	Colaptes auratus	T2	5/10/2003	Protected
Pileated Woodpecker	Dryocopus pileatus	N2	4/29/2002	Protected

Eastern Wood-Pewee	Contopus virens	T2	5/24/2003	Protected
Least Flycatcher	Empidonax minimus	X1	6/20/2002	Protected
Eastern Phoebe	Sayornis phoebe	NY	6/10/2002	Protected
Great Crested Flycatcher	Myiarchus crinitus	P2	5/1/2002	Protected
Eastern Kingbird	Tyrannus tyrannus	P2	6/10/2002	Protected
Yellow-throated Vireo	Vireo flavifrons	X1	6/8/2001	Protected
Blue-headed Vireo	Vireo solitarius	X1	6/8/2001	Protected
Warbling Vireo	Vireo gilvus	X1	//2003	Protected
Red-eyed Vireo	Vireo olivaceus	S2	//2003	Protected
Blue Jay	Cyanocitta cristata	FL	6/30/2004	Protected
American Crow	Corvus brachyrhynchos	N2	4/29/2002	Game Species
Fish Crow	Corvus ossifragus	X1	//2003	Protected
Common Raven	Corvus corax	FL	6/20/2002	Protected
Tree Swallow	Tachycineta bicolor	NE	6/10/2002	Protected
Northern Rough- winged Swallow	Stelgidopteryx serripennis	X1	//2003	Protected
Cliff Swallow	Petrochelidon pyrrhonota	X1	//2003	Protected
Barn Swallow	Hirundo rustica	P2	6/10/2002	Protected
Black-capped Chickadee	Poecile atricapillus	ON	//2002	Protected
Tufted Titmouse	Baeolophus bicolor	T2	3/24/2002	Protected
Red-breasted Nuthatch	Sitta canadensis	P2	5/15/2003	Protected
White-breasted Nuthatch	Sitta carolinensis	P2	4/26/2004	Protected
Brown Creeper	Certhia americana	B2	5/1/2002	Protected
Carolina Wren	Thryothorus ludovicianus	ON	7/27/2004	Protected
House Wren	Troglodytes aedon	ON	//2002	Protected
Winter Wren	Troglodytes troglodytes	S2	5/1/2002	Protected

Blue-gray Gnatcatcher	Polioptila caerulea	FY	7/20/2002	Protected
Eastern Bluebird	Sialia sialis	FL	7/9/2004	Protected
Veery	Catharus fuscescens	S2	//2002	Protected
Hermit Thrush	Catharus guttatus	S2	4/29/2002	Protected
Wood Thrush	Hylocichla mustelina	T2	5/1/2002	Protected
American Robin	Turdus migratorius	FY	6/10/2002	Protected
Gray Catbird	Dumetella carolinensis	ON	//2002	Protected
Northern Mockingbird	Mimus polyglottos	T2	4/29/2002	Protected
European Starling	Sturnus vulgaris	NY	5/15/2003	Unprotected
Cedar Waxwing	Bombycilla cedrorum	S2	//2003	Protected
Yellow-rumped Warbler	Dendroica coronata	X1	6/8/2001	Protected
Pine Warbler	Dendroica pinus	T2	7/28/2001	Protected
Black-and-white Warbler	Mniotilta varia	X1	6/8/2001	Protected
American Redstart	Setophaga ruticilla	T2	5/1/2002	Protected
Worm-eating Warbler	Helmitheros vermivorum	P2	6/10/2002	Protected
Ovenbird	Seiurus aurocapilla	B2	5/15/2004	Protected
Louisiana Waterthrush	Seiurus motacilla	X1	//2003	Protected
Kentucky Warbler	Oporornis formosus	B2	7/12/2003	Protected
Common Yellowthroat	Geothlypis trichas	ON	6/10/2002	Protected
Canada Warbler	Wilsonia canadensis	X1	6/8/2001	Protected
Eastern Towhee	Pipilo erythrophthalmus	T2	7/10/2002	Protected
Chipping Sparrow	Spizella passerina	FY	6/10/2002	Protected
Field Sparrow	Spizella pusilla	ON	6/10/2002	Protected
Song Sparrow	Melospiza melodia	S2	3/24/2002	Protected
White-throated Sparrow	Zonotrichia albicollis	X1	//2003	Protected
Scarlet Tanager	Piranga olivacea	ON	7/10/2002	Protected

Northern Cardinal	Cardinalis cardinalis	B2	5/30/2003	Protected
Rose-breasted Grosbeak	Pheucticus Iudovicianus	T2	6/19/2004	Protected
Indigo Bunting	Passerina cyanea	D2	7/14/2002	Protected
Red-winged Blackbird	Agelaius phoeniceus	ON	5/15/2004	Protected
Common Grackle	Quiscalus quiscula	X1	5/25/2003	Protected
Brown-headed Cowbird	Molothrus ater	D2	5/1/2002	Protected
Orchard Oriole	Icterus spurius	T2	5/27/2004	Protected
Baltimore Oriole	Icterus galbula	FS	6/10/2002	Protected
Purple Finch	Carpodacus purpureus	S2	4/29/2002	Protected
House Finch	Carpodacus mexicanus	D2	6/16/2003	Protected
American Goldfinch	Spinus tristis	FL	6/22/2003	Protected
House Sparrow	Passer domesticus	ON	5/24/2003	Unprotected

List of Species Breeding in Atlas Block 5665D				
Common Name	Scientific Name	Behavior Code	<u>Date</u>	NY Legal Status
Canada Goose	Branta canadensis	FL	6/3/2001	Game Species
Mallard	Anas platyrhynchos	FL	6/5/2001	Game Species
Wild Turkey	Meleagris gallopavo	FL	7/19/2001	Game Species
Great Blue Heron	Ardea herodias	FY	6/13/2001	Protected
Red-shouldered Hawk	Buteo lineatus	FY	7/3/2001	Protected-Special Concern
Red-tailed Hawk	Buteo jamaicensis	N2	7/15/2001	Protected
American Kestrel	Falco sparverius	X1	6/25/2001	Protected
Rock Pigeon	Columba livia	ON	7/2/2001	Unprotected
Mourning Dove	Zenaida macroura	P2	7/19/2001	Protected
Eastern Screech-	Megascops asio	X1	5/20/2001	Protected

Owl				
Great Horned Owl	Bubo virginianus	S2	5/30/2001	Protected
Barred Owl	Strix varia	X1	5/20/2001	Protected
Chimney Swift	Chaetura pelagica	FL	6/25/2001	Protected
Ruby-throated Hummingbird	Archilochus colubris	FY	7/22/2001	Protected
Red-bellied Woodpecker	Melanerpes carolinus	FY	7/22/2001	Protected
Yellow-bellied Sapsucker	Sphyrapicus varius	FY	6/5/2001	Protected
Downy Woodpecker	Picoides pubescens	FL	6/12/2001	Protected
Hairy Woodpecker	Picoides villosus	FL	7/20/2001	Protected
Northern Flicker	Colaptes auratus	N2	6/25/2001	Protected
Pileated Woodpecker	Dryocopus pileatus	S2	7/2/2001	Protected
Eastern Wood- Pewee	Contopus virens	X1	6/25/2001	Protected
Eastern Phoebe	Sayornis phoebe	NE	7/3/2001	Protected
Great Crested Flycatcher	Myiarchus crinitus	NY	7/3/2001	Protected
Eastern Kingbird	Tyrannus tyrannus	S2	6/25/2001	Protected
Red-eyed Vireo	Vireo olivaceus	FL	7/15/2001	Protected
Blue Jay	Cyanocitta cristata	FY	7/15/2001	Protected
American Crow	Corvus brachyrhynchos	FL	7/28/2001	Game Species
Tree Swallow	Tachycineta bicolor	FY	6/5/2001	Protected
Cliff Swallow	Petrochelidon pyrrhonota	FY	7/2/2001	Protected
Barn Swallow	Hirundo rustica	FL	7/2/2001	Protected
Black-capped Chickadee	Poecile atricapillus	FY	7/20/2001	Protected
Tufted Titmouse	Baeolophus bicolor	NY	6/5/2001	Protected
Red-breasted Nuthatch	Sitta canadensis	ON	6/21/2001	Protected

White-breasted Nuthatch	Sitta carolinensis	FY	6/25/2001	Protected
Carolina Wren	Thryothorus ludovicianus	FY	6/21/2001	Protected
House Wren	Troglodytes aedon	NE	6/18/2001	Protected
Eastern Bluebird	Sialia sialis	FL	6/5/2001	Protected
Veery	Catharus fuscescens	X1	6/25/2001	Protected
Wood Thrush	Hylocichla mustelina	NY	6/25/2001	Protected
American Robin	Turdus migratorius	FL	5/30/2001	Protected
Gray Catbird	Dumetella carolinensis	ON	6/16/2001	Protected
Northern Mockingbird	Mimus polyglottos	S2	5/30/2001	Protected
Brown Thrasher	Toxostoma rufum	FL	7/19/2001	Protected
European Starling	Sturnus vulgaris	FL	6/10/2001	Unprotected
Yellow Warbler	Dendroica petechia	N2	6/25/2001	Protected
American Redstart	Setophaga ruticilla	S2	6/28/2001	Protected
Ovenbird	Seiurus aurocapilla	S2	6/25/2001	Protected
Common Yellowthroat	Geothlypis trichas	FY	6/25/2001	Protected
Eastern Towhee	Pipilo erythrophthalmus	S2	6/28/2001	Protected
Chipping Sparrow	Spizella passerina	NE	7/15/2001	Protected
Field Sparrow	Spizella pusilla	FY	6/28/2001	Protected
Song Sparrow	Melospiza melodia	ON	6/28/2001	Protected
Dark-eyed Junco	Junco hyemalis	NE	6/28/2001	Protected
Scarlet Tanager	Piranga olivacea	S2	6/28/2001	Protected
Northern Cardinal	Cardinalis cardinalis	FL	7/19/2001	Protected
Rose-breasted Grosbeak	Pheucticus Iudovicianus	P2	7/22/2001	Protected
Red-winged Blackbird	Agelaius phoeniceus	FY	7/19/2001	Protected
Common Grackle	Quiscalus quiscula	FL	7/15/2001	Protected
Brown-headed	Molothrus ater	FL	7/15/2001	Protected

Cowbird				
Baltimore Oriole	Icterus galbula	S2	6/15/2001	Protected
Purple Finch	Carpodacus purpureus	X1	6/5/2001	Protected
House Finch	Carpodacus mexicanus	FY	7/19/2001	Protected
American Goldfinch	Spinus tristis	FY	8/25/2001	Protected
House Sparrow	Passer domesticus	ON	7/19/2001	Unprotected

List of Species Breeding in Atlas Block 5664A					
Common Name	Scientific Name	Behavior Code	<u>Date</u>	NY Legal Status	
Canada Goose	Branta canadensis	FL	6/2/2000	Game Species	
Wood Duck	Aix sponsa	FL	6/2/2000	Game Species	
American Black Duck	Anas rubripes	X1	//2002	Game Species	
Mallard	Anas platyrhynchos	FL	6/2/2000	Game Species	
Common Merganser	Mergus merganser	FL	6/2/2000	Game Species	
Wild Turkey	Meleagris gallopavo	X1	6/2/2000	Game Species	
Great Blue Heron	Ardea herodias	X1	6/2/2000	Protected	
Green Heron	Butorides virescens	FL	6/2/2000	Protected	
Bald Eagle	Haliaeetus leucocephalus	<u>S2</u>	<mark>//2002</mark>	Threatened	
Spotted Sandpiper	Actitis macularius	X1	//2002	Protected	
Mourning Dove	Zenaida macroura	S2	//2002	Protected	
Barred Owl	Strix varia	X1	//2004	Protected	
Whip-poor-will	Caprimulgus vociferus	<u>\$2</u>	<mark>//2004</mark>	Protected-Special Concern	
Chimney Swift	Chaetura pelagica	X1	//2004	Protected	
Ruby-throated Hummingbird	Archilochus colubris	X1	//2002	Protected	
Belted Kingfisher	Megaceryle alcyon	X1	6/2/2000	Protected	

Red-bellied Woodpecker	Melanerpes carolinus	S2	//2002	Protected
Yellow-bellied Sapsucker	Sphyrapicus varius	X1	6/2/2000	Protected
Downy Woodpecker	Picoides pubescens	S2	//2004	Protected
Hairy Woodpecker	Picoides villosus	X1	5/29/2001	Protected
Northern Flicker	Colaptes auratus	P2	6/2/2000	Protected
Pileated Woodpecker	Dryocopus pileatus	S2	//2002	Protected
Eastern Wood-Pewee	Contopus virens	S2	//2002	Protected
Least Flycatcher	Empidonax minimus	S2	//2004	Protected
Eastern Phoebe	Sayornis phoebe	X1	5/29/2001	Protected
Great Crested Flycatcher	Myiarchus crinitus	S2	//2002	Protected
Eastern Kingbird	Tyrannus tyrannus	X1	//2004	Protected
Blue-headed Vireo	Vireo solitarius	X1	5/29/2001	Protected
Warbling Vireo	Vireo gilvus	S2	//2004	Protected
Red-eyed Vireo	Vireo olivaceus	S2	//2002	Protected
Blue Jay	Cyanocitta cristata	X1	6/2/2000	Protected
American Crow	Corvus brachyrhynchos	X1	6/2/2000	Game Species
Fish Crow	Corvus ossifragus	X1	//2004	Protected
Tree Swallow	Tachycineta bicolor	FL	6/27/2003	Protected
Cliff Swallow	Petrochelidon pyrrhonota	X1	//2002	Protected
Black-capped Chickadee	Poecile atricapillus	S2	//2002	Protected
Tufted Titmouse	Baeolophus bicolor	S2	//2002	Protected
White-breasted Nuthatch	Sitta carolinensis	S2	//2002	Protected
Brown Creeper	Certhia americana	S2	//2002	Protected
House Wren	Troglodytes aedon	X1	6/2/2000	Protected
Blue-gray Gnatcatcher	Polioptila caerulea	X1	//2004	Protected
Veery	Catharus	S2	//2002	Protected

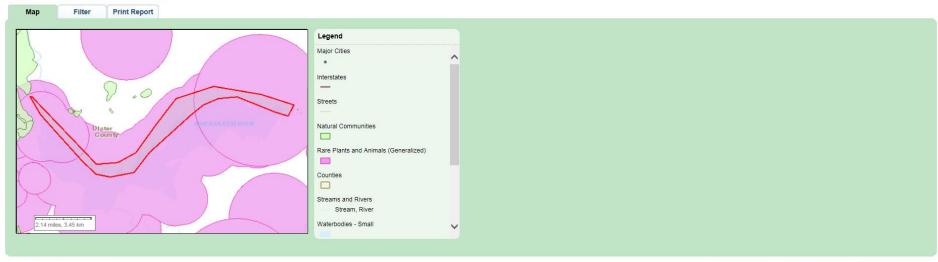
	fuscescens			
Wood Thrush	Hylocichla mustelina	S2	//2002	Protected
American Robin	Turdus migratorius	FY	//2004	Protected
Gray Catbird	Dumetella carolinensis	X1	6/2/2000	Protected
Cedar Waxwing	Bombycilla cedrorum	S2	//2002	Protected
Yellow Warbler	Dendroica petechia	X1	6/2/2000	Protected
Yellow-rumped Warbler	Dendroica coronata	X1	6/2/2000	Protected
Black-throated Green Warbler	Dendroica virens	X1	//2002	Protected
Blackburnian Warbler	Dendroica fusca	X1	//2002	Protected
Black-and-white Warbler	Mniotilta varia	X1	//2004	Protected
American Redstart	Setophaga ruticilla	S2	//2004	Protected
Worm-eating Warbler	Helmitheros vermivorum	S2	//2002	Protected
Ovenbird	Seiurus aurocapilla	S2	//2002	Protected
Louisiana Waterthrush	Seiurus motacilla	X1	6/27/2003	Protected
Common Yellowthroat	Geothlypis trichas	X1	6/2/2000	Protected
Chipping Sparrow	Spizella passerina	X1	//2002	Protected
Song Sparrow	Melospiza melodia	NE	6/2/2000	Protected
Scarlet Tanager	Piranga olivacea	S2	//2002	Protected
Northern Cardinal	Cardinalis cardinalis	X1	//2002	Protected
Rose-breasted Grosbeak	Pheucticus Iudovicianus	X1	6/2/2000	Protected
Red-winged Blackbird	Agelaius phoeniceus	P2	6/2/2000	Protected
Common Grackle	Quiscalus quiscula	FY	//2004	Protected
Brown-headed Cowbird	Molothrus ater	X1	6/2/2000	Protected
Baltimore Oriole	Icterus galbula	S2	//2004	Protected

American Goldfinch Spinus tristis	X1	//2002	Protected
-----------------------------------	----	--------	-----------

List of Species Breeding in Atlas Block 5564B					
Common Name	Scientific Name	Behavior Code	<u>Date</u>	NY Legal Status	
Canada Goose	Branta canadensis	FL	//2004	Game Species	
Mallard	Anas platyrhynchos	X1	6/15/2004	Game Species	
Common Merganser	Mergus merganser	FL	6/15/2001	Game Species	
Wild Turkey	Meleagris gallopavo	FL	6/15/2004	Game Species	
Great Blue Heron	Ardea herodias	X1	5/6/2000	Protected	
Green Heron	Butorides virescens	X1	6/24/2004	Protected	
Turkey Vulture	Cathartes aura	X1	6/24/2004	Protected	
Bald Eagle	Haliaeetus leucocephalus	NY	//2002	Threatened	
Sharp-shinned Hawk	Accipiter striatus	X1	<mark>//2004</mark>	Protected-Special Concern	
Red-shouldered Hawk	Buteo lineatus	X1	6/15/2004	Protected-Special Concern	
Broad-winged Hawk	Buteo platypterus	FL	7/3/2005	Protected	
Red-tailed Hawk	Buteo jamaicensis	FL	7/2/2004	Protected	
American Kestrel	Falco sparverius	X1	5/6/2000	Protected	
Killdeer	Charadrius vociferus	X1	6/21/2005	Protected	
Spotted Sandpiper	Actitis macularius	X1	7/5/2002	Protected	
Rock Pigeon	Columba livia	X1	7/5/2002	Unprotected	
Mourning Dove	Zenaida macroura	FL	6/21/2005	Protected	
Yellow-billed Cuckoo	Coccyzus americanus	X1	7/3/2005	Protected	
Black-billed Cuckoo	Coccyzus erythropthalmus	X1	6/15/2004	Protected	
Ruby-throated Hummingbird	Archilochus colubris	X1	6/24/2004	Protected	

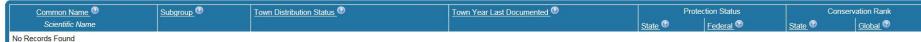
Belted Kingfisher	Megaceryle alcyon	X1	//2004	Protected
Red-bellied Woodpecker	Melanerpes carolinus	FY	6/15/2001	Protected
Yellow-bellied Sapsucker	Sphyrapicus varius	NY	7/3/2005	Protected
Downy Woodpecker	Picoides pubescens	X1	5/6/2000	Protected
Hairy Woodpecker	Picoides villosus	FL	6/24/2004	Protected
Northern Flicker	Colaptes auratus	FL	7/18/2004	Protected
Pileated Woodpecker	Dryocopus pileatus	X1	5/6/2000	Protected
Eastern Wood-Pewee	Contopus virens	S2	7/2/2004	Protected
Least Flycatcher	Empidonax minimus	S2	6/21/2005	Protected
Eastern Phoebe	Sayornis phoebe	UN	6/15/2004	Protected
Great Crested Flycatcher	Myiarchus crinitus	T2	7/18/2004	Protected
Eastern Kingbird	Tyrannus tyrannus	DD	6/24/2004	Protected
Yellow-throated Vireo	Vireo flavifrons	X1	5/6/2000	Protected
Blue-headed Vireo	Vireo solitarius	P2	5/6/2000	Protected
Warbling Vireo	Vireo gilvus	DD	6/21/2005	Protected
Red-eyed Vireo	Vireo olivaceus	FL	7/3/2005	Protected
Blue Jay	Cyanocitta cristata	FY	6/20/2004	Protected
American Crow	Corvus brachyrhynchos	FL	6/15/2004	Game Species
Common Raven	Corvus corax	X1	5/6/2000	Protected
Tree Swallow	Tachycineta bicolor	FL	6/15/2004	Protected
Northern Rough- winged Swallow	Stelgidopteryx serripennis	X1	6/21/2005	Protected
Cliff Swallow	Petrochelidon pyrrhonota	ON	6/21/2005	Protected
Barn Swallow	Hirundo rustica	NY	6/15/2004	Protected
Black-capped Chickadee	Poecile atricapillus	FL	6/24/2004	Protected
Tufted Titmouse	Baeolophus bicolor	FL	6/15/2004	Protected
Red-breasted Nuthatch	Sitta canadensis	X1	5/6/2000	Protected
			•	

White broasted				
White-breasted Nuthatch	Sitta carolinensis	FL	6/20/2004	Protected
Brown Creeper	Certhia americana	S2	//2004	Protected
Carolina Wren	Thryothorus Iudovicianus	D2	7/12/2004	Protected
House Wren	Troglodytes aedon	DD	6/21/2005	Protected
Blue-gray Gnatcatcher	Polioptila caerulea	X1	7/12/2004	Protected
Eastern Bluebird	Sialia sialis	FL	7/18/2004	Protected
Veery	Catharus fuscescens	S2	//2004	Protected
Hermit Thrush	Catharus guttatus	S2	7/12/2004	Protected
Wood Thrush	Hylocichla mustelina	FY	6/21/2005	Protected
American Robin	Turdus migratorius	FL	6/15/2004	Protected
Gray Catbird	Dumetella carolinensis	FY	6/15/2004	Protected
Brown Thrasher	Toxostoma rufum	X1	6/15/2004	Protected
European Starling	Sturnus vulgaris	FL	6/15/2004	Unprotected
Cedar Waxwing	Bombycilla cedrorum	B2	6/15/2004	Protected
Blue-winged Warbler	Vermivora pinus	X1	5/6/2000	Protected
Yellow Warbler	Dendroica petechia	S2	6/20/2004	Protected
Chestnut-sided Warbler	Dendroica pensylvanica	X1	7/12/2004	Protected
Black-throated Blue Warbler	Dendroica caerulescens	X1	7/5/2002	Protected
Yellow-rumped Warbler	Dendroica coronata	FY	7/3/2005	Protected
Black-throated Green Warbler	Dendroica virens	FY	7/2/2004	Protected
Blackburnian Warbler	Dendroica fusca	S2	7/12/2004	Protected
Pine Warbler	Dendroica pinus	X1	6/15/2001	Protected
Black-and-white Warbler	Mniotilta varia	S2	//2004	Protected
American Redstart	Setophaga ruticilla	S2	6/24/2004	Protected
Ovenbird	Seiurus aurocapilla	T2	7/2/2004	Protected


		T		
Northern Waterthrush	Seiurus noveboracensis	X1	6/15/2001	Protected
Louisiana Waterthrush	Seiurus motacilla	FY	7/3/2005	Protected
Common Yellowthroat	Geothlypis trichas	FL	7/18/2004	Protected
Eastern Towhee	Pipilo erythrophthalmus	P2	7/18/2004	Protected
Chipping Sparrow	Spizella passerina	FL	6/15/2004	Protected
Song Sparrow	Melospiza melodia	DD	7/12/2004	Protected
White-throated Sparrow	Zonotrichia albicollis	X1	5/6/2000	Protected
Dark-eyed Junco	Junco hyemalis	X1	5/6/2000	Protected
Scarlet Tanager	Piranga olivacea	S2	6/24/2004	Protected
Northern Cardinal	Cardinalis cardinalis	S2	6/24/2004	Protected
Rose-breasted Grosbeak	Pheucticus Iudovicianus	P2	7/18/2004	Protected
Indigo Bunting	Passerina cyanea	DD	7/3/2005	Protected
Red-winged Blackbird	Agelaius phoeniceus	FL	6/15/2004	Protected
Common Grackle	Quiscalus quiscula	FY	6/15/2004	Protected
Brown-headed Cowbird	Molothrus ater	FL	7/3/2005	Protected
Baltimore Oriole	Icterus galbula	FY	6/21/2005	Protected
Purple Finch	Carpodacus purpureus	X1	7/12/2004	Protected
House Finch	Carpodacus mexicanus	FL	6/21/2005	Protected
American Goldfinch	Spinus tristis	P2	7/12/2004	Protected
House Sparrow	Passer domesticus	ON	6/15/2004	Unprotected

Current Date: 6/22/2016

Attachment E


NYS Department of Environmental Conservation (NYSDEC) Nature Explorer Results

USER DEFINED SEARCH RESULTS

Criteria: Selected Map Area

Create PDF Report

Note: Restricted plants and animals have also been documented in one or more of the Towns or Cities in which your user-defined area is located, but are not listed in these results. This application does not provide information at the level of Town or City on state-listed animals and on other sensitive animals and plants. See a list of the restricted animals and plants documented from the following counties: <u>Ulster</u>. Any individual plant or animal on this county's restricted list may or may not occur in this particular user-defined area.

This list only includes records of rare species and significant natural communities from the databases of the NY Natural Heritage Program. This list is not a definitive statement about the presence or absence of all plants and animals, including rare or state-listed species, or of all significant natural communities. For most areas, comprehensive field surveys have not been conducted, and this list should not be considered a substitute for on-site surveys.

Attachment F Bat Habitat Assessment Form

PHASE 1 SUMMER HABITAT ASSESSMENTS

CWB

INDIANA BAT HABITAT ASSESSMENT DATASHEET

Project Name: Ashokan Rail Trail				Date: 6/2	8-6/29/16, 7/7/16,
Township/Range/Section: Hurley and Olive					7/17
Lat Long/UTM/ Zone: Between 42° 0'20.87"N, 74°16'16.63"W and			and _{Surveyor:} J	ohanna Duffy, CV	
	41°59'5.60	<u>"</u> N, 74° 5'13.9	93"W (NAD 83)		Corinne Steinmulle
Brief Project Descr	ription				
				destrian and bicycle tra	
				ne Town of Olive. The p	
Reservoir.	ation of a recre	ational trail con	luor on a lormer	rail line north of the As	snokan
reserven.					
Project Area					
	Total Acres	Fores	t Acres	Open Acres	
Project	56	40)	16	
Proposed Tree	Completely cleared	Partially cleared (will leave trees)	Preserve acres- no clearing		_
Removal (ac)		9.2			
Vegetation Cover T	Types	1			
Pre-Project			Post-Project		
Forested	t		Forested		
		•			
Landscape within 5 Flight corridors to		202			
Flight corridors to	other forested area	Yes			
Describe Adjacent	Properties (e.g. foi	rested, grassland, c	ommercial or reside	ncial development, water so	urces)
As	shokan Res	ervoir, com	mercial and	residential develo	pment
					<u>. </u>
Proximity to Public	: Land	1			
What is the distanc parks, conservation			ed public lands (e.g.	., national or state forests, n	ational or state
	Project is	on foreste	d public land		

PHASE 1 SUMMER HABITAT ASSESSMENTS

Use additional sheets to assess discrete habitat types at multiple sites in a project area

Include a map depicting locations of sample sites if assessing discrete habitats at multiple sites in a project area A single sheet can be used for multiple sample sites if habitat is the same

Sample Site Descrip	tion			
Sample Site No.(s): _	1			
Water Resources at	Sample Site			
Stream Type	Ephemeral	Intermittent	Perennial	Describe existing condition of water
(# and length)	Multiple	Multiple	Multiple	sources:
Pools/Ponds	Reservoir	Open and acc	essible to bats?	Water is high quality and is
(# and size)	>8.000 acres	Yes		
Wetlands	Permanent	Seasonal	(i)	used for public drinking
(approx. ac.)	Multiple	Multiple	1	
Forest Resources at	Sample Site		7.0	
Closure/Density	Canopy (> 50 ')	Midstory (20-50') 5	Understory (<20')	1=1-10%, 2=11-20%, 3=21-40%, 4=41-60%, 5=61-80%, 6=81=100%
Dominant Species of Mature Trees			agbark hickory, s ite pine, and Am	
% Trees w/ Exfoliating Bark		30		
Size Composition of	Small (3-8 in)	Med (9-15 in)	Large (>15 in)	*
Live Trees (%)	50	30	20	1
No. of Suitable Snag	s	- 00	20	
Standing dead trees w without these character			or hollows. Snags	
IS THE HABITAT S	SUITABLE FOR	INDIANA BATS?	Yes	15
Additional Commen	te.			
Additional Commen	16.34			
Size o	of trees qua	lifies them t	for potential	use as roost trees.

Attach aerial photo of project site with all forested areas labeled and a general description of the habitat

Photographic Documentation: habitat shots at edge and interior from multiple locations; understory/midstory/canopy, examples of potential suitable snags and live trees; water sources

Attachment G Species Conclusion Table

Species Conclusions Table Project Name: Ashokan Rail Trail Date: 7/14/16

Date. 7/14/10					
Species Name	Potential Habitat Present?	Critical Habitat Present?	ESA/Eagle Act Determination	Notes / Documentation Summary (include full rationale in your report)	
Northern long-eared bat (Myotis septentrionalis) and Indiana Bat (Myotis sodalis)	Yes	No	May effect, not likely to Adversely Affect	Although a small portion of the project area will require removal of trees (2 total) greater than 3 inches DBH, the habitat impact will be minimal. Changes in lighting will also occur as a result of the project, due to increases in mast lighting the proposed project is recommended to have a "May Effect not Likely to Adversely Affect" on these protected bat species.	
Bog turtle (Clemmys muhlenbergii)	No	No	No Effect	The delineated wetlands to be impacted lacked deep mucky soils, contained common reed, were shaded by upland overstory, and lacked the microtopographic features important to this species.	
Bald eagle (<i>Haliaeetus leucocephalus</i>)	Yes	No	May Affect, Not Likely to Adversely Affect. No BGEPA permit required.	Suitable habitat and nest with young identified by BBA and NYSDEP. To avoid impact and necessity for a BGEPA permit, it is recommended that construction that will occur within sight or 660 feet of a nest occur during the non-breeding season, from mid-September to December.	
Sharp-Shinned Hawk (Accipiter striatus)	Yes	No	No Effect	Birds breed in deep forests. In winter, will utilize forest edge and open habitat for hunting.	
Osprey (Pandion haliaetus)	Yes	No	No Effect	Common around shorelines and waterways. Habitat includes rivers, lakes, reservoirs, lagoons, swamps, and marshes. Nests are usually elevated and within a short distance (12 miles) of an adequate supply of fish.	
Red-shouldered hawk (Buteo lineatus)	Yes	No	No Effect	Forest birds that prefer an open sub-canopy for hunting. Can be found in suburban areas with mixed forest and housing. Suitable foraging habitat was identified within the corridor. However, impacts will be temporary and limited to noise during construction.	
American bittern (Botaurus lentiginosus)	Yes	No	No Effect	Shallow, freshwater marshes. Tend to stay hidden among dense vegetation. Suitable habitat was identified immediately adjacent the corridor. However, impacts will be temporary and limited to noise during construction. No direct impacts will occur to suitable wetlands for this species.	
Whip-poor-will (Caprimulgus vociferos)	No	No	No Effect	Forests with open understory. Found in both deciduous and deciduous pine mix. Nest on forest floor and are strictly nocturnal. No open understory was identified within the project corridor.	
Common nighthawk (Chordeiles minor)	No	No	No Effect	Nest on bare soil and/or rock in forest clearings, but have also been known to nest on gravel rooftops. No bare soil and/or rock clearings were identified within the project corridor.	

Ashokan Rail Trail
Ulster County
Towns of Hurley and Olive

Traffic Impact Study (TIS)

March 2017

Ashokan Rail Trail **Ulster County**

Towns of Hurley and Olive Ulster County, New York

Traffic Impact Study

March 2017

Prepared For:

Ulster County 244 Fair Street PO Box 1800 Kingston, NY 12402

Prepared By:

Barton & Loguidice, D. P.C. 10 Airline Drive Suite 200 Albany, NY 12205

Contents

	Figures	ii
	Appendices	iii
1	Executive Summary	1
2	Introduction & Background	2
	Study Purpose	2
	Project Description	2
	Study Approach	3
3	Existing Conditions	5
	Speeds	5
	Existing Intersection Conditions	5
	NY Route 28 and Reservoir Road	5
	NY Route 28 and NY Route 375	6
	NY Route 28 and Basin Road	6
	Existing Traffic Volumes	6
	Other Proposed Developments	7
	Future No Build Traffic Volumes	7
4	Proposed Development	8
	Project Description	8
	Traffic Generation Methodology	10
5	Capacity and Level of Service Analysis	14
	LOS Analysis Results	14
	Route 28 at Basin Road/Zena Road	14
	Route 28 at Route 375	15
	Route 28 at Reservoir Road	15

	Route 28 at the Eastern Trailhead	15
	Route 28 at the Jones Cove Trailhead	15
	Proposed Mitigation	17
6	Sight Distance Evaluation	18
	Intersection Sight Distance	18
7	Crash Analysis	20
	Intersection Crash Analysis	20
	Route 28 at Basin Road/Zena Road	20
	Route 28 at Route 375	21
	Route 28 at Reservoir Road	21
	Segment Crash Analysis	22
	Eastern Trailhead	22
	Jones Cove Trailhead	22
8	Trailhead Parking	24
9	Conclusions and Recommendations	25

Figures

- Figure 1 Project Location Map
- Figure 2 Existing Traffic Volumes Peak Hour
- Figure 3 –Future No Build Traffic Volumes Peak Hour
- Figure 4 Eastern Trailhead Location Map
- Figure 5 Jones Cove Trailhead Location Map
- Figure 6 Trip Distribution Eastern Trailhead
- Figure 7 Trip Distribution Jones Cove Trailhead
- Figure 8 Trip Assignment Eastern Trailhead
- Figure 9 Trip Assignment Jones Cove Trailhead
- Figure 10 Build ETC (2018) Traffic Volumes
- Figure 11 Build ETC + 10 (2028) Traffic Volumes

Appendices

Appendix A – Turning Movement Counts

Appendix B – Existing Conditions Synchro Reports

Appendix C – Future Conditions Synchro Reports

Appendix D – Crash Data

1 Executive Summary

This traffic impact study was performed to determine if there would be any impacts to nearby roads and intersections due to the anticipated traffic generated by the proposed Ashokan Rail Trail project. The proposed trail project includes the construction of an 11.5 mile multi-user trail along the western side of the Ashokan Reservoir on the former D&H rail corridor. The project proposes two trailheads for users to access the trail from NY Route 28 and another trailhead with access from NY Route 28A near Boiceville. Construction is expected to be completed near the end of 2018 for the trail and trailheads along Route 28. The trailhead accessed along Route 28A is expected to be completed in 2020.

Existing and future operations were studied at three intersections along Rout 28 they are: Route 28 and Reservoir Road, Route 28 and Route 375, and Route 28 at Basin Road/Zena Road. A trip generation and trip distribution analysis were completed to determine build out traffic volumes. The trip generation estimates that the project will generate a net of 116 vehicles during the peak hour on a Saturday, which will be distributed using existing traffic patterns between the two Route 28 trailheads. Pass-by trips were not accounted for to remain conservative.

It was determined that impacts to the study intersections were negligible. Each intersection studied will operate, and will continue to operate, at an acceptable level (Level of Service C or above) with minimal additional delay of 1 second or less for the existing and future build out conditions. For the signalized intersections, signal timings were analyzed and it was found that with minor adjustments to the existing signal timings, delay times and traffic operations (Level of Service) can be slightly improved for both intersections and all movements for the future build scenario.

Historical crash data was analyzed at the three study intersections, and within a 0.125 (1/8) mile radius of the proposed driveways. All three intersections on Route 28 had crash rates above the statewide average for their intersection type and control, with the crash types being typical. Rear endings and collisions with animals and fixed objects were the predominant crashes. Traffic generated by this project will not significantly impact intersections, or worsen the severity or number of crashes, therefore, no mitigation is required based on crashes.

Overall, estimated traffic volumes will have negligible impacts to the study area. While mitigation wasn't found to be necessary, adjusted signal timings could improve traffic operations (LOS) for the two intersections whether the project is constructed or not.

2 Introduction & Background

Study Purpose

The purpose of this study is to determine impacts (if any) to nearby intersections related to the Ashokan Rail Trail project and the NYCDEP trailhead projects. The study will investigate potential impacts for the existing conditions and future operations, sight distances at the proposed trailhead entrances, and crash data at existing intersections. The results of this study will discuss the need for mitigation (if any) in the study area due to the proposed projects.

Project Description

Ulster County is proposing the construction of an 11.5-mile multi-user trail on a former rail line north of the Ashokan Reservoir. The proposed trail is located in the Towns of Hurley and Olive, paralleling Route 28 and the Ashokan Reservoir, beginning near Basin Road in the Town of Hurley and extending to NYS Route 28A in Boiceville. The project includes the construction of a multi-use trail, removal of rail and rail ties, creation of trailheads and interpretive areas, construction of bridges, and the repair and maintenance to existing culvert structures.

Three trailheads are proposed to be designed and constructed by the NYCDEP. The Jones Cove Trailhead is located near the Shokan Road and Route 28 intersection, and the eastern trailhead will have an entrance located near the intersection of Williams Lane and Route 28 and is near the Woodstock dike. The western trailhead will be accessed along Route 28A in Boiceville and traffic impacts if any along Route 28A will be determined under another study. Figure 1 shows the proposed trail and trailhead locations.

Study Approach

There are three (3) intersections that may be impacted by the construction of the trail and were further evaluated to determine if there were expected to be any traffic impacts. The study intersections are:

- (1) Reservoir Road at NY Route 28
- (2) NY Route 375 at NY Route 28
- (3) Basin Road at NY Route 28

Existing automatic traffic recorder (ATR) data along Route 28 was used to determine the AM, PM, and Saturday peak hours. ATR data was obtained through the NYSDOT Traffic Data Viewer, which had recent data for spot locations along NY Route 28. Based on the ATR peak hour trends, turning movement counts were obtained by the B&L design team for 2 hour periods in the AM and PM, and for 3 hours on midday Saturday. Future trail use was then estimated and converted into trips. Trips were then distributed amongst existing traffic patterns based on the turning movement counts. A Level of Service (LOS) capacity analysis was then completed for the peak hour scenario that would expect to have the largest impact to the study intersections, or the highest estimated trip volumes combined with the highest traffic volumes. The results of the analysis show that the proposed project will not have a negative impact along NY Route 28 or 28A or the other project area roadways.

PROJECT LOCATION

Ashokan Rail Trail Towns of Hurley & Olive Ulster County, New York

3 Existing Conditions

Access to the proposed trailheads is expected to be through driveways intersecting Route 28. The study will assess the impacts due to the trailheads for the three identified intersections along NY Route 28; Reservoir Road at NY Route 28, NY Route 375 at NY Route 28, and Basin Road at NY Route 28. NY Route 28 is classified as a principal arterial, with a varying posted speed limit within the study area. There are no designated pedestrian or bicycle facilities at the study intersections, or along the NY Route 28 corridor between Route 28A and Basin Road.

Speeds

The (regulatory) posted speed limit along NY Route 28 that intersects Reservoir Road is 45 mph. Count station 860229 from the NYS Traffic Data Viewer, was used to determine existing speeds along NY Route 28. This count station is placed approximately 5,600 feet (1.06 miles) east of the intersection of NY Route 28 and Reservoir Road. From the data at the count station, the 85th percentile speed for eastbound traffic is 51.4 mph, and westbound traffic is 52.9 mph along this section. The 85th percentile speeds were collected from 11/2/2015 through 11/6/2015 by NYSDOT. The average speed for eastbound traffic was 45.2 mph, and the average speed for westbound traffic was 47.0 mph.

Reservoir Road speeds were recorded between 11/2/2015 and 11/6/2015 approximately 600' from the study intersection at NYSDOT count station 860901. The posted speed limit at this location is 35 mph, and the 85th percentile speed for northbound traffic was 41.4 mph, and 44.1 mph for southbound traffic. This ranges 6-9 mph over the posted speed limit. Average speeds were recorded as 35.2 mph for northbound and 37.7 for southbound.

The posted speed limit on NY Route 28 at the intersection with NY Route 375 and Basin Road is 45 mph. Count station 860228, located on the east side of the intersection, did not have available speed data. However, it is reasonable to say that the speeds are similar to the information from count station 860229 (52-53 mph) also located in a 45 mph speed limit zone.

Existing Intersection Conditions

NY Route 28 and Reservoir Road

The intersection of NY Route 28 and Reservoir Road is a 3-legged intersection operating under one-way stop control. NY Route 28 is the east and west leg, while Reservoir Road is the south

leg. NY Route 28 has a shared turn and through lane for both approaches, while Reservoir Road is under stop control with a shared left-right-thru lane. Both approaches of the intersection for NY Route 28, have a cross section of an approach lane, a departure lane, and a striped shoulder with curbing on each side. There is a closed drainage system and overhead utilities within the intersection. The cross section for Reservoir Road consists of an approach lane, departure lane, with a striped shoulder and curbing on each side.

NY Route 28 and NY Route 375

This is a 3-legged intersection operating under signalized control. The west leg, NY Route 28, consists of two approach lanes and one departure lane. There is a shared left turn/through lane, and a through lane. The departure lane has curbing at the shoulder edge, and a commercial driveway intersecting NY Route 28. The east leg consists of an approach that has an exclusive right turn lane and a through lane, while there are two departure lanes. The north and south sides of NY Route 28 have a shoulder with curbing on the north side, and no curbing on the south side. NY Route 375 consists of a shared right/through/left turn approach lane, and a single departure lane. There is a shoulder on each side with curbing. The signal is span wire mounted, and the intersection has overhead utilities, and closed drainage on the north side.

NY Route 28 and Basin Road

This is a four-legged intersection operating under signalized control. Basin Road, the west leg, consists of a single approach and departure lane. The approach lane is a shared right/through/left turn lane. There are striped shoulders on each side. The east leg, Zena Road, has a single approach and departure lane. The approach lane consists of a shared left/through/right turn lane. There is a striped shoulder on each side. NY Route 28 consists of the north and south legs. Both legs have two approach and two departure lanes. The approach lanes are shared through/turning lanes. There is a striped shoulder on each side with intermittent curbing on each side of NY Route 28. Approximately 300' north of the intersection, Basin Road has a right turn bypass lane where it eventually "tees" Basin Road, the west leg of the intersection.

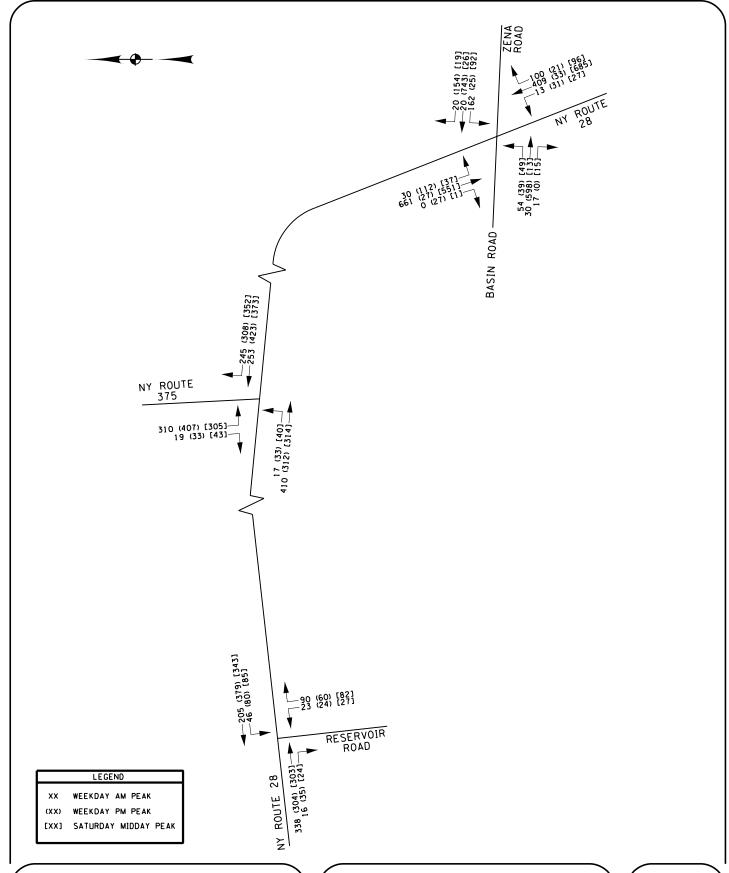
Existing Traffic Volumes

Turning movement counts were taken at the 3 study intersections. AM, PM, and midday Saturday counts were taken on October 29, 2016 and November 1, 2016, to determine the peak

hour for each time period. Table 1 below shows the peak hour for each study intersection for the AM, PM, and Saturday peak hours.

Table 3.1 - Intersection Peak Hours

		Intersection					
		Reservoir Road at	NY Route 375 at	Basin Road at			
		Route 28	NY Route 28	NY Route 28			
Peak Hour	AM	8:00 AM – 9:00 AM	8:00 AM – 9:00 AM	8:00 AM – 9:00 AM			
	PM	3:30 PM – 4:30 PM	3:30 PM – 4:30 PM	4:00 PM – 5:00 PM			
	Midday Saturday	12:00 PM – 1:00 PM	12:45 PM – 1:45 PM	12:30 PM – 1:30 PM			

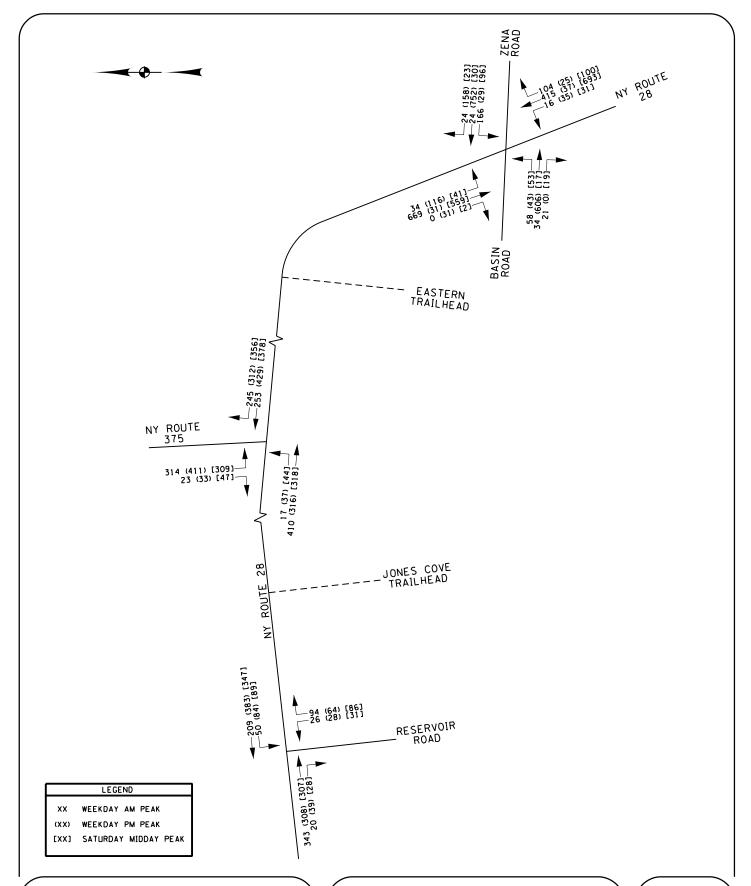

The NYSDOT traffic count reference, "Seasonal Adjustment Factors 2016," was reviewed to determine if the traffic counts were taken during seasonally low traffic periods. The AM and PM counts, which were performed on November 1, were taken during a seasonally low traffic month in a suburban area, during a work week. Therefore, these counts were adjusted by 0.948 to better illustrate a year round volume at the study intersections. The Saturday TMCs were performed on October 30, and did not require a seasonal adjustment since October on the weekend is representative of year round traffic volumes. An adjustment for the Saturday TMCs could be applied that would reduce volumes. However, to remain conservative, no adjustments were made to the Saturday counts. Figure 2 on the following page is the turning movement diagram for seasonally adjusted existing turning movement counts at each peak hour for each of the study intersections.

Other Proposed Developments

After consultation with Ulster County and the Towns of Olive and Hurley, there are no currently proposed or approved development within the study area that would impact or create an increase in traffic. Therefore, no other projects were included in this traffic study.

Future No Build Traffic Volumes

A growth rate was applied to the TMCs to obtain future no build traffic volumes. A growth rate of 0.5% was used to project existing turning movement counts to future traffic volumes. See Appendix C for growth rate confirmation.



EXISTING TRAFFIC VOLUMES PEAK HOUR

DATE: JANUARY 2017

Figure 2
Project No. 369.007.001

NO BUILD ETC (2018)
TRAFFIC VOLUMES PEAK HOUR

DATE: JANUARY 2017

Figure

3

Project No.

4 Proposed Development

Project Description

The proposed trail project includes two trailheads that are being designed and developed by the NYC DEP. Identified here for discussion as the Eastern Trailhead and Jones Cove Trailhead. The approximate access drive locations for each trailhead are circled in Figures 4 and 5.

Figure 4 – Eastern Trailhead Access Location (Satellite image and map)

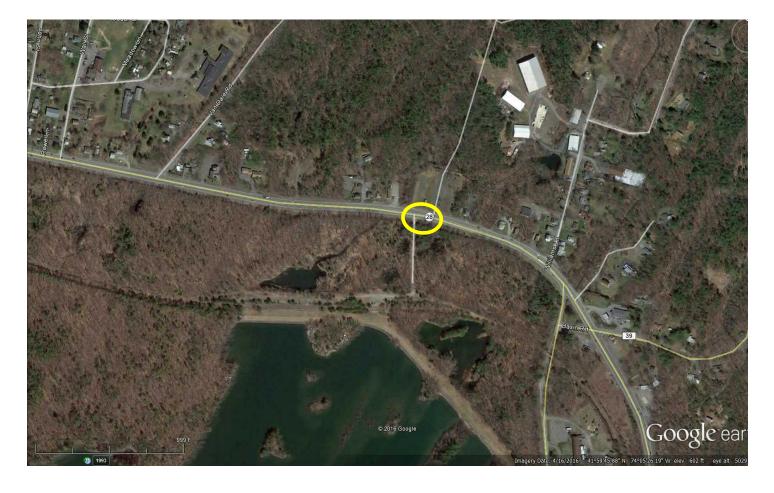
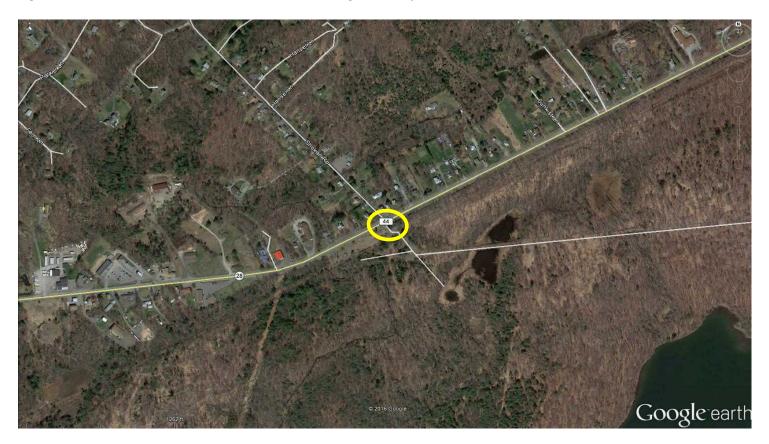



Figure 5 – Jones Cove Trailhead Location (Satellite image and map)

Traffic Generation Methodology

To evaluate potential impacts of the Ashokan Rail Trail and trailheads on the adjacent transportation system, an estimate of trip generation site potential was calculated. Trip Generation, 9th Edition published by the Institute of Transportation Engineers (ITE) is an industry-standard and typical resource for estimating the traffic generated by various types of land uses. However, due to the nature of this project, lack of historical data, and a land use that does not categorically fit within the published data, the data provided in the Trip Generation does not apply to these projects and was not used to estimate the site generated trips.

To estimate the yearly usage of the trail, a study completed by New York State Office of Parks, Recreation, and Historic Preservation was used (NYSOPRHP). An Analysis of the 2015 Trail User Survey & Count¹ has an annual estimate of trail usage for a portion of surveyed trails around New York State. Four trails (five trail segments) were chosen for similarities to those of the proposed Ashokan Trail and geographic location in New York State (Capital and Hudson Valley Region);

- (1) Hudson Valley Rail Trail (Highland Segment)
- (2) O&W Rail Trail (Hurley Segment)

¹ New York State Office of Parks, Recreation, and Historic Preservation. *An Analysis of the 2015 Trail User* Survey & Count. February 2016.

- (3) Harlem Valley Rail Trail
- (4) Mohawk Hudson Bikeway (Blatanic Park and Lions Park)

The averages of the annual usage for the listed trails was used to determine an estimated annual usage for the Ashokan Rail Trail. The Hudson Valley Rail Trail – Lloyd, was not used to determine the average annual trail usage estimate since this trail has a unique feature (Walkway over the Hudson River) that could skew the averages.

Table 4.1 - Estimate Annual Trail Usage

Trail Name	Estimate of Yearly Use
Hudson Valley Rail Trail (Highland Segment)	192,700
O&W Rail Trail (Hurley Segment)	130,535
Harlem Valley Rail Trail	136,365
Mohawk Hudson Bikeway (Blatnick Park)	207,911
Mohawk Hudson Bikeway (Lions Park)	373,647
Average	208,232

Determining peak user times and days was based on existing trail user data counts. Parks & Trails New York is currently collecting raw user counts at multiple trails in New York State. Trail counts were analyzed for 4 existing trails, the Erie Canal Trails in Tonawanda, Camillus, and Dewitt, and the Warren County Bikeway. The Erie Canal Trail in Dewitt provided daily user counts from June – September, the Erie Canal in Tonawanda provided daily user counts for one year. The Erie Canal in Camillus has hourly user counts from June through September, and the Warren County Bikeway has hourly user counts over the course of a year. The user counts from these existing trails were analyzed to establish trail usage trends such as peak months and peak days, and how these compared to an annual usage of each trail.

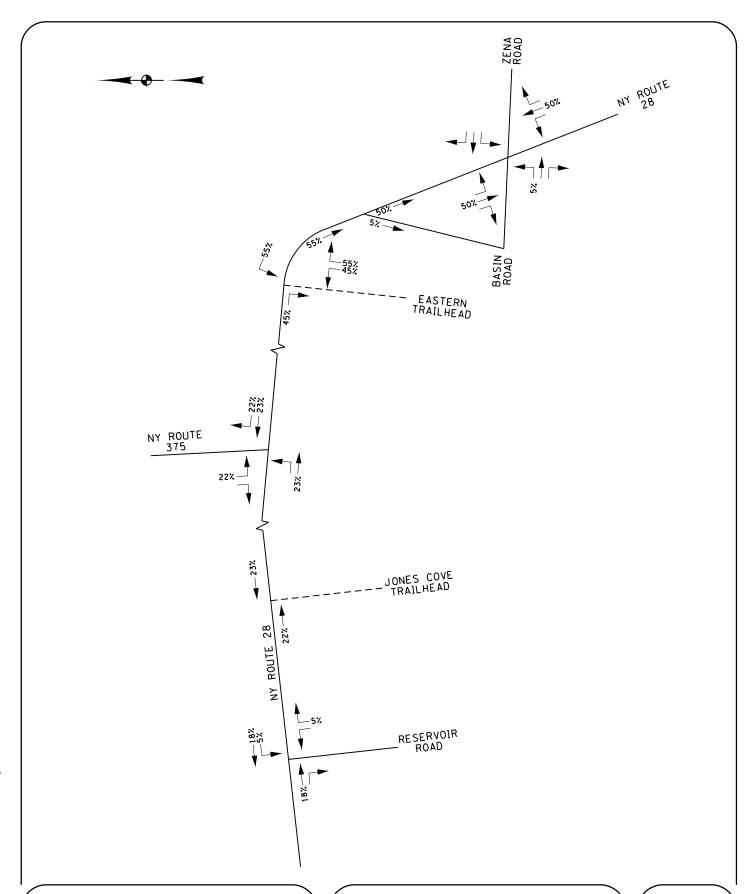
Using the estimated annual usage, the existing data on the four trails provided by Parks & Trails New York was used to determine a representation of the number of users during the peak hour. Multiple scenarios were analyzed to determine which would have the greatest impact to the adjacent roadway network. Turning movement counts were taken during the weekday AM, PM, and Saturday midday peak hours. The peaks of trail usage were compared to those of the roadway network, and it was determined that Saturday midday has the highest traffic volumes and site generated traffic combined. Therefore, this peak hour was analyzed for the site.

The existing trail user counts showed that, on average, Saturdays in July had the highest usage. Approximately 22% of the yearly usage occurred during the month of July with a single Saturday in July accounting for approximately 4% of the trail usage for the month of July. Since some vehicles will remain in the parking lot through the peak hour, it is estimated that 70% of the parking lot will turnover during the peak hour. This is taken into consideration when determining the number of entering and exiting vehicles during the peak hour.

An additional back up source of information for the conversion from annual users to peak hour users, was used for comparison purposes. The *Count Adjustment Factors*² was referenced to compare adjustment factors determined from the raw trail counts, to those developed through the National Bicycle & Pedestrian Documentation Project. Adjustment factors were very similar, therefore, the user trends shown in the raw trail counts were used to estimate peak hour users, converting to vehicle trips, for Ashokan Rail Trail.

Table 4.2 – Trip Generation: Users to Vehicle Trips

Time Period	Adjustment Factor	Number of Users
Annual	-	208,232
July, Peak Month (22% Of Annual)	0.22	45,812
Saturday, Peak Day (4% of Month)	0.04	1,833
Midday Peak Hour (10% of Saturday)	0.10	184
Vehicle Trips (1.5 users/vehicle)	-	123 vehicles
Adjustment for Turnover (70%)	0.70	86 vehicles

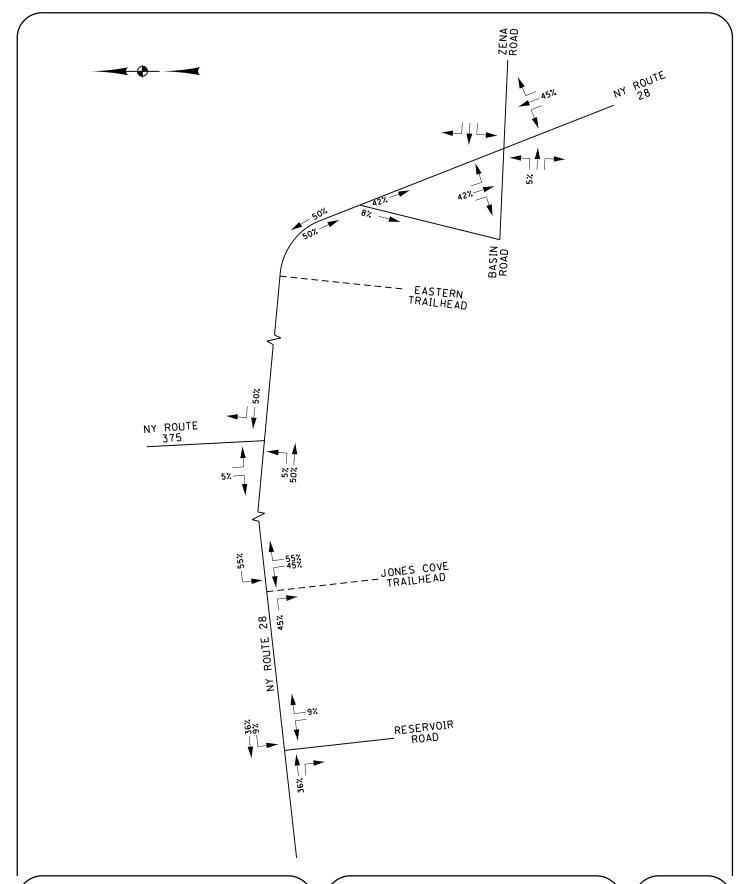

Table 4.3 - Peak Hour Site Generated Trips

- Cartina in Cartina in Cartina in Pa								
		ı	Peak Hour					
Land Use	En	ter	Exit T		Total			
	EB	WB	EB	WB				
	RT	LT	RT	LT				
Jones Cove Trailhead	8	9	9	8	34			
Eastern Trailhead	12	14	14	12	52			
Total Net Trip Generation	20	23	23	20	86			

² National Bicycle & Pedestrian Documentation Project. *Count Adjustment Factors.* March 2009.

From the conversion from annual users to peak hour trips, a total of 86 vehicles are anticipated to impact traffic on the Saturday peak hour, with a split of 50% entering and 50% leaving during that time. To be conservative, pass-by trips are not accounted for in the site generated trips.

The trips generated from Table 4.3 were distributed amongst existing traffic patterns. Since the eastern side of Route 28 has slightly higher daily traffic volumes, 60% of the trips generated were distributed to the Eastern Trailhead, and 40% to the Jones Cove Trailhead. Trip distribution and assignment representation are shown in Figures 6 through 9 after this section.

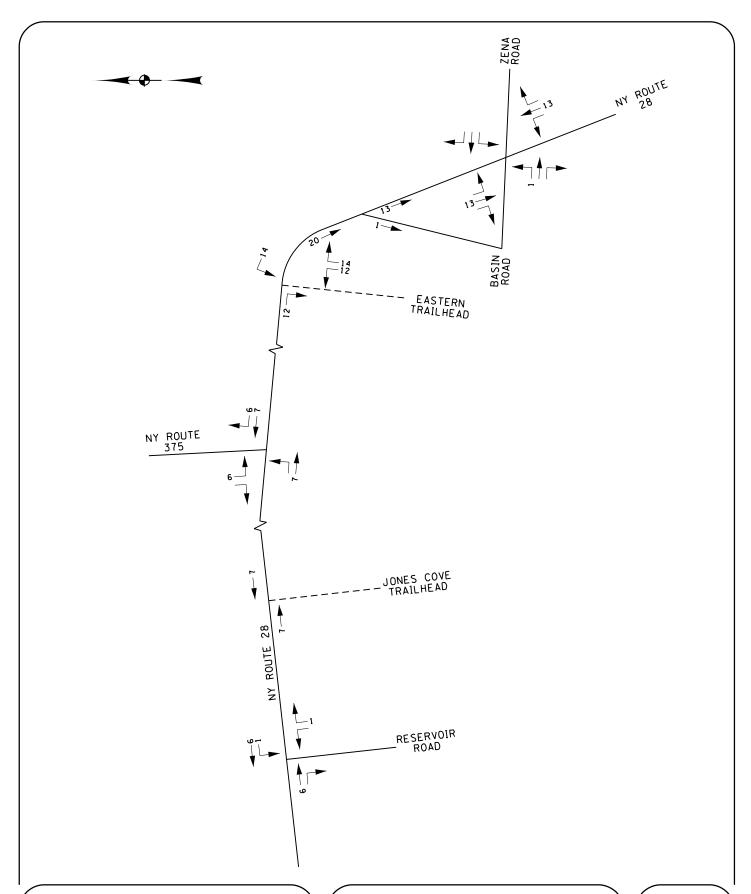

TRIP DISTRIBUTION SATURDAY PEAK EASTERN TRAILHEAD

DATE: JANUARY 2017

Figure

6

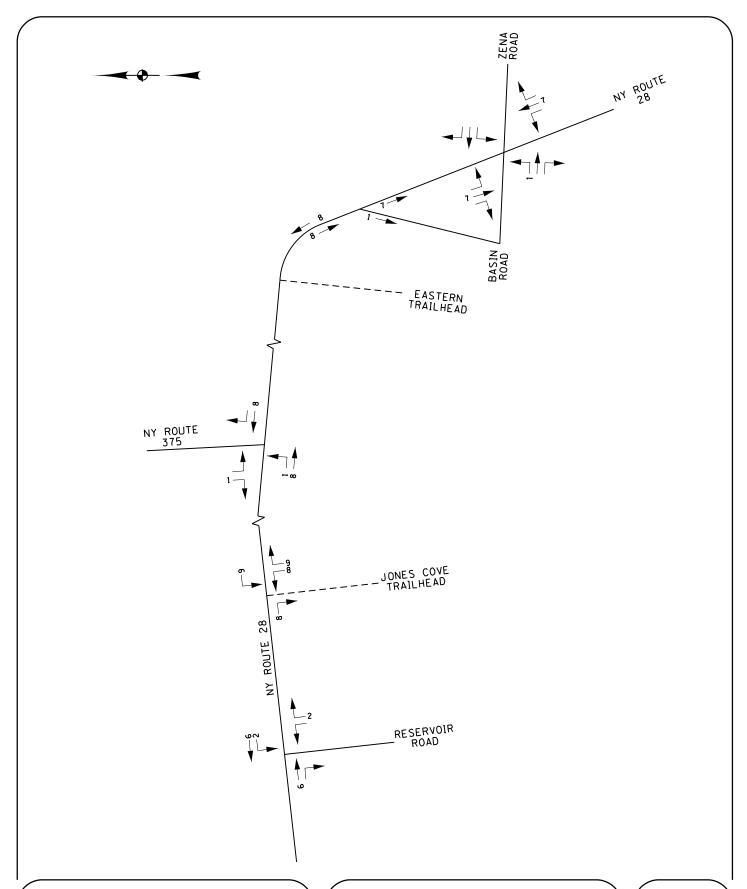
Project No.



TRIP DISTRIBUTION SATURDAY PEAK
JONES COVE TRAILHEAD

DATE: JANUARY 2017

Figure 7 Project No. 369.007.001

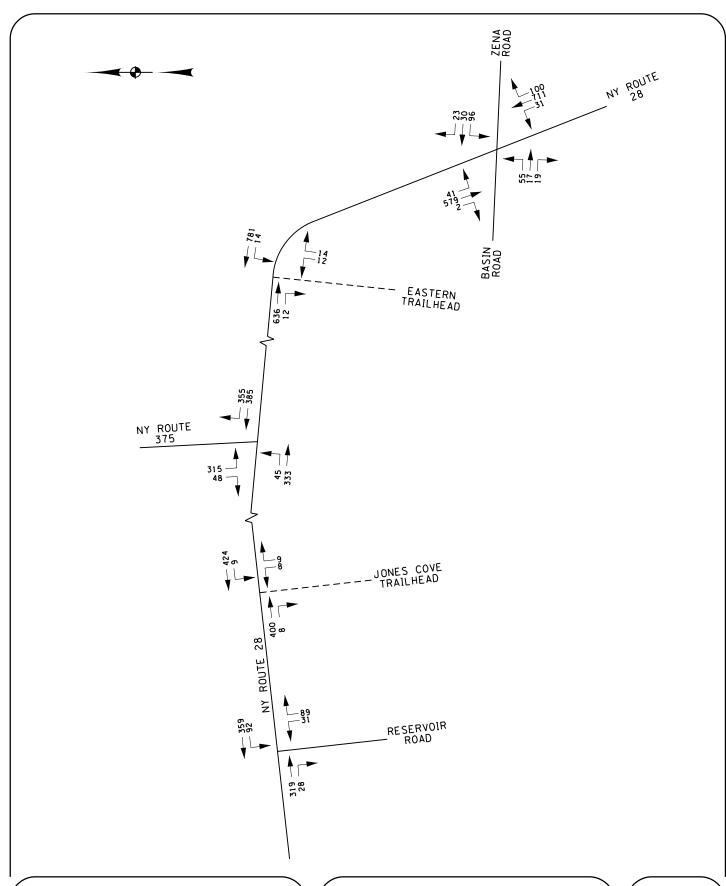


TRIP ASSIGNMENT SATURDAY PEAK EASTERN TRAILHEAD

DATE: JANUARY 2017

Figure 8

Project No.

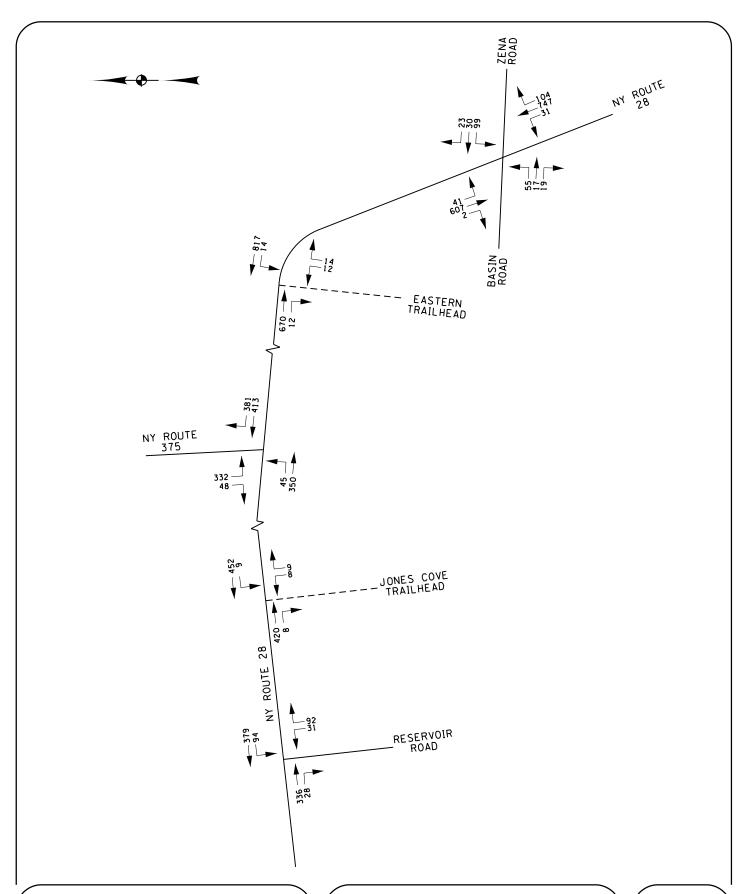

TRIP ASSIGNMENT SATURDAY PEAK JONES COVE TRAILHEAD

DATE: FEBRUARY 2017

Figure

9

Project No.



BUILD ETC (2018) TRAFFIC VOLUMES SATURDAY PEAK HOUR

DATE: FEBRUARY 2017

Figure

Project No.

BUILD ETC + 10 (2028)
TRAFFIC VOLUMES PEAK HOUR

DATE: JANUARY 2017

Figure

11

Project No.

5 Capacity and Level of Service Analysis

The objective of a capacity analysis is to assign a level of service (LOS) to transportation facilities under different types of characteristics. LOS is a qualitative measure of operational conditions using concepts and procedures from the Highway Capacity Manual³. Operational characteristics described in LOS for motorists are conditions such as delay, speed, congestion, travel time, and safety. In general, a LOS "A" represents the best operating conditions, and "F" representing the worst operating conditions.

Table 5.1 – LOS Criteria for Intersections

		Delay in Seconds	Delay in Seconds
LOS	Description	Signalized	Unsignalized
Α	Little or No Delay	< = 10	< = 10
В	Minor or Short Delay	> 10 to 20	> 10 to 15
С	Average Delay	> 20 to 35	> 15 to 25
D	Long but Acceptable Delay	> 35 to 55	> 25 to 35
E	Long and Unacceptable Delay	> 55 to 80	> 35 to 50
F	Long and Unacceptable Delays	> 80	> 50

To determine the impacts of the proposed project on adjacent intersections, a LOS analysis was performed for three intersections in the study area. Synchro 9 software was used to perform the analysis. Since it was previously determined that the highest traffic volumes, which include background traffic and project traffic, would occur on midday Saturdays, this conditions was analyzed. Five scenarios were analyzed during the weekend peak hour: Existing Conditions, 2018 ETC No-Build, 2018 ETC Build, ETC+10 No-Build, and ETC+10 Build. Table 5.1 shows the results of the LOS analysis.

LOS Analysis Results

Referring to Table 5.2, traffic generated by the proposed trail project has negligible impacts to the three study area intersections.

Route 28 at Basin Road/Zena Road

The signalized intersection of Route 28 at Basin Road/Zena Road is currently operating at an acceptable level of service and expected to continue to do so for the no build conditions. Under

³ Transportation Research Board. Highway Capacity Manual, 2010. Volumes 1-3. 2010. Washington, D.C.

the build conditions, increases in only a few tenths of a second will theoretically occur with no decrease in LOS. No mitigation is proposed at this location.

Route 28 at Route 375

This signalized intersection was operating at an acceptable LOS B for the existing and no-build 2028 conditions. The proposed project would have minimal impacts to the intersection with only slightly increasing delay by a few tenths of a second, while maintaining the same LOS value. Due to the negligible impacts of the project on this intersection, no mitigation is proposed at this location.

Route 28 at Reservoir Road

This intersection is a one-way stop controlled intersection. The northbound leg is stop controlled and operates at LOS B for the existing conditions. The no-build 2028 future conditions will incur a slight increase in delay, pushing LOS to an acceptable C for the stop controlled approach. The build conditions will have a minimal impact on the intersection, for the ETC 2028 condition, the slight increase in delay may be described as a reduction in LOS from a B to a still acceptable C. There were no changes to the LOS value for the ETC+10 between no build and build conditions. Due to the minimal impacts on the intersection, there is no proposed mitigation.

Route 28 at the Eastern Trailhead

The proposed intersection will be under stop control for the northbound approach with Route 28 operating freely. The northbound approach has an acceptable LOS B for the ETC and ETC+10 build conditions.

Route 28 at the Jones Cove Trailhead

The proposed intersection will be under stop control for the northbound approach with Route 28 operating freely. The northbound approach has an acceptable LOS C for the ETC and ETC+10 build conditions.

Table 5.2 – LOS Analysis for Intersections during the Saturday Peak Hour

Intersection	2016	Existing	2018 ETC	No Build	2018 ET	C Build	2028 ETC+1	LO No Build	2028 ETC	+10 Build			
Approach													
	LOS ^a (Delay) ^b	Queue ^c (V/C) ^d	LOS (Delay)	Queue (V/C)	LOS (Delay)	Queue (V/C)	LOS (Delay)	Queue (V/C)	LOS (Delay)	Queue (V/C)			
	, , , ,	, ,			oad and Zena Road - Signalized								
Route 28	NB												
L/1	/R A (6.7)	138 (0.38)	A (7.1)	138 (0.40)	A (7.2)	143 (0.41)	A (7.8)	150 (0.46)	A (8.0)	154 (0.47)			
Route 28	SB												
	7/R A (6.4)	104 (0.30)	A (6.8)	104 (0.32)	A (6.9)	107 (0.33)	A (7.5)	111 (0.37)	A (7.5)	115 (0.38)			
	EB												
· · · · · · · · · · · · · · · · · · ·	T/R B (18.2)	53 (0.29)	B (18.1)	53 (0.32)	B (18.2)	54 (0.32)	B (17.7)	53 (0.31)	B (17.9)	54 (0.31)			
	VB												
	C (27.3)	92 (0.58)	C (26.0)	92 (0.57)	C (25.8)	92 (0.57)	C (27.3)	94 (0.60)	C (27.2)	94 (0.60)			
Ove			. ()		. ()		- 4>		- ()				
Intersect	on A (9.1)	-	A (9.4)	-	A (9.5)	-	B (10.1)	-	B (10.2)	-			
D 1 275	- D			Route 28 at	Route 375 – Sigr	nalized							
	SB	244 (0.77)	C (33.6)	244 (0.78)	C (34.0)	249 (0.79)	C (34.7)	258 (0.8)	D (35.0)	265 (0.81)			
	EB (33.3)	244 (0.77)	C (55.0)	244 (0.76)	C (34.0)	249 (0.79)	C (34.7)	256 (0.6)	D (33.0)	203 (0.81)			
	L/T A (9.8)	87 (0.23)	B (10.0)	87 (0.24)	B (10.2)	91 (0.25)	B (10.4)	91 (0.25)	B (10.6)	95 (0.27)			
	VB A (6.2)	67 (0.23)	A (6.3)	07 (0.24)	A (6.5)	31 (0.23)	A (6.6)	31 (0.23)	A (6.9)	33 (0.27)			
Moute 20	T B (11.7)	187 (0.37)	В (11.9)	187 (0.38)	B (12.1)	191 (0.39)	B (12.5)	198 (0.4)	B (12.8)	207 (0.42)			
	R A (0.3)	0 (0.23)	A (0.3)	0 (0.23)	A (0.3)	0 (0.23)	A (0.4)	0 (0.24)	A (0.4)	0 (0.25)			
Ove			(/		(,		(- /	,	(- /	- (/			
Intersect	on B (14.2)	-	B (14.4)	-	B (14.7)	-	B (14.9)	-	B (15.1)	-			
			Route	28 at Reservoir	Road – One Way	Stop Controlled	d						
Reservoir Rd	NB												
	./R B (14.8)	24 (0.25)	B (14.7)	25 (0.26)	C (15.3)	28 (0.27)	C (15.2)	28 (0.27)	C (15.8)	30 (0.29)			
_			Jor	nes Cove Trailhe	ad – One Way St	op Controlled							
	NB												
Trailhead	./R -	-	-	-	B (14.2)	5 (0.06)	-	-	B (14.8)	5 (0.06)			
			Ea	stern Trailhead	One Way Stop	Controlled))		, ,					
	NB												
Trailhead	./R -	-	-	-	C (18.6)	10 (0.12)	-	-	C (19.9)	11 (0.13)			

a – LOS, Level of Service, b – Delay, measured in seconds, c – 95th percentile, measured in feet, d – Volume to Capacity ratio

369.007.001/March 2017 - 16- Barton & Loguidice, D.P.C.

Proposed Mitigation

Each of the existing and the new proposed intersections will operate at acceptable levels of service in design year 2028. Even though the impacts of the project to the study intersections are insignificant, revised signal timings were investigated to improve existing and potentially the build conditions. Revised signal timings at the two signalized intersections are in the following table

Table 5.3 – Mitigation Results

	2028 ETC+	10 No Build	2028 ETC	+10 Build	_	ation +10 Build
Intersection		Queue ^c (V/C) ^d			LOS (Delay)	Queue (V/C)
	Roi	ute 28 at Basin Ro	ad and Zena Ro	ad - Signalized		
Route 28						
NB						
L/T/R	A (7.8)	150 (0.46)	A (8.0)	154 (0.47)	A (7.3)	132 (0.44)
Route 28						
SB						
L/T/R	A (7.5)	111 (0.37)	A (7.5)	115 (0.38)	A (7.0)	99 (0.36)
Basin Road						
EB						
L/T/R	B (17.7)	53 (0.31)	B (17.9)	54 (0.31)	B (16.5)	50 (0.32)
Zena Road						
WB						
L/T/R Overall	C (27.3)	94 (0.60)	C (27.2)	94 (0.60)	C (24.6)	85 (0.59)
Overall						
Intersection	B (10.1)	-	B (10.2)	-	A (9.3)	-
		Route 28 at F	Route 375 – Sigr	nalized		
Route 375						
SB						
L/R	C (34.7)	258 (0.8)	D (35.0)	265 (0.81)	C (20.1)	160 (0.72)
Route 28						
EB						
L/T	B (10.4)	91 (0.25)	B (10.6)	95 (0.27)	B (11.1)	76 (0.35)
Route 28						
WB	A (6.6)		A (6.9)		A (7.7)	
Т	B (12.5)	198 (0.4)	B (12.8)	207 (0.42)	B (14.5)	170 (0.54)
R	A (0.4)	0 (0.24)	A (0.4)	0 (0.25)	A (0.4)	0 (0.25)
Overall						
Intersection	B (14.9)	-	B (15.1)	-	B (11.8)	-

As presented in Table 5.3 above, minor adjustments to signal timings for the intersections of Route 28 and Basin Road/Zena Road, and Route 28 at Route 375, result in an improvement compared to future no build conditions for all intersection movements. See Appendix C for Synchro reports.

6 Sight Distance Evaluation

Sight distances were evaluated for the proposed driveway entrances for trailheads access from NY Route 28. The available intersection sight distances were measured from the perspective of a driver exiting the trailhead driveways, looking left and right along Route 28. Sight distance was also measured for vehicles making a left turn movement from Route 28 to the proposed trailhead driveways. Stopping sight distance was also measured at the proposed trailhead driveways. Stopping sight distance is "the distance necessary for a vehicle traveling at or near the design speed to stop before reaching a stationary object in its path."

Intersection Sight Distance

Intersection sight distances were checked on both proposed driveways as in accordance with Chapter 5 of the NYSDOT HDM. The posted speed limit on Route 28 at the Eastern Trailhead driveway is 45 mph. No existing speed data is available at this location on the NYSDOT Data Viewer. However, based on recorded 85th percentile data adjacent to this segment in the project area, typical operating speeds are 5-8 mph higher than the posted speed limit, therefore a design speed of 53 mph was selected.

Table 6.1 - Driveway Sight Distances

Into	rsection	lı	ntersection Sigl	ht Distance ¹ (ft)		Stopping Sight Distance ² (ft)			
inter	rsection	Right Turn		From Sight Looking Right	Left Turn	28 EB	28 WB		
		From Sight	Looking Left	from 28	Approach	Approach			
Eastern	Available	1269	1269	724	1613	1269	935		
Trailhead Driveway	Recommended	530	650	590	490	460	425		
Jones Cove	Available	1024	1024	1500+	572	572	1500+		
Trailhead Driveway	Recommended	530	610	610	445	495	495		

⁺ Actual sigh distance is greater than the number shown

As shown in Table 6.1, the available sight distances for both trailhead driveways, meet recommended sight distances. Sight distances for right and left turns exiting the trailhead driveways are met, as well as left turns entering the driveways from Route 28. Stopping sight distances are also met for both the eastbound and westbound approaches for each driveway.

¹ Measured at 14.5 feet back from travel way at an object and eye height of 3.5 feet.

² Measured for 2 foot object located in the path of EB and WB vehicles on Route 28 at an eye height of 3.5 feet.

Eastern Trailhead Driveway Looking Left (West)

Eastern Trailhead Driveway Looking Right (East)

7 Crash Analysis

A crash analysis was performed for the study area, in accordance with the NYSDOT Highway Design Manual (HDM) Chapter 5 with accident data provided by Ulster County. The data was analyzed for the most recent five year period (2011 – 2015). The intersection crash analysis was completed at the 3 study intersections, Route 28 and Basin Road/Zena Road, Route 28 at Route 375, and Route 28 at Reservoir Road. A segment crash analysis was performed at the proposed trailhead driveways.

The accident rate of the intersections was calculated using the following formula:

Rate =
$$(A*1,000,000)/(V*365)$$

A = Average number of crashes per year

V = Intersection ADT (total daily approach volume)

The accident rate of the segments was calculated using the following formula:

Rate =
$$(A*1,000,000)/(L*V*365)$$

A = Average number of crashes per year

L = Segment length (miles)

V = Intersection ADT (total daily approach volume)

Intersection Crash Analysis

Route 28 at Basin Road/Zena Road

Over the five year period analyzed, this signalized intersection had 33 crashes resulting in a crash rate of 1.00 acc/mev. The statewide average for a rural 4-legged signalized intersections is 0.61 acc/mev. The predominant collision types were rear end, overtaking, and left turns against other cars. The breakdown of the predominant collisions at the intersections are shown in Table 8.1. Rear ends are a common type of collision at signalized intersections, as well as left turn collisions at intersections without a protected left turn phase. Although the accident rate is higher than the statewide average, it isn't anticipated that the site generated traffic will increase the number of, or worsen the severity of collisions occurring at this intersection. Therefore, no mitigation is proposed.

Accidents Percentage

of Accidents

21%

9%

Collision Manner

Rear
End Overtaking Left Turn Right Angle Animal Other

of 7 7 5 4 3 7

15%

13%

Table 7.1 Route 28 and Basin Road/Zena Road Collision Chart

21%

Route 28 at Route 375

21%

Over the five year period analyzed, this signalized intersection had 23 crashes resulting in a crash rate of 0.82 acc/mev. The statewide average for a rural 3-legged signalized intersections is 0.26 acc/mev. The predominant collision types were rear end and hitting animals and fixed objects. During the peak month and peak hour, it is anticipated that this intersection will increase by 26 vehicles due to this project. The vehicles added to this intersection will not have impacts to the intersection to increase accident rates. The collision pattern is typical of signalized intersections and with no expected increases, no mitigation is being proposed at this intersection.

Table 7.2 Route 28 and Route 375 Collision Chart

			Collision	Manner		
			Fixed		Right	
	Rear End	Animal	Object	Left Turn	Angle	Overtaking
# of Accidents	8	6	3	2	2	2
Percentage of Accidents	34%	26%	13%	9%	9%	9%

Route 28 at Reservoir Road

Over the five year period analyzed, this one-way stop controlled intersection had 20 crashes resulting in a crash rate of 1.07 acc/mev. The predominant collision types were with animals and fixed objects such as trees, a building wall, and sign post. The majority of accidents involve animal strikes and objects near the intersection, therefore, there are no collision patterns apparently caused by geometric or intersection deficiencies. Because of this, there is no recommended mitigation for this intersection.

Table 7.3 Route 28 and Reservoir Road Collision Chart

			Collision I	Manner											
		Fixed Right													
	Animal	Object	Rear End	Left Turn	Angle	Other									
# of Accidents	6	6	4	1	1	2									
Percentage of Accidents	30%	30%	20%	5%	5%	10%									

Segment Crash Analysis

Eastern Trailhead

A segment crash analysis was performed at the proposed location of the eastern trailhead. The segment included a 0.125 mile distance on each side of the proposed driveway. Over the five year period analyzed, there were 12 crashes resulting in a segment crash rate of 3.05 acc/mvm. The statewide average for rural, 4-lane, free access undivided mainlines is 2.02 acc/mvm.

Half of the segment collisions occurred with animals and fixed objects, with 5 out of 6 of those during darkness.

Table 7.4 Proposed Eastern Trailhead Collision Chart

		Co	ollision Manner												
	Animal Fixed Object Right Angle Rear End Other														
# of Accidents	3	3	2	1	3										
Percentage of Accidents	25%	25%	17%	8%	25%										

Jones Cove Trailhead

A segment crash analysis was performed on a 0.125 mile segment on each side of the proposed Jones Cove Trailhead driveway with Route 28. From 2011-2015, 9 crashes occurred resulting in a crash rate of 2.28 acc/mvm. The statewide average for a free access rural 2-lane mainline is 2.26 acc/mvm, just slightly above the statewide average.

Table 7.5 Proposed Jones Cove Trailhead Collision Chart

		Collision	Manner										
	Animal Fixed Object Rear End Othe												
# of Accidents	4	2	2	1									
Percentage of Accidents	45%	22%	22%	11%									

Overall, the existing intersections all have an above-statewide crash rate average. The proposed project will generate a minor amount of additional vehicles having negligible impacts to each of the intersections. The proposed driveways for the trailheads, intersecting at Route 28, are not in an area where there are crash patterns or high crash rates. Therefore, based on current standards, there are no existing geometric or safety deficiencies within the area of the proposed Route 28 trailhead driveways.

8 Trailhead Parking

The number of parking spaces needed at both trailheads was estimated using existing trail user data. Existing trail data established usage increases during a peak holiday weekend. User counts for the Warren County Bikeway documented a 135% increase of users on Sunday during Labor Day weekend, compared to an average peak day in July (which is the peak trail usage month). The 135% increase was applied to the estimated number of trips during the peak hour for the Ashokan Rail Trail.

Vehicles entering and exiting the trailheads will do so at a 50/50 split, and during the peak hour, the parking lots will be at 85% capacity. A parking space was then accounted for each vehicle that enters and each that has not yet exited, assuming there is no turn over. With this, an additional 15% was added assuming the parking lots are operating at 100% capacity. Table 8.1 below displays the estimated number of parking spaces needed for a peak holiday weekend during the peak hour with no turnover.

Table 8.1 - Trailhead Parking Spaces

	Vehicles Entering During Peak Hour	Vehicles Exiting During Peak Hour	Number of Spaces Needed for at 85% Capacity	Number of Spaces Needed for 100% Capacity
Eastern Trailhead	45	45	76	90
Jones Cove Trailhead	30	30	51	60

It is recommended that the Eastern Trailhead provide between 75 and 90 parking spaces, and the Jones Cove Trailhead provide between 50 and 60 parking spaces.

Boiceville Trailhead

In future years, it is anticipated that a third trailhead facility will be added to the project. Initially, this trailhead will be used as a staging area for nearby transportation construction projects, through the year 2020. After this, the area will be converted to a third trailhead for the Ashokan Rail Trail, providing additional parking, and the unique recreational feature of rail riders, pedal-powered rail cars to travel along the abandoned railway line. The trailhead will be located at with access from Route 28A.

The Boiceville Trailhead will not be in operation until after the opening of the Ashokan Rail Trail and the other two trailheads. It is estimated that 30% of the proposed traffic for the Jones Cove Trailhead, and 30% of the Eastern Trailhead will use the Boiceville Trailhead once it is constructed. Using the same methodology described in the previous section, increasing proposed traffic by 135% on a peak holiday weekend, the following table shows the recommended number of parking spaces.

Table 8.2 - Boiceville Trailhead Parking Spaces

	Vehicles	Vehicles	Number of Spaces	Number of Spaces
	Entering During	Exiting During	Needed for at 85%	Needed for 100%
	Peak Hour	Peak Hour	Capacity	Capacity
Boiceville Trailhead	25	25	43	50

Therefore it is recommended that the Boiceville Trailhead provide between 40 and 50 parking spaces. However, during the first year of trail use, the number of spaces required should be monitored and adjustments made, if necessary, to the spaces provided at each of the trailhead locations.

9 Conclusions and Recommendations

This traffic impact study was completed for the proposed Ashokan Rail Trail project which includes the development of two trailheads with driveways intersecting Route 28 and an eventual third trailhead several years later. Based on the results of this study, the following conclusions and recommendations are offered:

- 1. Construction is expected to be completed in 2018.
- 2. The project will generate 86 new vehicle trips during the Saturday peak hour.
- Both trailhead driveways will operate adequately as stop controlled intersections with a single lane approach.
- 4. For the build condition, the three study intersections, Route 28 at Basin Road/Zena Road, Route 28 at Route 375, and Route 28 at Reservoir Road, will operate adequately with minimal changes to delay and no change in LOS.
- 5. Minor adjustments to existing signal timings at Route 28 at Basil Road/Zena Road, and Route 28 at Route 375, could decrease delay for all intersection approaches for the future build condition, compared to the future no build condition.

- Available sight distance for both Route 28 trailhead driveways meet recommended sight distances.
- 7. The accident rates at the existing study intersections are higher than the statewide average. These crash types are typical of the specific intersection control, and site traffic would not worsen or increase crashes.
- 8. The Eastern Trailhead design should consider providing 75 to 90 vehicle parking spaces, the Jones Cove Trailhead should consider providing 50 and 60 parking spaces, and the Boiceville Trailhead, constructed approximately 2 years after the initial trail opening, provide between 40 and 50 parking spaces. It is possible that the Boiceville trailhead may become the most popular location due to the relatively close proximity to the Boiceville Bridge over the Esopus Creek and the causeway portion of the trail. Signage can direct potential users who arrive by car of the availability of parking at the other two trailheads. This will be monitored and adjusted as necessary.

Appendix A Turning Movement Counts

Barton and Loguidice D.P.C. 10 Airline Drive

Weather: Cloudy

Serial Number: D4-2837

Collected By: RSO

Other Notes:

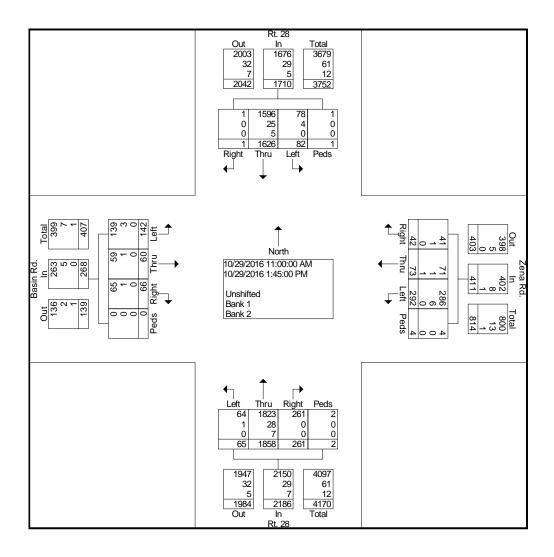
Albany, NY 12205 File Name : 008%D1~E Site Code : 00000001

Start Date : 10/29/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2

							Gloups Filited - Offshilted - Dalik 1 - Dalik 2														
			Rt. 28	3				Zena R	d.				Rt. 28	1			E	Basin R	d.		
		F	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
11:00 AM	0	128	8	0	136	5	5	25	3	38	13	129	1	1	144	5	5	7	0	17	335
11:15 AM	0	123	4	0	127	2	8	17	0	27	21	118	3	0	142	9	7	10	0	26	322
11:30 AM	0	152	4	0	156	3	4	23	0	30	29	154	8	0	191	3	4	16	0	23	400
11:45 AM	0	139	4	0	143	3	5	21	0	29	14	149	7	0	170	5	2	10	0	17	359
Total	0	542	20	0	562	13	22	86	3	124	77	550	19	1	647	22	18	43	0	83	1416
12:00 PM	0	145	10	1	156	2	3	32	0	37	21	158	1	1	184	9	10	14	0	33	410
12:15 PM	0	125	5	0	130	2	7	32	0	41	19	138	1	0	158	5	3	14	0	22	351
12:30 PM	0	145	9	0	154	3	8	30	0		23	182	5	0	210	3	3	14	0	20	425
12:45 PM	0	124	10	0	134	6	7	23	0	41 36	25 25	162	7	0	194	ى 1	3	13	0	20	384
	0	539	34	1	574	13	25	117	0	155	88	640	17	- 0	746	21	<u>3</u> 19	55	0	95	1570
Total	U	539	34	ı	5/4	13	25	117	U	155	00	640	17	I	746	21	19	55	U	95	1570
01:00 PM	0	134	10	0	144	8	5	24	0	37	26	168	7	0	201	4	3	12	0	19	401
01:15 PM	1	148	8	0	157	2	6	15	1	24	22	173	8	0	203	4	4	10	0	18	402
01:30 PM	0	125	4	0	129	4	9	18	0	31	28	167	7	0	202	7	10	11	0	28	390
01:45 PM	0	138	6	0	144	2	6	32	0	40	20	160	7	0	187	8	6	11	0	25	396
Total	1	545	28	0	574	16	26	89	1	132	96	668	29	0	793	23	23	44	0	90	1589
						ı														1	
Grand Total	_ 1	1626	82	1	1710	42	73	292	4	411	261	1858	65	2	2186	66	60	142	0	268	4575
Apprch %	0.1	95.1	4.8	0.1		10.2	17.8	71.0	1.0		11.9	85.0	3.0	0.1		24.6	22.4	53.0	0.0		
Total %	0.0	35.5	1.8	0.0	37.4	0.9	1.6	6.4	0.1	9.0	5.7	40.6	1.4	0.0	47.8	1.4	1.3	3.1	0.0	5.9	


Weather: Cloudy

Serial Number: D4-2837

Collected By: RSO

Other Notes:

File Name : 008%D1~E Site Code : 00000001 Start Date : 10/29/2016

Barton and Loguidice D.P.C. 10 Airline Drive

Weather: Cloudy

Serial Number: D4-2837

Collected By: RSO

Other Notes:

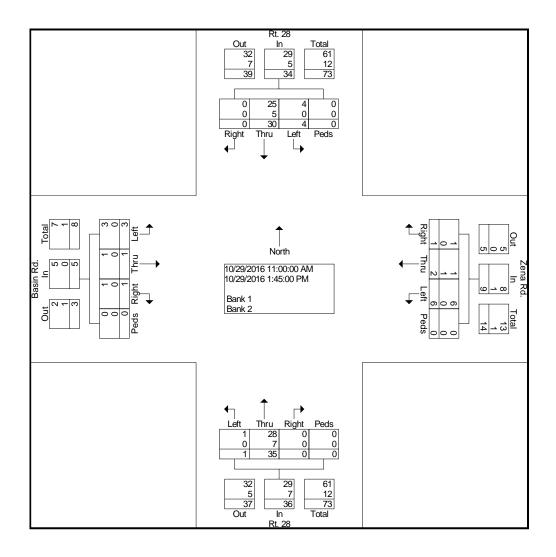
Albany, NY 12205 File Name : 008%D1~E Site Code : 00000001

Start Date : 10/29/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2

			Rt. 28)			-	Zena R		IIILEU- D	Rt. 28						Basin Rd.					
		Е.										г.										
		F	rom No	ortn				rom Ea	ast			FI	rom So	utn				rom W	est			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total	
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0			
11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:15 AM	0	2	0	0	2	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	9	
11:30 AM	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	1	0	1	4	
11:45 AM	0	1	0	0	1	0	0	1	0	1	0	2	0	0	2	0	0	0	0	0	4	
Total	0	4	0	0	4	0	0	1	0	1	0	11	0	0	11	0	0	1	0	1	17	
12:00 PM	0	5	0	0	5	0	0	1	0	1	0	7	0	0	7	0	0	1	0	1	14	
12:15 PM	0	0	0	0	0	0	1	0	0	1	0	3	0	0	3	0	0	0	0	0	4	
12:30 PM	0	5	0	0	5	0	0	0	0	0	0	2	0	0	2	1	0	1	0	2	9	
12:45 PM	0	2	3	0	5	0	1	1	0	2	0	1	1	0	2	0	0	0	0	0	9	
Total	0	12	3	0	15	0	2	2	0	4	0	13	1	0	14	1	0	2	0	3	36	
01:00 PM	0	4	1	0	5	1	0	3	0	4	0	1	0	0	1	0	0	0	0	0	10	
01:15 PM	0	3	0	0	3	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	7	
01:30 PM	0	2	0	0	2	0	0	0	0	0	0	2	0	0	2	0	1	0	0	1	5	
01:45 PM	0	5	0	0	5	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	9	
Total	0	14	1	0	15	1	0	3	0	4	0	11	0	0	11	0	1	0	0	1	31	
Grand Total Apprch %	0 0.0	30 88.2	4 11.8	0 0.0	34	1 11.1	2 22.2	6 66.7	0 0.0	9	0 0.0	35 97.2	1 2.8	0 0.0	36	1 20.0	1 20.0	3 60.0	0 0.0	5	84	
Total %	0.0	35.7	4.8	0.0	40.5	1.2	2.4	7.1	0.0	10.7	0.0	41.7	1.2	0.0	42.9	1.2	1.2	3.6	0.0	6.0		


Weather: Cloudy

Serial Number: D4-2837

Collected By: RSO

Other Notes:

File Name : 008%D1~E Site Code : 00000001 Start Date : 10/29/2016

Weather: Cloudy

Serial Number: D4-2839

Collected By: PCB

Other Notes:

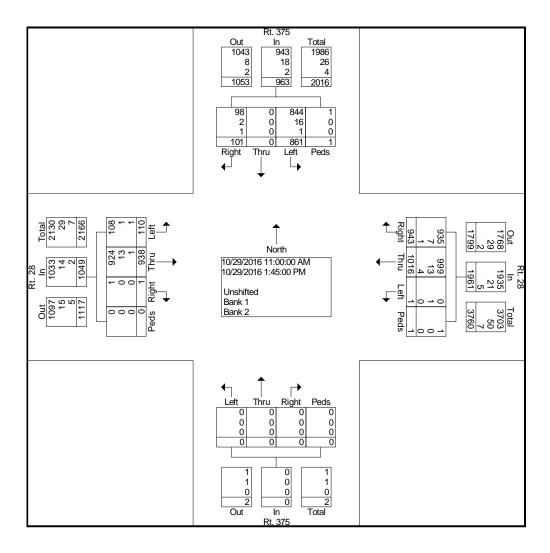
File Name : 2016-1~1 Site Code : 22222222

Site Code : 22222222 Start Date : 10/29/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2

	Rt. 375 Rt. 28									Rt. 375 Rt. 28											
							_					_					_				
		F	rom No	orth			F	rom Ea	ast			F	rom So	outh			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
11:00 AM	3	0	61	1	65	57	73	0	0	130	0	0	0	0	0	0	69	10	0	79	274
11:15 AM	8	0	76	0	84	59	78	1	0	138	0	0	0	0	0	0	68	7	0	75	297
11:30 AM	5	0	75	0	80	85	69	0	0	154	0	0	0	0	0	0	82	8	0	90	324
11:45 AM	9	0	76	0	85	71	84	0	0	155	0	0	0	0	0	0	80	8	0	88	328
Total	25	0	288	1	314	272	304	1	0	577	0	0	0	0	0	0	299	33	0	332	1223
					,	•														·	
12:00 PM	6	0	69	0	75	79	89	0	0	168	0	0	0	0	0	0	75	11	0	86	329
12:15 PM	5	0	65	0	70	87	78	0	0	165	0	0	0	0	0	0	83	6	0	89	324
12:30 PM	10	0	81	0	91	73	89	0	0	162	0	0	0	0	0	0	76	8	0	84	337
12:45 PM	15	0	67	0	82	92	92	0	1	185	0	0	0	0	0	0	76	11	0	87	354
Total	36	0	282	0	318	331	348	0	1	680	0	0	0	0	0	0	310	36	0	346	1344
					'						li .										
01:00 PM	8	0	67	0	75	97	82	0	0	179	0	0	0	0	0	0	89	11	0	100	354
01:15 PM	9	0	81	0	90	75	112	0	0	187	0	0	0	0	0	0	81	12	0	93	370
01:30 PM	11	0	90	0	101	88	87	0	0	175	0	0	0	0	0	0	68	6	0	74	350
01:45 PM	12	0	53	0	65	80	83	0	0	163	0	0	0	0	0	1	91	12	0	104	332
Total	40	0	291	0	331	340	364	0	0	704	0	0	0	0	0	1	329	41	0	371	1406
	_			_					_		_	_	_		- 1					- 1	
Grand Total	101	0	861	1	963	943	1016	1	1	1961	0	0	0	0	0	1	938	110	0	1049	3973
Apprch %	10.5	0.0	89.4	0.1		48.1	51.8	0.1	0.1		0.0	0.0	0.0	0.0		0.1	89.4	10.5	0.0		
Total %	2.5	0.0	21.7	0.0	24.2	23.7	25.6	0.0	0.0	49.4	0.0	0.0	0.0	0.0	0.0	0.0	23.6	2.8	0.0	26.4	
1 0101 70		5.0		5.0		_5.,	_5.0	5.0	5.0	10.1	5.0	5.0	5.0	5.0	0.0	3.0	_5.0	0	5.0	_0	


Weather: Cloudy

Serial Number: D4-2839

Collected By: PCB

Other Notes:

File Name : 2016-1~1 Site Code : 22222222 Start Date : 10/29/2016

Weather: Cloudy

Serial Number: D4-2839

Collected By: PCB

Other Notes:

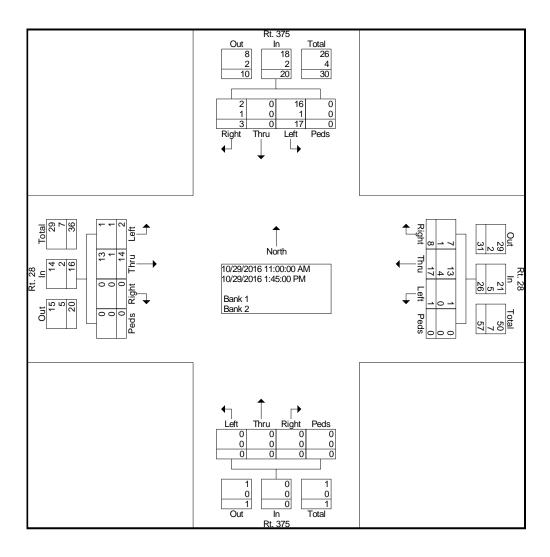
12205 File Name : 2016-1~1 Site Code : 22222222

Start Date : 10/29/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2

										IIILEU- D	ank i -										
			Rt. 37					Rt. 28	3				Rt. 37					Rt. 28			
		F	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	0	0	4	0	4	2	3	1	0	6	0	0	0	0	0	0	1	0	0	1	11
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
11:45 AM	1	0	1	0	2	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	4
Total	1	0	5	0	6	2	4	1	0	7	0	0	0	0	0	0	3	0	0	3	16
		_		_			_	_		- 1	_	_	_	_		_	_				
12:00 PM	0	0	1	0	1	3	2	0	0	5	0	0	0	0	0	0	3	1	0	4	10
12:15 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	3
12:30 PM	1	0	3	0	4	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	7
12:45 PM	1	0	1	0	2	0	2	0	0	2	0	0	0	0	0	0	1_	0	0	1	5_
Total	2	0	5	0	7	3	9	0	0	12	0	0	0	0	0	0	5	1	0	6	25
01:00 PM	0	0	1	0	1	0	2	0	0	2	0	0	0	0	0	0	3	0	0	3	6
01:15 PM	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0	1	3
01:30 PM	0	0	3	0	3	1	1	0	0	2	0	0	0	0	0	0	1	0	0	1	6
01:45 PM	0	0	2	0	2	1	1	0	0	2	0	0	0	0	0	0	2	0	0	2	6
Total	0	0	7	0	7	3	4	0	0	7	0	0	0	0	0	0	6		0	7	21
i otai	O	U	,	O	,		7	O	U	, ,	O	U	O	U	0	O	O		O	, ,	21
Grand Total	3	0	17	0	20	8	17	1	0	26	0	0	0	0	0	0	14	2	0	16	62
Apprch %	15.0	0.0	85.0	0.0		30.8	65.4	3.8	0.0		0.0	0.0	0.0	0.0		0.0	87.5	12.5	0.0		
Total %	4.8	0.0	27.4	0.0	32.3	12.9	27.4	1.6	0.0	41.9	0.0	0.0	0.0	0.0	0.0	0.0	22.6	3.2	0.0	25.8	
															,						


Weather: Cloudy

Serial Number: D4-2839

Collected By: PCB

Other Notes:

File Name : 2016-1~1 Site Code : 2222222 Start Date : 10/29/2016

Weather: Cloudy

Serial Number: D24-2026

Collected By:CEP

Other Notes:

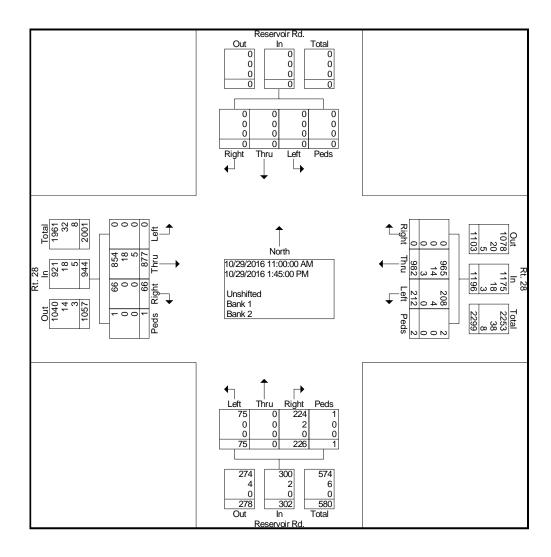
File Name : 2016-1~3 Site Code : 11111111

Start Date : 10/29/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2

			Re	servoir	Rd.				Rt. 28		OHSHIR	oa Dai		servoir	Rd.				Rt. 28	<u> </u>		
				om No				F	rom Ea					rom So				F	rom W			
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
	11:00 AM	0	0	0	0	0	0	81	12	0	93	18	0	8	0	26	5	73	0	0	78	197
	11:15 AM	0	0	0	0	0	0	76	8	0	84	12	0	6	0	18	4	57	0	0	61	163
	11:30 AM	0	0	0	0	0	0	66	18	0	84	18	0	5	1	24	2	86	0	1	89	197
_	11:45 AM	0	0	0	0	0	0	79	17	0	96	22	0	4	0	26	13	72	0	0	85	207
	Total	0	0	0	0	0	0	302	55	0	357	70	0	23	1	94	24	288	0	1	313	764
	12:00 PM	0	0	0	0	0	0	88	14	1	103	23	0	7	0	30	8	75	0	0	83	216
	12:15 PM	0	0	0	0	0	0	85	14	0	99	16	0	9	0	25	7	73	0	0	80	204
	12:30 PM	0	0	0	0	0	0	82	27	0	109	21	0	3	0	24	5	71	0	0	76	209
	12:45 PM	0	0	0	0	0	0	88	30	1	119	22	0	8	0	30	4	84	0	0	88	237
	Total	0	0	0	0	0	0	343	85	2	430	82	0	27	0	109	24	303	0	0	327	866
	01:00 PM	0	0	0	0	0	0	81	16	0	97	25	0	5	0	30	4	83	0	0	87	214
	01:15 PM	0	0	0	0	0	0	90	18	0	108	17	0	4	0	21	4	59	0	0	63	192
	01:30 PM	0	0	0	0	0	0	84	21	0	105	15	0	9	0	24	6	78	0	0	84	213
_	01:45 PM	0	0	0	0	0	0	82	17	0	99	17	0	7	0	24	4	66	0	0	70	193
	Total	0	0	0	0	0	0	337	72	0	409	74	0	25	0	99	18	286	0	0	304	812
	Grand Total	0	0	0	0	0	0	982	212	2	1196	226	0	75	1	302	66	877	0	1	944	2442
	Apprch %	0.0	0.0	0.0	0.0		0.0	82.1	17.7	0.2		74.8	0.0	24.8	0.3		7.0	92.9	0.0	0.1		
	Total %	0.0	0.0	0.0	0.0	0.0	0.0	40.2	8.7	0.1	49.0	9.3	0.0	3.1	0.0	12.4	2.7	35.9	0.0	0.0	38.7	


Weather: Cloudy

Serial Number: D24-2026

Collected By:CEP

Other Notes:

File Name : 2016-1~3 Site Code : 11111111 Start Date : 10/29/2016

Weather: Cloudy

Serial Number: D24-2026

Collected By:CEP

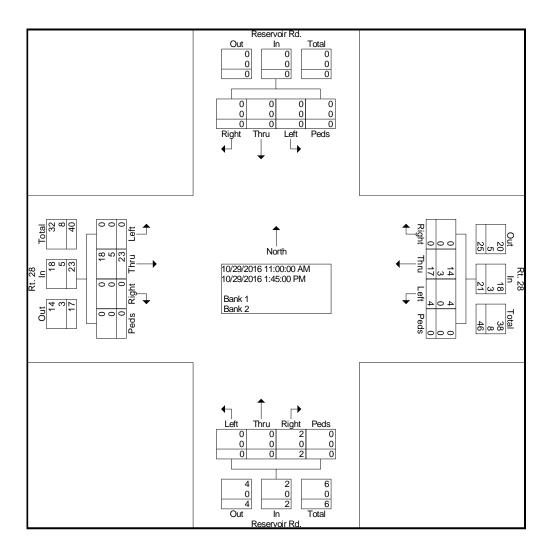
Other Notes:

Albany, NY 12205 File Name : 2016-1~3 Site Code : 11111111

Start Date : 10/29/2016

Groups	Drintod-	Rank 1	- Bank 2
Groups	Printeu-	Dank i	- Dank 2

			Re	servoir	Rd.				Rt. 28		THITCO D		Re	eservoir	Rd.				Rt. 28	3		
			F	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
Start	Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	actor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
	0 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	5 AM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	3
	MA 0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	3
	5 AM	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	3	0	0	3	4
	Total	0	0	0	0	0	0	5	1	0	6	0	0	0	0	0	0	5	0	0	5	11
							1					1										
	0 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	5
	5 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	4
	0 PM	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	1	0	0	1	3
	5 PM	0	0	0	0	0	0	2	1	0	3	0	0	0	0	0	0	2	0	0	2	5
	Total	0	0	0	0	0	0	7	2	0	9	0	0	0	0	0	0	8	0	0	8	17
							1					1										
	0 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	5
	5 PM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	4	0	0	4	6
	0 PM	0	0	0	0	0	0	1	1	0	2	2	0	0	0	2	0	1	0	0	1	5
	5 PM	0	0	0	0	0	0	1_	0	0	1	0	0	0	0	0	0	1_	0	0	1	2
	Total	0	0	0	0	0	0	5	1	0	6	2	0	0	0	2	0	10	0	0	10	18
Grand	Total	0	0	0	0	0	0	17	4	0	21	2	0	0	0	2	0	23	0	0	23	46
Appr	rch %	0.0	0.0	0.0	0.0		0.0	81.0	19.0	0.0		100. 0	0.0	0.0	0.0		0.0	100. 0	0.0	0.0		
To	otal %	0.0	0.0	0.0	0.0	0.0	0.0	37.0	8.7	0.0	45.7	4.3	0.0	0.0	0.0	4.3	0.0	50.0	0.0	0.0	50.0	


Weather: Cloudy

Serial Number: D24-2026

Collected By:CEP

Other Notes:

File Name : 2016-1~3 Site Code : 11111111 Start Date : 10/29/2016

Weather: Fog

Serial Number: D4-2839

Collected By: CMH

Other Notes:

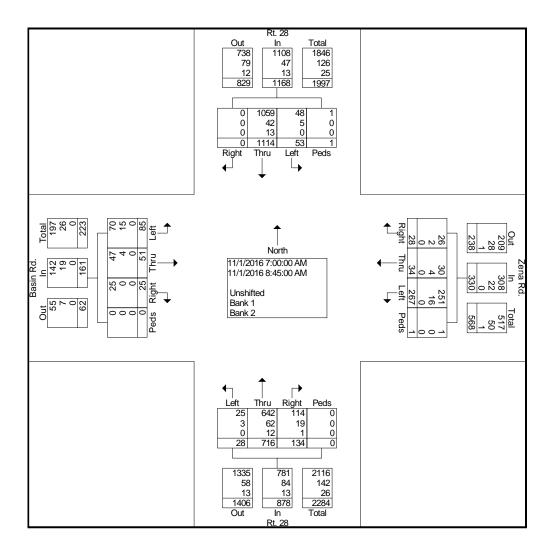
File Name: LOCATI~2 Site Code: 00000111

Start Date : 11/1/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2

Γ				Rt. 28	3			- 2	Zena R	d.				Rt. 28	1			Е	Basin R	d.		
			Fi	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
	07:00 AM	0	114	3	0	117	2	7	27	0	36	7	70	1	0	78	3	6	8	0	17	248
	07:15 AM	0	107	6	0	113	3	2	23	0	28	9	72	2	0	83	2	8	8	0	18	242
	07:30 AM	0	145	8	0	153	2	5	28	0	35	12	80	4	0	96	3	6	11	0	20	304
	07:45 AM	0	123	10	0	133	5	4	38	0	47	14	109	11	0	134	4	5	8	0	17	331
	Total	0	489	27	0	516	12	18	116	0	146	42	331	18	0	391	12	25	35	0	72	1125
	08:00 AM	0	120	3	0	123	4	2	37	0	43	22	96	5	0	123	2	10	13	0	25	314
	08:15 AM	0	162	9	0	171	5	3	34	1	43	28	92	1	0	121	2	8	16	0	26	361
	08:30 AM	0	160	5	0	165	5	4	40	0	49	20	93	0	0	113	4	6	9	0	19	346
	08:45 AM	0	183	9	1	193	2	7	40	0	49	22	104	4	0	130	5	2	12	0	19	391
_	Total	0	625	26	1	652	16	16	151	1	184	92	385	10	0	487	13	26	50	0	89	1412
	Grand Total	0	1114	53	1	1168	28	34	267	1	330	134	716	28	0	878	25	51	85	0	161	2537
	Apprch %	0.0	95.4	4.5	0.1		8.5	10.3	80.9	0.3		15.3	81.5	3.2	0.0		15.5	31.7	52.8	0.0		
	Total %	0.0	43.9	2.1	0.0	46.0	1.1	1.3	10.5	0.0	13.0	5.3	28.2	1.1	0.0	34.6	1.0	2.0	3.4	0.0	6.3	


Weather: Fog

Serial Number: D4-2839

Collected By: CMH

Other Notes:

File Name: LOCATI~2 Site Code: 00000111 Start Date: 11/1/2016

Weather: Fog

Serial Number: D4-2839

Collected By: CMH

Other Notes:

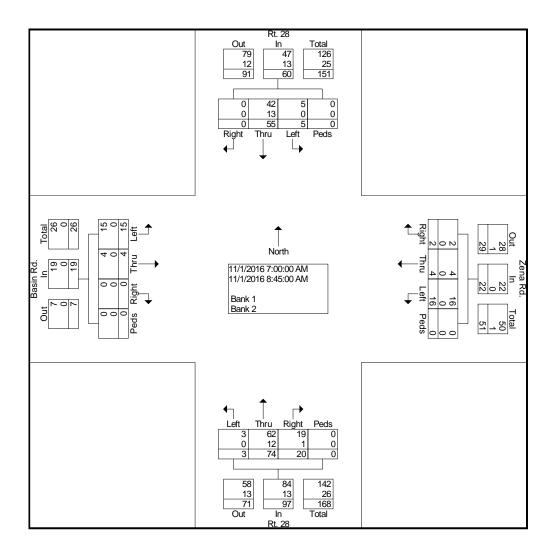
Albany, NY 12205 File Name: LOCATI~2 Site Code: 00000111

Start Date : 11/1/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2

_											ca D	<u> </u>	Daim L									
				Rt. 28	3			2	Zena R	d.				Rt. 28				E	Basin R	ld.		
			Fr	om No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
	07:00 AM	0	4	0	0	4	0	0	1	0	1	0	9	0	0	9	0	1	1	0	2	16
	07:15 AM	0	7	1	0	8	0	1	1	0	2	0	8	0	0	8	0	0	2	0	2	20
	07:30 AM	0	8	0	0	8	0	2	2	0	4	4	11	2	0	17	0	1	3	0	4	33
	07:45 AM	0	4	0	0	4	0	0	0	0	0	2	11	1	0	14	0	0	1	0	1	19
-	Total	0	23	1	0	24	0	3	4	0	7	6	39	3	0	48	0	2	7	0	9	88
	08:00 AM	0	7	0	0	7	0	0	3	0	3	2	10	0	0	12	0	0	4	0	4	26
	08:15 AM	0	10	2	0	12	1	0	3	0	4	6	8	0	0	14	0	1	1	0	2	32
	08:30 AM	0	6	2	0	8	1	0	4	0	5	4	7	0	0	11	0	1	3	0	4	28
	08:45 AM	0	9	0	0	9	0	1	2	0	3	2	10	0	0	12	0	0	0	0	0	24
-	Total	0	32	4	0	36	2	1	12	0	15	14	35	0	0	49	0	2	8	0	10	110
																,						
	Grand Total	0	55	5	0	60	2	4	16	0	22	20	74	3	0	97	0	4	15	0	19	198
	Apprch %	0.0	91.7	8.3	0.0		9.1	18.2	72.7	0.0		20.6	76.3	3.1	0.0		0.0	21.1	78.9	0.0		
	Total %	0.0	27.8	2.5	0.0	30.3	1.0	2.0	8.1	0.0	11.1	10.1	37.4	1.5	0.0	49.0	0.0	2.0	7.6	0.0	9.6	


Weather: Fog

Serial Number: D4-2839

Collected By: CMH

Other Notes:

File Name: LOCATI~2 Site Code: 00000111 Start Date: 11/1/2016

Weather: Partly Cloudy Serial Number: D- 2837

Collected By: CIS

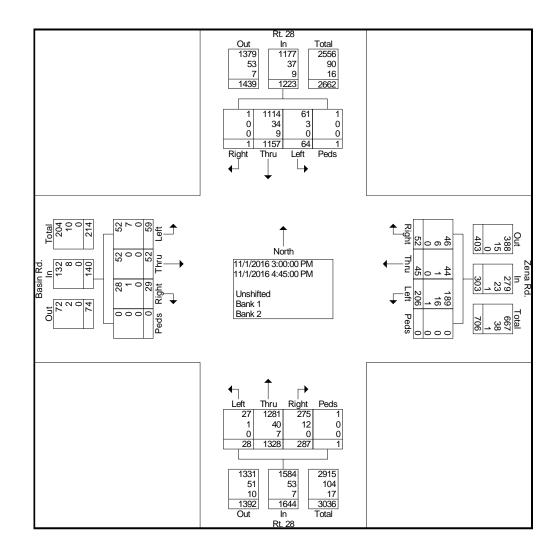
Other Notes:

File Name : 008{I4~E Site Code : 00000001

Start Date : 11/1/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2


				Rt. 28	3			2	Zena R	d.				Rt. 28					Basin R			
			Fr	om No	rth			F	rom Ea	ast			Fı	rom So	uth			F	rom W	est		
Start Tim	ne Rig	ght	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Facto	or 1	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
03:00 P	M	0	145	10	0	155	8	6	22	0	36	30	151	3	0	184	3	7	8	0	18	393
03:15 P	M	0	107	4	0	111	13	7	32	0	52	31	155	1	0	187	5	7	11	0	23	373
03:30 P	M	0	161	8	0	169	5	5	34	0	44	41	174	1	0	216	2	5	8	0	15	444
03:45 P	M	1	178	7	0	186	3	4	14	0	21	40	145	2	0	187	2	4	5	0	11	405
Tot	al	1	591	29	0	621	29	22	102	0	153	142	625	7	0	774	12	23	32	0	67	1615
04:00 P	М	0	137	9	0	146	6	4	21	0	31	35	164	2	0	201	4	8	5	0	17	395
04:15 P		0	145	6	0	151	10	3	24	0	37	25	175	11	1	212	5	7	6	0	18	418
04:30 P		Ō	143	10	0	153	4	7	30	0	41	50	170	2	0	222	3	8	8	0	19	435
04:45 P	M	0	141	10	1	152	3	9	29	0	41	35	194	6	0	235	5	6	8	0	19	447
Tot	al	0	566	35	1	602	23	23	104	0	150	145	703	21	1	870	17	29	27	0	73	1695
Grand Tot	al	4	1157	64	1	1223	52	45	206	0	303	287	1328	28	1	1644	29	52	59	0	140	3310
		0.1	94.6	5.2	0.1	1223	17.2	14.9	68.0	0.0	303	17.5	80.8	1.7	0.1	1044	20.7	37.1	42.1	0.0	140	3310
Approh (-	0.1	26.0			6.2	0.0	0.2			0.8	-	40.7	-			0.0	4.2	
Total ^c	70 U	0.0	35.0	1.9	0.0	36.9	1.6	1.4	0.2	0.0	9.2	8.7	40.1	0.8	0.0	49.7	0.9	1.6	1.8	0.0	4.2	

Weather: Partly Cloudy Serial Number: D- 2837

Collected By: CIS

Other Notes:

File Name : 008{I4~E Site Code : 00000001 Start Date : 11/1/2016

Weather: Partly Cloudy Serial Number: D- 2837

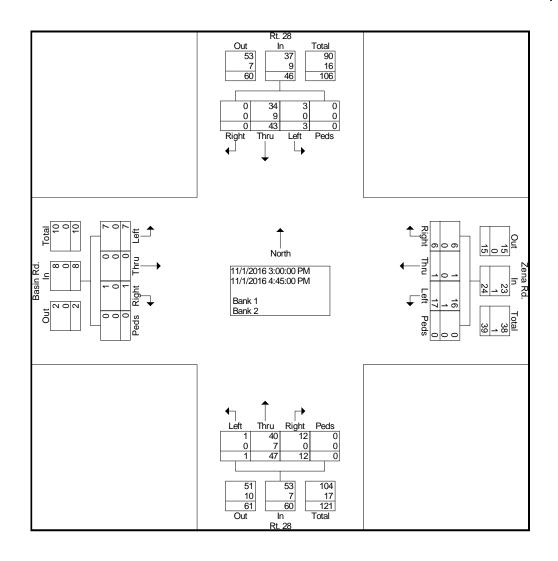
Collected By: CIS

Other Notes:

File Name : 008{I4~E Site Code : 00000001 Start Date : 11/1/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2


			Rt. 28	3				Zena R		rantou D	<u> </u>	Dariit L	Rt. 28	}			-	Basin R	d.		
		F	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
03:00 PM	0	8	3	0	11	1	0	1	0	2	3	9	0	0	12	0	0	1	0	1	26
03:15 PM	0	5	0	0	5	3	0	4	0	7	2	5	0	0	7	0	0	3	0	3	22
03:30 PM	0	4	0	0	4	0	0	6	0	6	1	6	0	0	7	0	0	0	0	0	17
03:45 PM	0	7	0	0	7	0	0	1	0	1	3	7	0	0	10	1	0	0	0	1	19
Total	0	24	3	0	27	4	0	12	0	16	9	27	0	0	36	1	0	4	0	5	84
04:00 PM	0	4	0	0	4	0	1	3	0	4	1	6	0	0	7	0	0	0	0	0	15
04:15 PM	0	4	0	0	4	2	0	1	0	3	1	2	1	0	4	0	0	0	0	0	11
04:30 PM	0	5	0	0	5	0	0	1	0	1	1	10	0	0	11	0	0	1	0	1	18
04:45 PM	0	6	0	0	6	0	0	0	0	0	0	2	0	0	2	0	0	2	0	2	10
Total	0	19	0	0	19	2	1	5	0	8	3	20	1	0	24	0	0	3	0	3	54
Grand Total	0	43	3	0	46	6	1	17	0	24	12	47	1	0	60	1	0	7	0	8	138
Apprch %	0.0	93.5	6.5	0.0		25.0	4.2	70.8	0.0		20.0	78.3	1.7	0.0		12.5	0.0	87.5	0.0		
Total %	0.0	31.2	2.2	0.0	33.3	4.3	0.7	12.3	0.0	17.4	8.7	34.1	0.7	0.0	43.5	0.7	0.0	5.1	0.0	5.8	

Weather: Partly Cloudy Serial Number: D- 2837

Collected By: CIS

Other Notes:

File Name : 008{I4~E Site Code : 00000001 Start Date : 11/1/2016

Weather: Fog

Serial Number: D4-2839

Collected By: CIS

Other Notes:

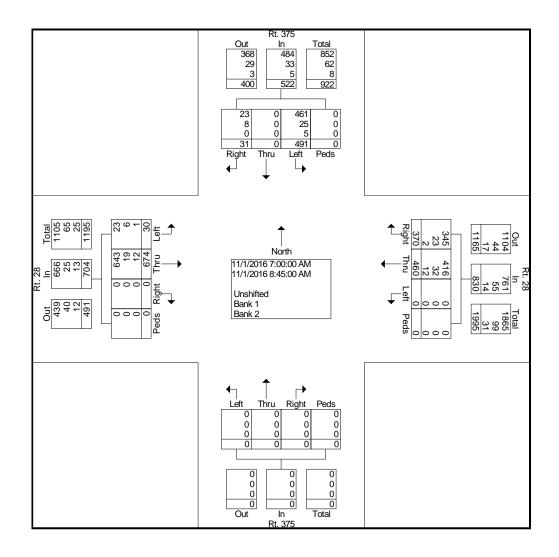
File Name: 20CF00~1

Site Code : 00000002 Start Date : 11/1/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2

								J. 0 0. P 0		OTIOTING	5a D ai		<u> </u>								
			Rt. 37	5				Rt. 28	3				Rt. 37	5				Rt. 28	3		
		F	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Tota
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
07:00 AM	8	0	45	0	53	29	52	0	0	81	0	0	0	0	0	0	59	2	0	61	195
07:15 AM	4	0	47	0	51	24	61	0	0	85	0	0	0	0	0	0	68	2	0	70	206
07:30 AM	3	0	57	0	60	42	49	0	0	91	0	0	0	0	0	0	98	6	0	104	255
07:45 AM	1	0	50	0	51	49	64	0	0	113	0	0	0	0	0	0	67	9	0	76	240
Total	16	0	199	0	215	144	226	0	0	370	0	0	0	0	0	0	292	19	0	311	896
08:00 AM	3	0	56	0	59	53	65	0	0	118	0	0	0	0	0	0	85	0	0	85	262
08:15 AM	7	0	73	0	80	55	57	0	0	112	0	0	0	0	0	0	88	1	0	89	281
08:30 AM	2	0	72	0	74	58	49	0	0	107	0	0	0	0	0	0	116	4	0	120	301
08:45 AM	3	0	91	0	94	60	63	0	0	123	0	0	0	0	0	0	93	6	0	99	316
Total	15	0	292	0	307	226	234	0	0	460	0	0	0	0	0	0	382	11	0	393	1160
					•					•											
Grand Total	31	0	491	0	522	370	460	0	0	830	0	0	0	0	0	0	674	30	0	704	2056
Apprch %	5.9	0.0	94.1	0.0		44.6	55.4	0.0	0.0		0.0	0.0	0.0	0.0		0.0	95.7	4.3	0.0		
Total %	1.5	0.0	23.9	0.0	25.4	18.0	22.4	0.0	0.0	40.4	0.0	0.0	0.0	0.0	0.0	0.0	32.8	1.5	0.0	34.2	
	Factor 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total Grand Total Apprich %	Factor 1.0 07:00 AM 8 07:15 AM 4 07:30 AM 3 07:45 AM 1 Total 16 08:00 AM 3 08:15 AM 7 08:30 AM 2 08:45 AM 3 Total 15 Grand Total Apprich % 5.9	Start Time Right Thru Factor 1.0 1.0 07:00 AM 8 0 07:15 AM 4 0 07:30 AM 3 0 07:45 AM 1 0 Total 16 0 08:00 AM 3 0 08:15 AM 7 0 08:30 AM 2 0 08:45 AM 3 0 Total 15 0 Grand Total 31 0 Apprich % 5.9 0.0	Start Time Right Thru Left Factor 1.0 1.0 1.0 07:00 AM 8 0 45 07:15 AM 4 0 47 07:30 AM 3 0 57 07:45 AM 1 0 50 Total 16 0 199 08:00 AM 3 0 56 08:15 AM 7 0 73 08:30 AM 2 0 72 08:45 AM 3 0 91 Total 15 0 292 Grand Total 31 0 491 Apprich % 5.9 0.0 94.1	Factor 1.0 1.0 1.0 1.0 1.0 07:00 AM 8 0 45 0 07:15 AM 4 0 47 0 07:30 AM 3 0 57 0 07:45 AM 1 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From North Start Time Right Thru Left Peds App. Total Factor 1.0 1.0 1.0 1.0 07:00 AM 8 0 45 0 53 07:15 AM 4 0 47 0 51 07:30 AM 3 0 57 0 60 07:45 AM 1 0 50 0 51 Total 16 0 199 0 215 08:00 AM 3 0 56 0 59 08:15 AM 7 0 73 0 80 08:30 AM 2 0 72 0 74 08:45 AM 3 0 91 0 94 Total 15 0 292 0 307 Grand Total 31 0 491 0 522 Apprich % 5.9 0.0 94.1 0.0 <	From North Start Time Right Thru Left Peds App. Total Right Factor 1.0 1.0 1.0 1.0 1.0 1.0 07:00 AM 8 0 45 0 53 29 07:15 AM 4 0 47 0 51 24 07:30 AM 3 0 57 0 60 42 07:45 AM 1 0 50 0 51 49 Total 16 0 199 0 215 144 08:00 AM 3 0 56 0 59 53 08:15 AM 7 0 73 0 80 55 08:30 AM 2 0 72 0 74 58 08:45 AM 3 0 91 0 94 60 Total 15 0 292 0 307 226 <tr< td=""><td>From North From North App. Right Thru From North Peds App. Right Thru From North Peds App. Right Thru From North Peds App. Right Thru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0</td><td>From North From Ea Start Time Right Thru Left Peds App. Total Right Thru Left Factor 1.0</td><td>From North From East Start Time Right Thru Left Peds App. Total Right Thru Left Peds Factor 1.0 0 0 0 0 0 0 0 0 0 0 0 0</td><td> Rt. 375</td><td>Rt. 375 Rt. 28 From North Rt. 28 Start Time Right Thru Left Peds App. Total Rt. 28 From East Start Time Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right From East 1.0 0 81 0 0 85 0 0<</td><td> Rt. 375</td><td> Rt. 375</td><td> Rt. 375</td><td> Rt. 375</td><td> Start Time Right Thru Left Peds App. Total Thru Left Peds Total Thru Left Peds Total Thru Left Peds Total Thru Left Peds Total Thru Thru Left Peds Total Thru T</td><td> Rt. 375</td><td> Rt. 375</td><td> Rt. 375</td><td> Rt. 375</td></tr<>	From North App. Right Thru From North Peds App. Right Thru From North Peds App. Right Thru From North Peds App. Right Thru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	From North From Ea Start Time Right Thru Left Peds App. Total Right Thru Left Factor 1.0	From North From East Start Time Right Thru Left Peds App. Total Right Thru Left Peds Factor 1.0 0 0 0 0 0 0 0 0 0 0 0 0	Rt. 375	Rt. 375 Rt. 28 From North Rt. 28 Start Time Right Thru Left Peds App. Total Rt. 28 From East Start Time Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right Thru Left Peds App. Total Right From East 1.0 0 81 0 0 85 0 0<	Rt. 375	Rt. 375	Rt. 375	Rt. 375	Start Time Right Thru Left Peds App. Total Thru Left Peds Total Thru Left Peds Total Thru Left Peds Total Thru Left Peds Total Thru Thru Left Peds Total Thru T	Rt. 375	Rt. 375	Rt. 375	Rt. 375


Weather: Fog

Serial Number: D4-2839

Collected By: CIS

Other Notes:

File Name : 20CF00~1 Site Code : 00000002 Start Date : 11/1/2016

Weather: Fog

Serial Number: D4-2839

Collected By: CIS

Other Notes:

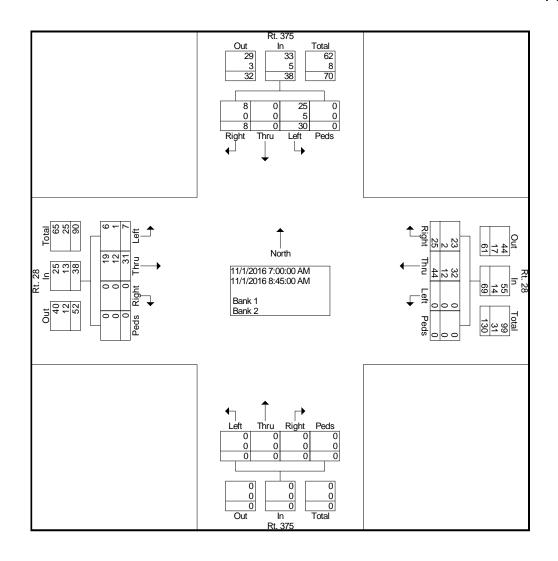
File Name: 20CF00~1

Site Code : 00000002 Start Date : 11/1/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2

										Tillitoa D	<u> </u>										
			Rt. 37	5				Rt. 28	3				Rt. 37	5				Rt. 28	3		
		Fi	rom No	orth			F	rom Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
07:00 AM	4	0	1	0	5	1	6	0	0	7	0	0	0	0	0	0	1	0	0	1	13
07:15 AM	0	0	2	0	2	2	6	0	0	8	0	0	0	0	0	0	3	0	0	3	13
07:30 AM	0	0	2	0	2	2	6	0	0	8	0	0	0	0	0	0	4	1	0	5	15
07:45 AM	0	0	1	0	1	3	7	0	0	10	0	0	0	0	0	0	5	3	0	8	19
Total	4	0	6	0	10	8	25	0	0	33	0	0	0	0	0	0	13	4	0	17	60
08:00 AM	1	0	6	0	7	6	4	0	0	10	0	0	0	0	0	0	4	0	0	4	21
08:15 AM	3	0	9	0	12	3	2	0	0	5	0	0	0	0	0	0	5	0	0	5	22
08:30 AM	0	0	6	0	6	5	6	0	0	11	0	0	0	0	0	0	6	2	0	8	25
08:45 AM	0	0	3	0	3	3	7	0	0	10	0	0	0	0	0	0	3	1	0	4	17
Total	4	0	24	0	28	17	19	0	0	36	0	0	0	0	0	0	18	3	0	21	85
Grand Total	8	0	30	0	38	25	44	0	0	69	0	0	0	0	0	0	31	7	0	38	145
Apprch %	21.1	0.0	78.9	0.0		36.2	63.8	0.0	0.0		0.0	0.0	0.0	0.0		0.0	81.6	18.4	0.0		
Total %	5.5	0.0	20.7	0.0	26.2	17.2	30.3	0.0	0.0	47.6	0.0	0.0	0.0	0.0	0.0	0.0	21.4	4.8	0.0	26.2	


Weather: Fog

Serial Number: D4-2839

Collected By: CIS

Other Notes:

File Name : 20CF00~1 Site Code : 00000002 Start Date : 11/1/2016

Weather: Partly Cloudy Serial Number: D4-2839

Collected By: ZTB

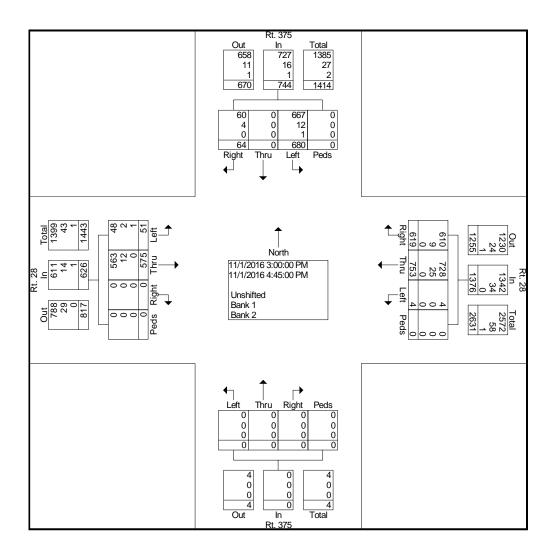
Other Notes:

File Name: untitled6
Site Code: 00000002

Start Date : 11/1/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2


			Rt. 37					Rt. 28					Rt. 37					Rt. 28			
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
03:00 PM	5	0	74	0	79	88	61	0	0	149	0	0	0	0	0	0	69	3	0	72	300
03:15 PM	8	0	69	0	77	81	95	0	0	176	0	0	0	0	0	0	65	3	0	68	321
03:30 PM	5	0	119	0	124	74	110	0	0	184	0	0	0	0	0	0	77	8	0	85	393
03:45 PM	7	0	97	0	104	64	92	4	0	160	0	0	0	0	0	0	86	11	0	97	361
Total	25	0	359	0	384	307	358	4	0	669	0	0	0	0	0	0	297	25	0	322	1375
	_	_		_				_	_		_	_	_	_		_		_	_	1	
04:00 PM	7	0	81	0	88	74	81	0	0	155	0	0	0	0	0	0	72	5	0	77	320
04:15 PM	10	0	87	0	97	77	115	0	0	192	0	0	0	0	0	0	59	5	0	64	353
04:30 PM	8	0	72	0	80	72	94	0	0	166	0	0	0	0	0	0	65	11	0	76	322
04:45 PM	14	0	81	0	95	89	105	0	0	194	0	0	0	0	0	0	82	5	0	87	376
Total	39	0	321	0	360	312	395	0	0	707	0	0	0	0	0	0	278	26	0	304	1371
Grand Total	64	0	680	0	744	619	753	4	0	1376	0	٥	0	0	0	0	575	51	0	626	2746
Apprch %	8.6	0.0	91.4	0.0	744	45.0	54.7	0.3	0.0	13/0	0.0	0.0	0.0	0.0	U	0.0	91.9	8.1	0.0	020	2140
					07.4					FO 4					0.0					20.0	
Total %	2.3	0.0	24.8	0.0	27.1	22.5	27.4	0.1	0.0	50.1	0.0	0.0	0.0	0.0	0.0	0.0	20.9	1.9	0.0	22.8	

Weather: Partly Cloudy Serial Number: D4-2839

Collected By: ZTB

Other Notes:

File Name: untitled6
Site Code: 00000002
Start Date: 11/1/2016

Weather: Partly Cloudy Serial Number: D4-2839

Collected By: ZTB

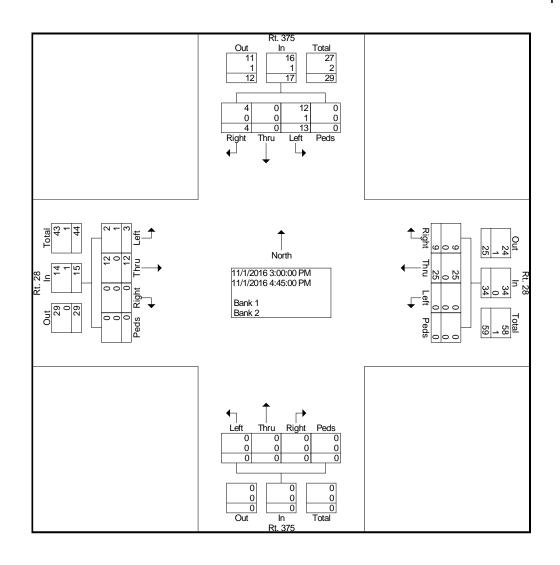
Other Notes:

File Name: untitled6

Site Code : 00000002 Start Date : 11/1/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2


			Rt. 375 rom No				F	Rt. 28 rom Ea				F	Rt. 375 rom So				F	Rt. 28 rom W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
03:00 PM	0	0	1	0	1	1	4	0	0	5	0	0	0	0	0	0	1	0	0	1	7
03:15 PM	1	0	1	0	2	4	5	0	0	9	0	0	0	0	0	0	2	0	0	2	13
03:30 PM	0	0	2	0	2	2	3	0	0	5	0	0	0	0	0	0	3	0	0	3	10
03:45 PM	1	0	2	0	3	0	4	0	0	4	0	0	0	0	0	0	1	1	0	2	9
Total	2	0	6	0	8	7	16	0	0	23	0	0	0	0	0	0	7	1	0	8	39
04:00 PM	1	0	2	0	3	1	2	٥	٥	3	0	0	0	0	0	0	2	0	0	2	8
04:15 PM	'n	0	1	0	1	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	4
04:30 PM	0	0	0	0	Ó	1	2	0	0	3	0	0	0	0	0	0	1	1	0	2	5
04:45 PM	1	0	4	0	5	0	2	0	0	2	0	0	0	0	0	0	2	1	0	3	10
Total	2	0	7	0	9	2	9	0	0	11	0	0	0	0	0	0	5	2	0	7	27
Grand Total	1	0	13	0	17	9	25	0	0	34	0	0	0	0	0	0	12	3	0	15	66
Apprch %	23.5	0.0	76.5	0.0	17	26.5	73.5	0.0	0.0	34	0.0	0.0	0.0	0.0	١	0.0	80.0	20.0	0.0	13	00
Total %	6.1	0.0	19.7	0.0	25.8	13.6	37.9	0.0	0.0	51.5	0.0	0.0	0.0	0.0	0.0	0.0	18.2	4.5	0.0	22.7	

Weather: Partly Cloudy Serial Number: D4-2839

Collected By: ZTB

Other Notes:

File Name: untitled6
Site Code: 00000002
Start Date: 11/1/2016

Weather:Fog

Serial Number:D-2026

Collected By:DPC

Other Notes:

File Name: 2016-11-1 Location 3

Site Code : 00000031 Start Date : 11/1/2016

Page No : 1

Groups Printed- Unshifted - Bank 1 - Bank 2

_											CHSHIL	ca bai	K I Do	IIIN Z								
			Re	eservoir	Rd.				Rt. 28				R	esevoir	Rd.				Rt. 28			
			F	rom No	orth			F	From Ea	ast			F	rom So	uth			F	rom W	est		
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
	07:00 AM	0	0	0	1	1	0	49	7	0	56	10	0	6	0	16	2	40	0	0	42	115
	07:15 AM	0	0	0	0	0	0	83	8	0	91	12	0	7	0	19	1	62	0	0	63	173
	07:30 AM	0	0	0	0	0	0	41	13	0	54	20	0	3	0	23	8	89	0	0	97	174
	07:45 AM	0	0	0	0	0	0	51	10	0	61	9	0	2	0	11	5	66	0	1	72	144
	Total	0	0	0	1	1	0	224	38	0	262	51	0	18	0	69	16	257	0	1	274	606
	08:00 AM	0	0	0	0	0	0	48	8	0	56	20	0	4	1	25	2	74	0	0	76	157
	08:15 AM	0	0	0	0	0	0	55	10	0	65	22	0	8	0	30	3	60	0	0	63	158
	08:30 AM	0	0	0	0	0	0	39	15	0	54	21	0	8	0	29	2	88	0	0	90	173
	08:45 AM	0	0	0	0	0	0	50	9	0	59	19	0	0	0	19	5	96	0	0	101	179
	Total	0	0	0	0	0	0	192	42	0	234	82	0	20	1	103	12	318	0	0	330	667
	Grand Total	0	0	0	1	1	0	416	80	0	496	133	0	38	1	172	28	575	0	1	604	1273
	Apprch %	0.0	0.0	0.0	100. 0		0.0	83.9	16.1	0.0		77.3	0.0	22.1	0.6		4.6	95.2	0.0	0.2		
	Total %	0.0	0.0	0.0	0.1	0.1	0.0	32.7	6.3	0.0	39.0	10.4	0.0	3.0	0.1	13.5	2.2	45.2	0.0	0.1	47.4	

Weather:Fog Serial Number:D-2026 Collected By:DPC

Other Notes:

File Name: 2016-11-1 Location 3

Site Code : 00000031 Start Date : 11/1/2016

Weather:Fog

Serial Number:D-2026 Collected By:DPC

Other Notes:

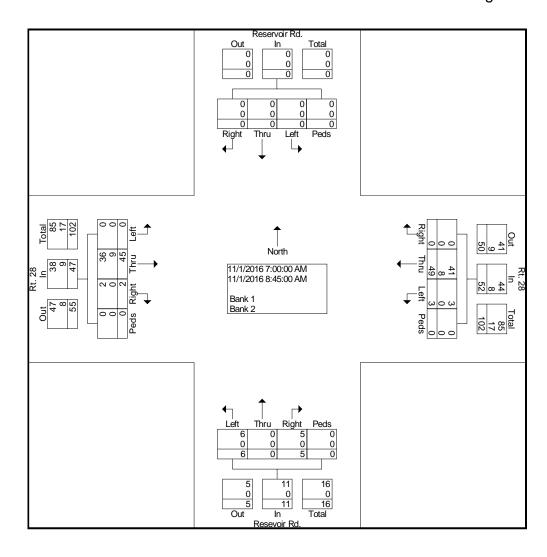
File Name: 2016-11-1 Location 3

Site Code : 00000031 Start Date : 11/1/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2

		Re	eservoir	Rd.				Rt. 28					esevoir					Rt. 28			
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
07:00 AM	0	0	0	0	0	0	8	0	0	8	0	0	2	0	2	0	1	0	0	1	11
07:15 AM	0	0	0	0	0	0	11	0	0	11	0	0	0	0	0	0	3	0	0	3	14
07:30 AM	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	11	0	0	11	16
07:45 AM	0	0	0	0	0	0	2	1	0	3	1	0	0	0	1	1	7	0	0	8	12
Total	0	0	0	0	0	0	26	1	0	27	1	0	2	0	3	1	22	0	0	23	53
08:00 AM	0	0	0	0	0	0	8	2	0	10	1	0	1	0	2	0	0	0	0	0	12
08:15 AM	0	0	0	0	0	0	3	0	0	3	1	0	1	0	2	0	4	0	0	4	9
08:30 AM	0	0	0	0	0	0	5	0	0	5	1	0	2	0	3	0	6	0	0	6	14
08:45 AM	0	0	0	0	0	0	7	0	0	7	1	0	0	0	1	1	13	0	0	14	22
Total	0	0	0	0	0	0	23	2	0	25	4	0	4	0	8	1	23	0	0	24	57
Grand Total	0	0	0	0	0	0	49	3	0	52	5	0	6	0	11	2	45	0	0	47	110
Apprch %	0.0	0.0	0.0	0.0		0.0	94.2	5.8	0.0		45.5	0.0	54.5	0.0		4.3	95.7	0.0	0.0		
Total %	0.0	0.0	0.0	0.0	0.0	0.0	44.5	2.7	0.0	47.3	4.5	0.0	5.5	0.0	10.0	1.8	40.9	0.0	0.0	42.7	


Weather:Fog

Serial Number:D-2026 Collected By:DPC

Other Notes:

File Name: 2016-11-1 Location 3

Site Code : 00000031 Start Date : 11/1/2016

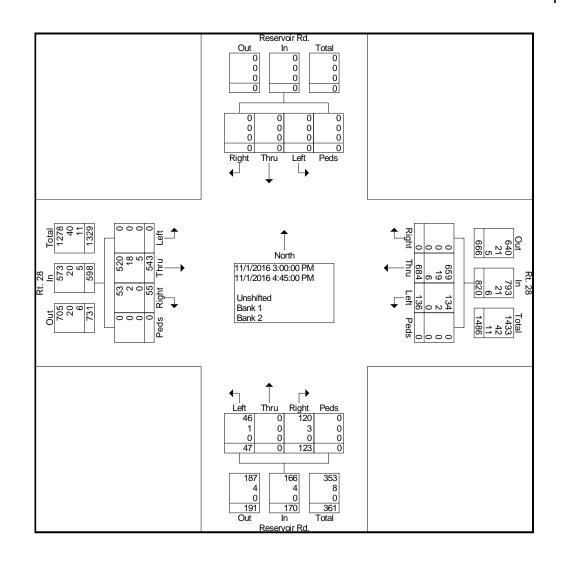
Weather: Partly Cloudy Serial Number: D-2026

Collected By: ERB

Other Notes:

Albany, NY 12205 File Name: untitled2
Site Code: 33333333
Start Date: 11/1/2016

Page No : 1


Groups Printed- Unshifted - Bank 1 - Bank 2

										- Onsilit	cu bai		uik Z								
		Re	servoir	Rd.				Rt. 28					eservoir					Rt. 28			
		F	rom No	orth			F	From Ea	ast			F	rom So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
03:00 PM	0	0	0	0	0	0	72	14	0	86	19	0	10	0	29	7	58	0	0	65	180
03:15 PM	0	0	0	0	0	0	65	7	0	72	20	0	3	0	23	5	61	0	0	66	161
03:30 PM	0	0	0	0	0	0	93	23	0	116	16	0	6	0	22	10	87	0	0	97	235
03:45 PM	0	0	0	0	0	0	85	24	0	109	14	0	5	0	19	6	56	0	0	62	190
Total	0	0	0	0	0	0	315	68	0	383	69	0	24	0	93	28	262	0	0	290	766
04:00 PM	0	0	0	0	0	0	89	13	0	102	13	0	6	0	19	9	73	0	0	82	203
04:15 PM	0	0	0	0	0	0	91	14	0	105	13	0	3	0	16	6	70	0	0	76	197
04:30 PM	0	0	0	0	0	0	90	25	0	115	14	0	6	0	20	7	73	0	0	80	215
04:45 PM	0	0	0	0	0	0	99	16	0	115	14	0	8	0	22	5	65	0	0	70	207
Total	0	0	0	0	0	0	369	68	0	437	54	0	23	0	77	27	281	0	0	308	822
Grand Total	0	0	0	0	0	0	684	136	0	820	123	0	47	0	170	55	543	0	0	598	1588
Apprch %	0.0	0.0	0.0	0.0		0.0	83.4	16.6	0.0		72.4	0.0	27.6	0.0		9.2	90.8	0.0	0.0		
Total %	0.0	0.0	0.0	0.0	0.0	0.0	43.1	8.6	0.0	51.6	7.7	0.0	3.0	0.0	10.7	3.5	34.2	0.0	0.0	37.7	

Weather: Partly Cloudy Serial Number: D-2026 Collected By: ERB

Other Notes:

File Name: untitled2 Site Code : 33333333 Start Date : 11/1/2016

Weather: Partly Cloudy Serial Number: D-2026

Collected By: ERB

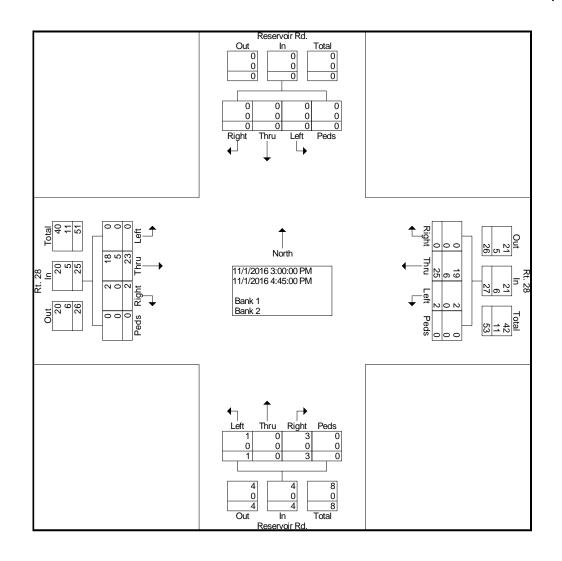
Other Notes:

File Name: untitled2 Site Code: 33333333

Start Date : 11/1/2016

Page No : 1

Groups Printed- Bank 1 - Bank 2


_											miliou B	· · · ·										
			Re	servoir	Rd.				Rt. 28	}			Re	eservoir	Rd.				Rt. 28			
			F	rom No	rth			F	rom Ea	ast			F	rom So	uth			F	rom We	est		
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
	03:00 PM	0	0	0	0	0	0	3	0	0	3	2	0	0	0	2	0	0	0	0	0	5
	03:15 PM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	3	0	0	3	9
	03:30 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	6	0	0	6	10
	03:45 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	1	2	0	0	3	6
-	Total	0	0	0	0	0	0	16	0	0	16	2	0	0	0	2	1	11	0	0	12	30
	04:00 PM	0	0	0	0	0	0	2	1	0	3	0	0	1	0	1	0	0	0	0	0	4
	04:15 PM	0	0	0	0	0	0	2	0	0	2	1	0	0	0	1	0	3	0	0	3	6
	04:30 PM	0	0	0	0	0	0	4	1	0	5	0	0	0	0	0	1	4	0	0	5	10
	04:45 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	5	0	0	5	6
-	Total	0	0	0	0	0	0	9	2	0	11	1	0	1	0	2	1	12	0	0	13	26
							'									'					'	
	Grand Total	0	0	0	0	0	0	25	2	0	27	3	0	1	0	4	2	23	0	0	25	56
	Apprch %	0.0	0.0	0.0	0.0		0.0	92.6	7.4	0.0		75.0	0.0	25.0	0.0		8.0	92.0	0.0	0.0		
	Total %	0.0	0.0	0.0	0.0	0.0	0.0	44.6	3.6	0.0	48.2	5.4	0.0	1.8	0.0	7.1	3.6	41.1	0.0	0.0	44.6	

Weather: Partly Cloudy Serial Number: D-2026

Collected By: ERB

Other Notes:

File Name: untitled2 Site Code: 33333333 Start Date: 11/1/2016

Appendix B Existing Conditions Synchro Reports

	۶	-	•	•	←	•	4	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4T+			4T+	_
Traffic Volume (vph)	49	13	15	92	26	19	27	685	96	37	551	1
Future Volume (vph)	49	13	15	92	26	19	27	685	96	37	551	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.973			0.981			0.982				
Flt Protected		0.969			0.968			0.998			0.997	
Satd. Flow (prot)	0	1745	0	0	1733	0	0	3504	0	0	3509	0
Flt Permitted		0.760			0.754			0.923			0.871	
Satd. Flow (perm)	0	1369	0	0	1350	0	0	3240	0	0	3066	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16			13			34				
Link Speed (mph)		35			45			45			45	
Link Distance (ft)		295			409			373			284	
Travel Time (s)		5.7			6.2			5.7			4.3	
Peak Hour Factor	0.96	0.96	0.96	0.84	0.84	0.84	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (%)	2%	0%	7%	4%	4%	5%	4%	1%	0%	11%	2%	0%
Adj. Flow (vph)	51	14	16	110	31	23	28	714	100	39	586	1
Shared Lane Traffic (%)	0.				0.			,		0,		•
Lane Group Flow (vph)	0	81	0	0	164	0	0	842	0	0	626	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	0	rugin	Loit	0	rugiii	Loit	0	rugiit	Lore	0	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	1	,	1	1	,	1	0	,	1	0	,
Detector Template	Left	Left		Left	Left		Left			Left		
Leading Detector (ft)	20	20		20	20		20	0		20	0	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	20		20	20		20	6		20	6	
Detector 1 Type	CI+Ex				CI+Ex			CI+Ex			CI+Ex	
Detector 1 Channel	OI. EX	OI LA		OI LA	OI. EX		OI. EX	OI! EX		OI. EX	OI. EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 CIIII	3		1 Cilli	7		i ciiii	1		1 CIIII	5	
Permitted Phases	3	3		7	,		1			5	J	
Detector Phase	3	3		7	7		1	1		5	5	
Switch Phase	J	J		,	,		'	ı		J	J	
Minimum Initial (s)	4.0	4.0		4.0	4.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.0	9.0		9.0	9.0		40.0	40.0		40.0	40.0	
Total Split (s)	25.0	25.0		25.0	25.0		40.0	40.0		40.0	40.0	
	38.5%			38.5%	38.5%		61.5%	61.5%		61.5%		
Total Split (%)		38.5%									61.5%	
Maximum Green (s)	20.0	20.0		20.0	20.0		34.0	34.0		34.0	34.0	

	۶	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Yellow Time (s)	4.0	4.0		4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		11.5			11.7			39.2			39.2	
Actuated g/C Ratio		0.20			0.20			0.67			0.67	
v/c Ratio		0.29			0.58			0.38			0.30	
Control Delay		18.2			27.3			6.7			6.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		18.2			27.3			6.7			6.4	
LOS		В			С			Α			Α	
Approach Delay		18.2			27.3			6.7			6.4	
Approach LOS		В			С			Α			Α	
Queue Length 50th (ft)		18			46			64			47	
Queue Length 95th (ft)		48			87			130			96	
Internal Link Dist (ft)		215			329			293			204	
Turn Bay Length (ft)												
Base Capacity (vph)		482			473			2191			2063	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.17			0.35			0.38			0.30	
Intersection Summary												

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 58.2

Natural Cycle: 55

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.58

Intersection Signal Delay: 9.1 Intersection Capacity Utilization 61.5% Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

	•	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	41	<u>₩</u>	7	₩.	JDIK
Traffic Volume (vph)	40	314	373	352	305	43
Future Volume (vph)	40	314	373	352	305	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.75	0.75	1.00	0.850	0.983	1.00
Flt Protected		0.994		0.030	0.958	
Satd. Flow (prot)	0	3518	1881	1599	1754	0
Flt Permitted	U	0.878	1001	1377	0.958	U
Satd. Flow (perm)	0	3107	1881	1599	1754	0
Right Turn on Red	U	3107	1001	Yes	1734	Yes
Satd. Flow (RTOR)				162	10	162
Link Speed (mph)		45	45		40	
Link Distance (ft)		448	397		403	
• ,						
Travel Time (s)	0.00	6.8	6.0	0.07	6.9	0.07
Peak Hour Factor	0.89	0.89	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	2%	2%
Adj. Flow (vph)	45	353	385	363	355	50
Shared Lane Traffic (%)		200	205	2/2	405	0
Lane Group Flow (vph)	0	398	385	363	405	0
Enter Blocked Intersection	No	No	No	No Diabt	No	No Diabt
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		12	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		4	4	4	4	4
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	1	1	1	1	
Detector Template	Left			Right	Left	
Leading Detector (ft)	20	6	6	20	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	20	6	6	20	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm	NA	NA	pt+ov	Prot	
Protected Phases		5	1	13	3	
Permitted Phases	5					
Detector Phase	5	5	1	13	3	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0		6.0	
Minimum Split (s)	16.0	16.0	16.0		11.0	
Total Split (s)	46.0	46.0	46.0		35.0	
Total Split (%)	56.8%	56.8%	56.8%		43.2%	
Maximum Green (s)	40.0	40.0	40.0		30.0	
maximum Green (S)	40.0	40.0	40.0		30.0	

	۶	→	←	•	\	✓	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Yellow Time (s)	5.0	5.0	5.0		4.0		
All-Red Time (s)	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0		
Total Lost Time (s)		6.0	6.0		5.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0		
Recall Mode	Max	Max	Max		None		
Walk Time (s)	7.0	7.0	7.0		7.0		
Flash Dont Walk (s)	11.0	11.0	11.0		11.0		
Pedestrian Calls (#/hr)	0	0	0		0		
Act Effct Green (s)		40.3	40.3	72.8	21.5		
Actuated g/C Ratio		0.55	0.55	1.00	0.30		
v/c Ratio		0.23	0.37	0.23	0.77		
Control Delay		9.8	11.7	0.3	33.3		
Queue Delay		0.0	0.0	0.0	0.0		
Total Delay		9.8	11.7	0.3	33.3		
LOS		A	В	Α	С		
Approach Delay		9.8	6.2		33.3		
Approach LOS		A	A	0	C		
Queue Length 50th (ft)		45 85	91	0	160 238		
Queue Length 95th (ft)		368	184 317	0	323		
Internal Link Dist (ft) Turn Bay Length (ft)		308	317		323		
Base Capacity (vph)		1718	1040	1591	733		
Starvation Cap Reductn		0	0	0	0		
Spillback Cap Reductn		0	0	0	0		
Storage Cap Reductn		0	0	0	0		
Reduced v/c Ratio		0.23	0.37	0.23	0.55		
		0.20	0.57	0.20	0.00		
Intersection Summary	Othor						
Area Type:	Other						
Cycle Length: 81	0						
Actuated Cycle Length: 72. Natural Cycle: 40	Ö						
Control Type: Actuated-Und	coordinated						
Maximum v/c Ratio: 0.77	Loorumateu						
Intersection Signal Delay: 1	112			In	tersection	I UC· D	
Intersection Capacity Utiliza						of Service B	
Analysis Period (min) 15	aliuii 03.2 <i>7</i> 0			IC	O Level C	JI SEIVICE D	
Analysis i Gilou (IIIIII) 13							
Splits and Phases: 7: Ro	ute 28 & Ro	ute 375					
4*						V _{Ø3}	
Ø1						- Ø3	

Intersection								
Int Delay, s/veh	2.6							
		-п-	EDD		יחא	WDT	NDI	NDD
Movement		<u>EBT</u>	EBR	V	VBL	WBT	NBL	NBR
Lane Configurations		4	0.4		0.5	4	Y	00
Traffic Vol, veh/h		343	24		85	347	27	82
Future Vol, veh/h		343	24		85	347	27	82
Conflicting Peds, #/hr	_	0	0	_	0	0	0	0
Sign Control	F	ree	Free	ŀ	ree	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		-	-	0	-
Veh in Median Storage, #	#	0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		93	93		91	91	91	91
Heavy Vehicles, %		3	0		2	2	0	0
Mvmt Flow		369	26		93	381	30	90
Major/Minor	Ma	jor1		Ma	jor2		Minor1	
Conflicting Flow All		0	0		395	0	950	382
Stage 1		-	-		-	-	382	-
Stage 2		_	_		_	_	568	-
Critical Hdwy		_	_		4.12	_	6.4	6.2
Critical Hdwy Stg 1		_	_		T. 1Z -	_	5.4	0.2
Critical Hdwy Stg 2					_	-	5.4	
Follow-up Hdwy			_	2	218	_	3.5	3.3
Pot Cap-1 Maneuver		_			164	_	291	670
Stage 1		-	-		104	-	694	070
Stage 2		-	-		-	-	571	-
Platoon blocked, %		-	-		-	-	3/1	-
		-	-	1	164	-	262	670
Mov Cap-1 Maneuver		-	-		104	-	262	
Mov Cap-2 Maneuver		-	-		-	-		-
Stage 1		-	-		-	-	694	-
Stage 2		-	-		-	-	513	-
Approach		EB			WB		NB	
HCM Control Delay, s		0			1.6		14.9	
HCM LOS							В	
Minor Lane/Major Mvmt	NBLn1 E	EBT	EBR	WBL V	VBT			
Capacity (veh/h)	483	-		1164	_			
HCM Lane V/C Ratio	0.248	_	_	0.08	_			
HCM Control Delay (s)	14.9	_	-	8.4	0			
HCM Lane LOS	B	-	-	Α	A			
HCM 95th %tile Q(veh)	1			0.3				
ncivi yotii %tile Q(ven)		-	-	0.3	-			

Appendix C Future Conditions Synchro Reports

	۶	→	•	•	←	•	1	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4T+			414	
Traffic Volume (vph)	53	17	19	96	30	23	31	693	100	41	559	2
Future Volume (vph)	53	17	19	96	30	23	31	693	100	41	559	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.971			0.979			0.982				
Flt Protected		0.971			0.969			0.998			0.997	
Satd. Flow (prot)	0	1745	0	0	1731	0	0	3503	0	0	3508	0
Flt Permitted		0.759			0.797			0.916			0.857	
Satd. Flow (perm)	0	1364	0	0	1423	0	0	3215	0	0	3015	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			14			35			1	
Link Speed (mph)		35			45			45			45	
Link Distance (ft)		295			409			373			284	
Travel Time (s)		5.7			6.2			5.7			4.3	
Peak Hour Factor	0.96	0.96	0.96	0.84	0.84	0.84	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (%)	2%	0%	7%	4%	4%	5%	4%	1%	0%	11%	2%	0%
Adj. Flow (vph)	55	18	20	114	36	27	32	722	104	44	595	2
Shared Lane Traffic (%)	00	10	20		00	_,	02	,	101	•	070	_
Lane Group Flow (vph)	0	93	0	0	177	0	0	858	0	0	641	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lort	0	ragin	Loit	0	rtigitt	Lort	0	rtigit	Lort	0	ragne
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	1	,	1	1	,	1	0	,	1	0	,
Detector Template	Left	Left		Left	Left		Left	Ü		Left	Ū	
Leading Detector (ft)	20	20		20	20		20	0		20	0	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	20		20	20		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OI. EX	OI LA		OI LX	OI. EX		OI. EX	OI LX		OI LX	OI. EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	3		1 01111	7		1 01111	1		1 01111	5	
Permitted Phases	3			7	,		1	•		5	- U	
Detector Phase	3	3		7	7		1	1		5	5	
Switch Phase		J		,	<u>'</u>					Ü	Ü	
Minimum Initial (s)	4.0	4.0		4.0	4.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.0	9.0		9.0	9.0		40.0	40.0		40.0	40.0	
Total Split (s)	25.0	25.0		25.0	25.0		40.0	40.0		40.0	40.0	
Total Split (%)	38.5%	38.5%		38.5%	38.5%		61.5%	61.5%		61.5%	61.5%	
Maximum Green (s)	20.0	20.0		20.0	20.0		34.0	34.0		34.0	34.0	
waxiiiiuiii Green (S)	20.0	20.0		20.0	20.0		34.U	34.U		34.0	J4.U	

	۶	→	\rightarrow	•	•	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Yellow Time (s)	4.0	4.0		4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		12.0			12.3			38.8			38.8	
Actuated g/C Ratio		0.21			0.21			0.67			0.67	
v/c Ratio		0.32			0.57			0.40			0.32	
Control Delay		18.1			26.0			7.1			6.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		18.1			26.0			7.1			6.8	
LOS		В			С			Α			Α	
Approach Delay		18.1			26.0			7.1			6.8	
Approach LOS		В			С			Α			Α	
Queue Length 50th (ft)		21			50			69			51	
Queue Length 95th (ft)		53			92			138			104	
Internal Link Dist (ft)		215			329			293			204	
Turn Bay Length (ft)								0.450				
Base Capacity (vph)		481			498			2152			2007	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.19			0.36			0.40			0.32	
Intersection Summary												

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 58.3

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.57

Intersection Signal Delay: 9.4 Intersection LOS: A Intersection Capacity Utilization 64.4% ICU Level of Service C

Analysis Period (min) 15

	۶	-	←	•	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		41∱	<u>₩</u>	7	W	ODIN
Traffic Volume (vph)	44	318	378	356	309	47
Future Volume (vph)	44	318	378	356	309	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.75	0.73	1.00	0.850	0.982	1.00
Flt Protected		0.994		0.030	0.958	
Satd. Flow (prot)	0	3518	1881	1599	1752	0
Flt Permitted	U	0.869	1001	1377	0.958	U
Satd. Flow (perm)	0	3076	1881	1599	1752	0
Right Turn on Red	U	3070	1001	Yes	1732	Yes
Satd. Flow (RTOR)				162	11	162
		ΛE	ΛE			
Link Speed (mph)		45	45		40	
Link Distance (ft)		448	397		403	
Travel Time (s)	0.00	6.8	6.0	0.07	6.9	0.07
Peak Hour Factor	0.89	0.89	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	2%	2%
Adj. Flow (vph)	49	357	390	367	359	55
Shared Lane Traffic (%)			_	_		
Lane Group Flow (vph)	0	406	390	367	414	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		12	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	1	1	1	1	
Detector Template	Left			Right	Left	
Leading Detector (ft)	20	6	6	20	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	20	6	6	20	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	2 2.					
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm	NA	NA	pt+ov	Prot	
Protected Phases	I CIIII	5	1	13	3	
Permitted Phases	5	Ü	1	ıs	J	
Detector Phase	5	5	1	1 3	3	
	5	5	I	13	3	
Switch Phase	10.0	10.0	10.0		4.0	
Minimum Initial (s)	10.0	10.0	10.0		6.0	
Minimum Split (s)	16.0	16.0	16.0		11.0	
Total Split (s)	46.0	46.0	46.0		35.0	
Total Split (%)	56.8%	56.8%	56.8%		43.2%	
Maximum Green (s)	40.0	40.0	40.0		30.0	

	۶	→	←	•	>	✓		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
Yellow Time (s)	5.0	5.0	5.0		4.0			
All-Red Time (s)	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)		0.0	0.0		0.0			
Total Lost Time (s)		6.0	6.0		5.0			
Lead/Lag								
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0	3.0		3.0			
Recall Mode	Max	Max	Max		None			
Walk Time (s)	7.0	7.0	7.0		7.0			
Flash Dont Walk (s)	11.0	11.0	11.0		11.0			
Pedestrian Calls (#/hr)	0	0	0		0			
Act Effct Green (s)		40.3	40.3	73.2	21.8			
Actuated g/C Ratio		0.55	0.55	1.00	0.30			
v/c Ratio		0.24	0.38	0.23	0.78			
Control Delay		10.0	11.9	0.3	33.6			
Queue Delay		0.0	0.0	0.0	0.0			
Total Delay		10.0	11.9	0.3	33.6			
LOS		В	В	Α	С			
Approach Delay		10.0	6.3		33.6			
Approach LOS		В	Α		С			
Queue Length 50th (ft)		47	94	0	164			
Queue Length 95th (ft)		87	187	0	244			
Internal Link Dist (ft)		368	317		323			
Turn Bay Length (ft)								
Base Capacity (vph)		1692	1034	1589	729			
Starvation Cap Reductn		0	0	0	0			
Spillback Cap Reductn		0	0	0	0			
Storage Cap Reductn		0	0	0	0			
Reduced v/c Ratio		0.24	0.38	0.23	0.57			
Intersection Summary								
Area Type:	Other							
Cycle Length: 81								
Actuated Cycle Length: 73	.2							
Natural Cycle: 40								
Control Type: Actuated-Un	coordinated							
Maximum v/c Ratio: 0.78								
Intersection Signal Delay:					tersection			
Intersection Capacity Utiliz	ation 64.1%	·		IC	U Level o	of Service C		
Analysis Period (min) 15								
Calite and Dhacoe 7. De	oute 28 & Ro	outo 27E						
Splits and Phases: 7: Ro	Jule 28 & Ri	bute 3/5				1 14		
						1		

Intersection								
Int Delay, s/veh	2.8							
Movement		EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations			LDK		WDL	₩DI 4	WDL.	NDK
Traffic Vol, veh/h		3 07	20		89	4 347		86
			28				31	
Future Vol, veh/h		307	28		89	347	31	86
Conflicting Peds, #/hr		0	0		0	0	0	0
Sign Control		Free	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length	u .	-	-		-	-	0	-
Veh in Median Storage,	#	0	-		-	0	0	-
Grade, %		0	-		- 01	0	0	-
Peak Hour Factor		93	93		91	91	91	91
Heavy Vehicles, %		3	0		2	2	0	0
Mvmt Flow		330	30		98	381	34	95
Major/Minor	Ma	ajor1		M	lajor2		Minor1	
Conflicting Flow All		0	0		360	0	922	345
Stage 1		-	-		-	-	345	-
Stage 2		_	_		_	_	577	_
Critical Hdwy		_	_		4.12	_	6.4	6.2
Critical Hdwy Stg 1		_	_		- 1.12	_	5.4	- 0.2
Critical Hdwy Stg 2		_	_		_	_	5.4	-
Follow-up Hdwy		_	_		2.218	_	3.5	3.3
Pot Cap-1 Maneuver		_	-		1199	_	302	702
Stage 1		_	_		-	_	722	-
Stage 2		_	-		_	-	566	- -
Platoon blocked, %		_	-			-	500	-
Mov Cap-1 Maneuver		-	-		1199	_	271	702
Mov Cap-1 Maneuver		-	-		1177	-	271	702
Stage 1		-			-	-	722	-
		-	-		-	-	507	-
Stage 2		-	-		-	-	307	-
Approach		EB			WB		NB	
HCM Control Delay, s		0			1.7		14.8	
HCM LOS							В	
Minor Lang/Major Muset	NDI n1	EDT	EDD	WDI	WDT.			
Minor Lane/Major Mvmt		EBT	EBR		WBT			
Capacity (veh/h)	494	-		1199	-			
HCM Lane V/C Ratio	0.26	-		0.082	-			
HCM Control Delay (s)	14.8	-	-	8.3	0			
HCM Lane LOS	В	-	-	Α	Α			
HCM 95th %tile Q(veh)	1	-	-	0.3	-			

	۶	→	•	•	←	•	1	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4î>			414	
Traffic Volume (vph)	53	17	19	99	30	23	31	729	104	41	587	2
Future Volume (vph)	53	17	19	99	30	23	31	729	104	41	587	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.971			0.980			0.982				
Flt Protected		0.971			0.968			0.998			0.997	
Satd. Flow (prot)	0	1745	0	0	1731	0	0	3503	0	0	3508	0
Flt Permitted		0.768			0.785			0.916			0.854	
Satd. Flow (perm)	0	1380	0	0	1403	0	0	3216	0	0	3005	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			14			34			1	
Link Speed (mph)		35			45			45			45	
Link Distance (ft)		295			409			373			284	
Travel Time (s)		5.7			6.2			5.7			4.3	
Peak Hour Factor	0.96	0.96	0.96	0.84	0.84	0.84	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (%)	2%	0%	7%	4%	4%	5%	4%	1%	0%	11%	2%	0%
Adj. Flow (vph)	55	18	20	118	36	27	32	759	108	44	624	2
Shared Lane Traffic (%)	00	10	20	110	00	_,	02	707	100	•	021	_
Lane Group Flow (vph)	0	93	0	0	181	0	0	899	0	0	670	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	0	rtigitt	Loit	0	rtigitt	Lort	0	rtigit	Lort	0	ragne
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	1	,	1	1	,	1	0	,	1	0	,
Detector Template	Left	Left		Left	Left		Left	Ū		Left	Ū	
Leading Detector (ft)	20	20		20	20		20	0		20	0	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	20		20	20		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OI. EX	OI. EX		OI LA	OI. EX		OI. EX	OI. EX		OI LX	OI. EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	3		1 01111	7		1 01111	1		1 01111	5	
Permitted Phases	3			7	•		1			5		
Detector Phase	3	3		7	7		1	1		5	5	
Switch Phase				•	•		•					
Minimum Initial (s)	4.0	4.0		4.0	4.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.0	9.0		9.0	9.0		40.0	40.0		40.0	40.0	
Total Split (s)	25.0	25.0		25.0	25.0		40.0	40.0		40.0	40.0	
Total Split (%)	38.5%	38.5%		38.5%	38.5%		61.5%	61.5%		61.5%	61.5%	
Maximum Green (s)	20.0	20.0		20.0	20.0		34.0	34.0		34.0	34.0	
Maximum Orecii (3)	20.0	20.0		۷.0	20.0		J4.U	54.0		34.0	54.0	

	۶	→	\rightarrow	•	←	•	•	†	/	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Yellow Time (s)	4.0	4.0		4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		12.7			12.7			37.1			37.1	
Actuated g/C Ratio		0.21			0.21			0.61			0.61	
v/c Ratio		0.31			0.60			0.46			0.37	
Control Delay		17.7			27.3			7.8			7.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		17.7			27.3			7.8			7.5	
LOS		В			С			Α			Α	
Approach Delay		17.7			27.3			7.8			7.5	
Approach LOS		В			С			Α			Α	
Queue Length 50th (ft)		21			51			74			54	
Queue Length 95th (ft)		53			94			150			111	
Internal Link Dist (ft)		215			329			293			204	
Turn Bay Length (ft)												
Base Capacity (vph)		468			472			1974			1832	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.20			0.38			0.46			0.37	
Intersection Summary												
Aron Tuno.	Othor											

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 60.9

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 10.1 Intersection LOS: B
Intersection Capacity Utilization 66.5% ICU Level of Service C

Analysis Period (min) 15

	۶	-	←	•	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		41∱	↑	7	W	ODI
Traffic Volume (vph)	44	335	398	375	326	47
Future Volume (vph)	44	335	398	375	326	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.75	0.73	1.00	0.850	0.983	1.00
Flt Protected		0.994		0.030	0.958	
Satd. Flow (prot)	0	3518	1881	1599	1754	0
Flt Permitted	U	0.869	1001	1377	0.958	U
Satd. Flow (perm)	0	3076	1881	1599	1754	0
Right Turn on Red	U	3070	1001	Yes	1754	Yes
Satd. Flow (RTOR)				162	10	162
		ΛE	<i>1</i> E			
Link Speed (mph)		45	45		40	
Link Distance (ft)		448	397		403	
Travel Time (s)	0.00	6.8	6.0	0.07	6.9	0.07
Peak Hour Factor	0.89	0.89	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	2%	2%
Adj. Flow (vph)	49	376	410	387	379	55
Shared Lane Traffic (%)	_					
Lane Group Flow (vph)	0	425	410	387	434	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		12	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	1	1	1	1	
Detector Template	Left			Right	Left	
Leading Detector (ft)	20	6	6	20	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	20	6	6	20	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm	NA	NA	pt+ov	Prot	
Protected Phases		5	1	13	3	
Permitted Phases	5				-	
Detector Phase	5	5	1	13	3	
Switch Phase				. •		
Minimum Initial (s)	10.0	10.0	10.0		6.0	
Minimum Split (s)	16.0	16.0	16.0		11.0	
Total Split (s)	46.0	46.0	46.0		35.0	
Total Split (%)	56.8%	56.8%	56.8%		43.2%	
Maximum Green (s)	40.0	40.0	40.0		30.0	
waxiiiluiii Green (S)	40.0	40.0	40.0		ას.ს	

	۶	→	←	•	\	✓
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	1.0	1.0	1.0		1.0	
Lost Time Adjust (s)		0.0	0.0		0.0	
Total Lost Time (s)		6.0	6.0		5.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	
Recall Mode	Max	Max	Max		None	
Walk Time (s)	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0	0		0	
Act Effct Green (s)		40.3	40.3	73.9	22.6	
Actuated g/C Ratio		0.55	0.55	1.00	0.31	
v/c Ratio		0.25	0.40	0.24	0.80	
Control Delay		10.4	12.5	0.4	34.7	
Queue Delay		0.0	0.0	0.0	0.0	
Total Delay		10.4	12.5	0.4	34.7	
LOS		В	В	Α	С	
Approach Delay		10.4	6.6		34.7	
Approach LOS		В	Α		С	
Queue Length 50th (ft)		51	104	0	175	
Queue Length 95th (ft)		91	198	0	258	
Internal Link Dist (ft)		368	317		323	
Turn Bay Length (ft)						
Base Capacity (vph)		1675	1024	1583	722	
Starvation Cap Reductn		0	0	0	0	
Spillback Cap Reductn		0	0	0	0	
Storage Cap Reductn		0	0	0	0	
Reduced v/c Ratio		0.25	0.40	0.24	0.60	
Intersection Summary						
Area Type:	Other					
Cycle Length: 81						
Actuated Cycle Length: 73.9	9					
Natural Cycle: 45						
Control Type: Actuated-Unc	oordinated					
Maximum v/c Ratio: 0.80						
Intersection Signal Delay: 1	4.9			In	tersection	LOS: B
Intersection Capacity Utiliza				IC	U Level o	of Service C
Analysis Period (min) 15						
Splits and Phases: 7: Rou	ute 28 & Ro	ute 375				1 14

Intersection								
Int Delay, s/veh	2.8							
		- D-T	EDD		ME	MOT	NO	NDD
Movement	L	BT	EBR		WBL	WBT	NBL	NBR
Lane Configurations		₽				ની	¥	
Traffic Vol, veh/h		324	28		91	367	31	89
Future Vol, veh/h		324	28		91	367	31	89
Conflicting Peds, #/hr		0	0		0	0	0	0
Sign Control	F	ree	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		-	-	0	-
Veh in Median Storage, #	#	0	-		-	0	0	-
Grade, %		0	-		-	0	0	
Peak Hour Factor		93	93		91	91	91	91
Heavy Vehicles, %		3	0		2	2	0	0
Mvmt Flow		348	30		100	403	34	98
Major/Minor	Ma	ior1		N	1ajor2		Minor1	
Conflicting Flow All	·····	0	0		378	0	966	363
Stage 1		-	-		370	-	363	303
Stage 2		_			-	_	603	
Critical Hdwy		-	-		4.12	-	6.4	6.2
Critical Hdwy Stg 1		-	-		4.12	-	5.4	0.2
Critical Hdwy Stg 2		-	-		-	-	5.4	-
Follow-up Hdwy		-	-		2.218	-	3.5	3.3
Pot Cap-1 Maneuver		-	-		1180		285	686
•		-	-			-		080
Stage 1		-	-		-	-	708	-
Stage 2		-	-		-	-	550	-
Platoon blocked, %		-	-		1100	-	0F.4	
Mov Cap-1 Maneuver		-	-		1180	-	254	686
Mov Cap-2 Maneuver		-	-		-	-	254	-
Stage 1		-	-		-	-	708	-
Stage 2		-	-		-	-	490	-
Approach		EB			WB		NB	
HCM Control Delay, s		0			1.7		15.4	
HCM LOS							С	
Minor Lane/Major Mvmt	NBLn1 E	EBT	EBR	WBL	WBT			
Capacity (veh/h)	477			1180				
HCM Lane V/C Ratio	0.276	_		0.085	_			
HCM Control Delay (s)	15.4	_		8.3	0			
HCM Lane LOS	C	-	-	0.5 A	A			
HCM 95th %tile Q(veh)	1.1			0.3	- A			
HOW YOU WILL Q(VEN)	1.1	-	-	0.3	-			

	۶	-	•	•	←	•	•	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4Te			€Î}	,
Traffic Volume (vph)	56	17	19	96	30	23	31	722	100	41	588	2
Future Volume (vph)	56	17	19	96	30	23	31	722	100	41	588	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.972			0.979			0.982				
Flt Protected		0.971			0.969			0.998			0.997	
Satd. Flow (prot)	0	1747	0	0	1731	0	0	3503	0	0	3509	0
Flt Permitted		0.756			0.797			0.916			0.857	
Satd. Flow (perm)	0	1360	0	0	1423	0	0	3215	0	0	3016	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			14			33			1	
Link Speed (mph)		35			45			45			45	
Link Distance (ft)		295			409			373			284	
Travel Time (s)		5.7			6.2			5.7			4.3	
Peak Hour Factor	0.96	0.96	0.96	0.84	0.84	0.84	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (%)	2%	0%	7%	4%	4%	5%	4%	1%	0%	11%	2%	0%
Adj. Flow (vph)	58	18	20	114	36	27	32	752	104	44	626	2
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	96	0	0	177	0	0	888	0	0	672	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	J		0	3		0	<u> </u>		0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	0		1	0	
Detector Template	Left	Left		Left	Left		Left			Left		
Leading Detector (ft)	20	20		20	20		20	0		20	0	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	20		20	20		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		3			7			1			5	
Permitted Phases	3			7			1			5		
Detector Phase	3	3		7	7		1	1		5	5	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.0	9.0		9.0	9.0		40.0	40.0		40.0	40.0	
Total Split (s)	25.0	25.0		25.0	25.0		40.0	40.0		40.0	40.0	
Total Split (%)	38.5%	38.5%		38.5%	38.5%		61.5%	61.5%		61.5%	61.5%	
Maximum Green (s)	20.0	20.0		20.0	20.0		34.0	34.0		34.0	34.0	

	•	-	\rightarrow	•	•	•		†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Yellow Time (s)	4.0	4.0		4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)		11.9			12.2			38.2			38.2	
Actuated g/C Ratio		0.21			0.21			0.66			0.66	
v/c Ratio		0.32			0.57			0.41			0.34	
Control Delay		18.2			25.7			7.2			7.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		18.2			25.7			7.2			7.0	
LOS		В			С			Α			Α	
Approach Delay		18.2			25.7			7.2			7.0	
Approach LOS		В			С			Α			Α	
Queue Length 50th (ft)		22			50			73			54	
Queue Length 95th (ft)		54			91			146			110	
Internal Link Dist (ft)		215			329			293			204	
Turn Bay Length (ft)												
Base Capacity (vph)		487			505			2144			2002	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.20			0.35			0.41			0.34	
l., l., ., ., .,												

Intersection Summary

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 57.6

Natural Cycle: 55

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.57 Intersection Signal Delay: 9.5

Intersection Signal Delay: 9.5 Intersection LOS: A Intersection Capacity Utilization 65.8% ICU Level of Service C

Analysis Period (min) 15

	•	→	←	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	41↑		VV DIX	JDL W	JUK
Traffic Volume (vph)	45	4 T 338	T 390	356	316	48
Future Volume (vph)	45	338	390	356	316	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.95	0.90	1.00	0.850	0.982	1.00
Flt Protected		0.994		0.000	0.962	
	Λ	3518	1881	1599	1752	0
Satd. Flow (prot) Flt Permitted	0	0.867	1001	1399		U
	0		1001	1500	0.958	0
Satd. Flow (perm)	0	3068	1881	1599	1752	0
Right Turn on Red				Yes	11	Yes
Satd. Flow (RTOR)					11	
Link Speed (mph)		45	45		40	
Link Distance (ft)		448	397		403	
Travel Time (s)		6.8	6.0		6.9	
Peak Hour Factor	0.89	0.89	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	2%	2%
Adj. Flow (vph)	51	380	402	367	367	56
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	431	402	367	423	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0	J	12	<u> </u>
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		.0	10		10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	1.00	9	1.00	9
Number of Detectors	13	1	1	1	1	7
	Left	I .	I .		Left	
Detector Template		,	,	Right		
Leading Detector (ft)	20	6	6	20	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	20	6	6	20	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm	NA	NA	pt+ov	Prot	
Protected Phases		5	1	13	3	
Permitted Phases	5					
Detector Phase	5	5	1	13	3	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0		6.0	
Minimum Split (s)	16.0	16.0	16.0		11.0	
Total Split (s)	46.0	46.0	46.0		35.0	
Total Split (%)	56.8%	56.8%	56.8%		43.2%	
Maximum Green (s)	40.0	40.0	40.0		30.0	

	۶	→	+	•	\	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
Yellow Time (s)	5.0	5.0	5.0		4.0			
All-Red Time (s)	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)		0.0	0.0		0.0			
Total Lost Time (s)		6.0	6.0		5.0			
Lead/Lag								
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0	3.0		3.0			
Recall Mode	Max	Max	Max		None			
Act Effct Green (s)		40.2	40.2	73.4	22.1			
Actuated g/C Ratio		0.55	0.55	1.00	0.30			
v/c Ratio		0.26	0.39	0.23	0.79			
Control Delay		10.2	12.2	0.3	34.2			
Queue Delay		0.0	0.0	0.0	0.0			
Total Delay		10.2	12.2	0.3	34.2			
LOS		В	В	Α	С			
Approach Delay		10.2	6.5		34.2			
Approach LOS		В	Α		С			
Queue Length 50th (ft)		51	100	0	169			
Queue Length 95th (ft)		93	194	0	250			
Internal Link Dist (ft)		368	317		323			
Turn Bay Length (ft)								
Base Capacity (vph)		1681	1031	1587	726			
Starvation Cap Reductn		0	0	0	0			
Spillback Cap Reductn		0	0	0	0			
Storage Cap Reductn		0	0	0	0			
Reduced v/c Ratio		0.26	0.39	0.23	0.58			
Intersection Summary								
	Other							
Cycle Length: 81								
Actuated Cycle Length: 73.4								
Natural Cycle: 40								
Control Type: Actuated-Unco	ordinated	l						
Maximum v/c Ratio: 0.79						100.0		
Intersection Signal Delay: 14								
Intersection Capacity Utilizat	ion 65.8%)		IC	U Level o	f Service C		
Analysis Period (min) 15								
Splits and Phases: 7: Rou	te 28 & R	oute 375						

Intersection						
Int Delay, s/veh	2.9					
		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL_	NBR
Lane Configurations	4			4	Y	
Traffic Vol, veh/h	321	28	93		31	90
Future Vol, veh/h	321	28	93		31	90
Conflicting Peds, #/hr	0	0	0		0	0
Sign Control	Free	Free	Free		Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #		-	-	U	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	91	91	91	91
Heavy Vehicles, %	3	0	2		0	0
Mvmt Flow	345	30	102	397	34	99
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	375		961	360
Stage 1	-	-	373		360	300
Stage 2	_		_	_	601	
Critical Hdwy	-	-	4.12		6.4	6.2
Critical Hdwy Stg 1	_		4.12		5.4	0.2
Critical Hdwy Stg 2	-	-	-		5.4	
Follow-up Hdwy	-	-	2.218		3.5	3.3
Pot Cap-1 Maneuver	-	-	1183		287	689
Stage 1	-	-	1103	-	710	009
Stage 2	-	-	-		551	-
Platoon blocked, %	-	-	-	-	331	-
Mov Cap-1 Maneuver	-	-	1183		255	689
	-		1183		255	009
Mov Cap-2 Maneuver Stage 1	-	-		-	710	-
	-	-	-	-	490	-
Stage 2	-	-	-	-	490	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.7		15.3	
HCM LOS					С	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT			
Capacity (veh/h)	480 -		1183 -			
HCM Lane V/C Ratio	0.277 -		0.086 -			
HCM Control Delay (s)	15.3 -	-	8.3 0			
HCM Lane LOS	C -	-	A A			
HCM 95th %tile Q(veh)	4.4	-	0.3 -			
HOW FOUT WITH Q(VeII)	1.1 -	-	0.5 -			

Intersection								
Int Delay, s/veh	0.7							<u> </u>
Movement		EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations			LDK		WDL		Y	NDK
Traffic Vol, veh/h		↑1 > 639	15		20	₹ ↑	T 15	20
•					20	781		20
Future Vol, veh/h		639	15		20	781	15	20
Conflicting Peds, #/hr		0	0		0	0	O Cton	O Cton
Sign Control		Free	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length	ıı .	-	-		-	-	0	-
Veh in Median Storage, #	Ŧ	0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		92	92		92	92	92	92
Heavy Vehicles, %		2	2		2	2	2	2
Mvmt Flow		695	16		22	849	16	22
Major/Minor	M	lajor1		M	lajor2		Minor1	
Conflicting Flow All	10	0	0	101	711	0	1171	355
Stage 1		-	-		-	-	703	-
Stage 2					-	-	468	-
Critical Hdwy		-	-		4.14	-	6.84	6.94
Critical Hdwy Stg 1			_		4.14	-	5.84	0.74
Critical Hdwy Stg 2		-	-		-	-	5.84	-
Follow-up Hdwy		-	-		2.22	-	3.52	3.32
		-			884		186	3.32 641
Pot Cap-1 Maneuver			-		004	-	452	041
Stage 1		-	-		-	-		-
Stage 2		-	-		-	-	597	-
Platoon blocked, %		-	-		004	-	177	/ / 1
Mov Cap-1 Maneuver		-	-		884	-	177	641
Mov Cap-2 Maneuver		-	-		-	-	177	-
Stage 1		-	-		-	-	452	-
Stage 2		-	-		-	-	569	-
Approach		EB			WB		NB	
HCM Control Delay, s		0			0.4		18.6	
HCM LOS		U			0.7		C	
TOW LOS							C	
Minor Lane/Major Mvmt	NBLn1	EBT	EBR		WBT			
Capacity (veh/h)	302	-	-	884	-			
HCM Lane V/C Ratio	0.126	-	-	0.025	-			
HCM Control Delay (s)	18.6	-	-	9.2	0.2			
HCM Lane LOS	С	-	-	Α	Α			
HCM 95th %tile Q(veh)	0.4	-	-	0.1	-			

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WE	L WBT	NBL	NBR
			VVE		INDL.	INDK
Lane Configurations	1		4	4 2 42E		12
Traffic Vol, veh/h	401	10		3 425	10	13
Future Vol, veh/h	401	10		3 425	10	13
Conflicting Peds, #/hr	0		Г	0 0	O Stan	O Cton
Sign Control	Free		Fre		Stop	Stop
RT Channelized	-	None		- None	-	None
Storage Length	-	-			0	-
Veh in Median Storage, 7				- 0	0	-
Grade, %	0			- 0	0	-
Peak Hour Factor	92		Ç	2 92	92	92
Heavy Vehicles, %	2			2 2	2	2
Mvmt Flow	436	11	1	4 462	11	14
Major/Minor	Major1		Majo	2	Minor1	
Conflicting Flow All	0	0	44		931	441
Stage 1	-		7-		441	7-71
Stage 2	_	_			490	_
Critical Hdwy		-	4.1		6.42	6.22
Critical Hdwy Stg 1	_	_	7.1		5.42	0.22
Critical Hdwy Stg 2		_			5.42	-
Follow-up Hdwy			2.21		3.518	3.318
Pot Cap-1 Maneuver	-	-	111		296	616
	-	-	111	3 - 	648	010
Stage 1	-				616	-
Stage 2	-	-			010	-
Platoon blocked, %	-	-	111	- ว	201	/1/
Mov Cap-1 Maneuver	-	-	111		291	616
Mov Cap-2 Maneuver	-	-			291	-
Stage 1	-	-			648	-
Stage 2	-	-			606	-
Approach	EB		W	В	NB	
HCM Control Delay, s	0		0	2	14.2	
HCM LOS					В	
Minor Lane/Major Mvmt	NBLn1 EBT	EDD	WBL WB	т		
Capacity (veh/h)	415 -		1113	-		
HCM Lane V/C Ratio	0.06 -	-	0.013	-		
HCM Control Delay (s)	14.2 -	-	8.3	0		
HCM Lane LOS	В -	-		A		
HCM 95th %tile Q(veh)	0.2 -	-	0	-		

	۶	→	•	•	←	•	1	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4T+			414	
Traffic Volume (vph)	56	17	19	99	30	23	31	758	104	41	616	2
Future Volume (vph)	56	17	19	99	30	23	31	758	104	41	616	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.972			0.980			0.983				
Flt Protected		0.971			0.968			0.998			0.997	
Satd. Flow (prot)	0	1747	0	0	1731	0	0	3507	0	0	3509	0
Flt Permitted		0.760			0.787			0.915			0.854	
Satd. Flow (perm)	0	1367	0	0	1407	0	0	3215	0	0	3006	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			14			33			1	
Link Speed (mph)		35			45			45			45	
Link Distance (ft)		295			409			373			284	
Travel Time (s)		5.7			6.2			5.7			4.3	
Peak Hour Factor	0.96	0.96	0.96	0.84	0.84	0.84	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (%)	2%	0%	7%	4%	4%	5%	4%	1%	0%	11%	2%	0%
Adj. Flow (vph)	58	18	20	118	36	27	32	790	108	44	655	2
Shared Lane Traffic (%)	00	10	20	110	00	_,	02	770	100	•	000	_
Lane Group Flow (vph)	0	96	0	0	181	0	0	930	0	0	701	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lort	0	ragin	Loit	0	rtigitt	Lort	0	ragin	Lort	0	ragne
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	1	,	1	1	,	1	0	,	1	0	,
Detector Template	Left	Left		Left	Left		Left	Ū		Left	Ū	
Leading Detector (ft)	20	20		20	20		20	0		20	0	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	20		20	20		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OI. EX	OI LA		OI LA	OI. EX		OI. EX	OI LX		OI LA	OI. EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	I CIIII	3		1 Cilli	7		i ciiii	1		1 CIIII	5	
Permitted Phases	3	<u> </u>		7	,		1	'		5	<u> </u>	
Detector Phase	3	3		7	7		1	1		5	5	
Switch Phase	3	<u> </u>		,	,					<u> </u>	J	
Minimum Initial (s)	4.0	4.0		4.0	4.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.0	9.0		9.0	9.0		40.0	40.0		40.0	40.0	
Total Split (s)	25.0	25.0		25.0	25.0		40.0	40.0		40.0	40.0	
Total Split (%)	38.5%	38.5%		38.5%	38.5%		61.5%	61.5%		61.5%	61.5%	
Maximum Green (s)	20.0	20.0		20.0	20.0		34.0	34.0		34.0	34.0	

14: Route 28 & Basin Road/Zena Road

	۶	→	•	•	←	•	•	†	/	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Yellow Time (s)	4.0	4.0		4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		12.7			12.7			37.1			37.1	
Actuated g/C Ratio		0.21			0.21			0.61			0.61	
v/c Ratio		0.32			0.60			0.47			0.38	
Control Delay		18.0			27.3			8.0			7.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		18.0			27.3			8.0			7.6	
LOS		В			С			Α			Α	
Approach Delay		18.0			27.3			8.0			7.6	
Approach LOS		В			С			Α			Α	
Queue Length 50th (ft)		22			51			78			57	
Queue Length 95th (ft)		54			94			156			116	
Internal Link Dist (ft)		215			329			293			204	
Turn Bay Length (ft)												
Base Capacity (vph)		465			474			1973			1833	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.21			0.38			0.47			0.38	
Intersection Summary												
Area Type:	Other											

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 60.8

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 10.2 Intersection LOS: B
Intersection Capacity Utilization 67.5% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 14: Route 28 & Basin Road/Zena Road

	ၨ	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	41	<u>₩</u>	7	W	JDIN
Traffic Volume (vph)	45	355	418	382	333	48
Future Volume (vph)	45	355	418	382	333	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.95	0.95	1.00	0.850	0.983	1.00
		0.004		0.830		
Flt Protected	0	0.994	1001	1500	0.958	0
Satd. Flow (prot)	0	3518	1881	1599	1754	0
Flt Permitted	0	0.866	4004	4500	0.958	0
Satd. Flow (perm)	0	3065	1881	1599	1754	0
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)					10	
Link Speed (mph)		45	45		40	
Link Distance (ft)		448	397		403	
Travel Time (s)		6.8	6.0		6.9	
Peak Hour Factor	0.89	0.89	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	2%	2%
Adj. Flow (vph)	51	399	431	394	387	56
Shared Lane Traffic (%)		_,,		_,,		
Lane Group Flow (vph)	0	450	431	394	443	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	LCII	0	0	Right	12	ragni
Link Offset(ft)		0	0		0	
` ,						
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	1	1	1	1	
Detector Template	Left			Right	Left	
Leading Detector (ft)	20	6	6	20	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	20	6	6	20	20	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	<u>-</u> /	<u>-</u> /	_ /	<u>-</u> /	X	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)						
Turn Type	Perm	NA	NA 1	pt+ov	Prot	
Protected Phases	-	5	1	13	3	
Permitted Phases	5	-		4.0	_	
Detector Phase	5	5	1	1 3	3	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0		6.0	
Minimum Split (s)	16.0	16.0	16.0		11.0	
Total Split (s)	46.0	46.0	46.0		35.0	
Total Split (%)	56.8%	56.8%	56.8%		43.2%	
Maximum Green (s)	40.0	40.0	40.0		30.0	

Lane Group Yellow Time (s) All-Red Time (s) Lost Time Adjust (s)	5.0	EBT	WDT				
All-Red Time (s)	5.0		WBT	WBR	SBL	SBR	
All-Red Time (s)		5.0	5.0		4.0		
	1.0	1.0	1.0		1.0		
		0.0	0.0		0.0		
Total Lost Time (s)		6.0	6.0		5.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0		
Recall Mode	Max	Max	Max		None		
Walk Time (s)	7.0	7.0	7.0		7.0		
Flash Dont Walk (s)	11.0	11.0	11.0		11.0		
Pedestrian Calls (#/hr)	0	0	0		0		
Act Effct Green (s)		40.3	40.3	74.3	23.0		
Actuated g/C Ratio		0.54	0.54	1.00	0.31		
v/c Ratio		0.27	0.42	0.25	0.81		
Control Delay		10.7	12.9	0.4	35.1		
Queue Delay		0.0	0.0	0.0	0.0		
Total Delay		10.7	12.9	0.4	35.1		
LOS		В	В	Α	D		
Approach Delay		10.7	6.9		35.1		
Approach LOS		В	Α		D		
Queue Length 50th (ft)		56	113	0	181		
Queue Length 95th (ft)		96	211	0	266		
Internal Link Dist (ft)		368	317		323		
Turn Bay Length (ft)							
Base Capacity (vph)		1661	1019	1581	718		
Starvation Cap Reductn		0	0	0	0		
Spillback Cap Reductn		0	0	0	0		
Storage Cap Reductn		0	0	0	0		
Reduced v/c Ratio		0.27	0.42	0.25	0.62		
Intersection Summary							
Area Type: Oth	her						
Cycle Length: 81							
Actuated Cycle Length: 74.3							
Natural Cycle: 45							
Control Type: Actuated-Uncoo	rdinated						
Maximum v/c Ratio: 0.81							
Intersection Signal Delay: 15.2					tersection		
Intersection Capacity Utilizatio	n 68.7%			IC	U Level o	f Service C	
Analysis Period (min) 15							
Splits and Phases: 7: Route	28 & Ro	oute 375					
Ø1						1 1/2	

Int Delay, s/veh 2.9 Movement	Intersection								
Novement		2.9							
Traffic Vol, velvh) T	EDD		MDI	MOT	NE	NDD
Traffic Vol, veh/h 338 28 95 381 31 93 Future Vol, veh/h 338 28 95 381 31 93 Conflicting Peds, #/hr 0 - 0 0 - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 0 - - 0 0 0 0 0 0 0		E.		EBR		WBL			NBR
Future Vol, velv/h 338 28 95 381 31 93 Conflicting Peds, #/hr 0 - None									
Conflicting Peds, #/hr									
Sign Control Free RTHE Free None Free None Free None Stop None Stop None Stop None None		3							
RT Channelized None None None Storage Length - - - 0 - Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - 0 0 - - 0 0 - Peak Hour Factor 93 93 91 92 92 92									
Storage Length		Fr				Free		Stop	
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 <t< td=""><td></td><td></td><td>-</td><td>None</td><td></td><td>-</td><td>None</td><td></td><td>None</td></t<>			-	None		-	None		None
Grade, % 0 - - 0 0 - Peak Hour Factor 93 93 91			-	-		-	-		-
Peak Hour Factor				-		-			-
Heavy Vehicles, % 3 0 2 2 2 0 0									-
Mymin Flow 363 30 104 419 34 102 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 394 0 1005 378 Stage 1 - - - - 378 - Stage 2 - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - - Critical Hdwy Stg 2 - - - 5.4 - - Critical Hdwy Stg 2 - - - 5.4 - - - 5.4 -	Peak Hour Factor		93			91		91	91
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 394 0 1005 378 Stage 1 - - - 378 - Stage 2 - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pot Cap-1 Maneuver - - 1165 - 270 673 Stage 1 - - - - 536 - Platoon blocked, % - - - 239 673 Mov Cap-1 Maneuver - 1165 - 239 673 Mov Cap-2 Maneuver - - - 697 -	Heavy Vehicles, %		3	0		2	2	0	0
Conflicting Flow All 0 0 394 0 1005 378 Stage 1 - - - - 378 - Stage 2 - - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - - 5.4 - Critical Hdwy Stg 2 - - - - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pollow-up Hdwy - - 2.218 - 3.5 3.3 Pollow-up Hdwy - - 1165 - 270 673 Stage 1 - - 1165 - 270 673 Stage 2 - - - - 239 673 Mov Cap-1 Maneuver - - - - - 697 - </td <td></td> <td>3</td> <td>63</td> <td>30</td> <td></td> <td>104</td> <td>419</td> <td>34</td> <td>102</td>		3	63	30		104	419	34	102
Conflicting Flow All 0 0 394 0 1005 378 Stage 1 - - - - 378 - Stage 2 - - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - - 5.4 - Critical Hdwy Stg 2 - - - - 5.4 - Follow-up Hdwy - - 2.218 - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pollow-up Hdwy - - 1165 - 270 673 Stage 1 - - 1165 - 270 673 Stage 2 - - - - 239 673 Mov Cap-1 Maneuver - - - - - - 697									
Conflicting Flow All 0 0 394 0 1005 378 Stage 1 - - - - 378 - Stage 2 - - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - - 5.4 - Critical Hdwy Stg 2 - - - - 5.4 - Follow-up Hdwy - - 2.218 - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pollow-up Hdwy - - 1165 - 270 673 Stage 1 - - - - 697 - Stage 2 - - - - 239 673 Mov Cap-2 Maneuver - - - - 697 - S	Major/Minor	Maio	r1		Ma	ajor2		Minor1	
Stage 1 - - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pol Cap-1 Maneuver - - 1165 - 270 673 Stage 1 - - - - 697 - Stage 2 - - - - 536 - Platoon blocked, % -		ajc		n	.,,,,		0		378
Stage 2 - - - - 627 - Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - - 5.4 - Critical Hdwy Stg 2 - - - - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pot Cap-1 Maneuver - - 1165 - 270 673 Stage 1 - - - - 697 - Stage 2 - - - - - - Mov Cap-1 Maneuver - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Critical Hdwy - - 4.12 - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pot Cap-1 Maneuver - - 1165 - 270 673 Stage 1 - - - 697 - Stage 2 - - - - 536 - Platoon blocked, % -									_
Critical Hdwy Stg 1			_						6.2
Critical Hdwy Stg 2 - - - - 5.4 - Follow-up Hdwy - - 2.218 - 3.5 3.3 Pot Cap-1 Maneuver - - 1165 - 270 673 Stage 1 - - - - 697 - Stage 2 - - - - - - Mov Cap-1 Maneuver - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.2</td>									0.2
Follow-up Hdwy			_						
Pot Cap-1 Maneuver - - 1165 - 270 673 Stage 1 - - - - 697 - Stage 2 - - - - 536 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver - - - - 239 673 Mov Cap-2 Maneuver - - - - - 239 - Stage 1 - - - - 697 - Stage 2 - - - - 474 - Approach EB WB NB HCM Control Delay, s 0 1.7 16 HCM Los C C Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - 1165 - Capacity (veh/h) Abd - 20.09 - HCM Control Delay (s) 16 - 0.09 - But Abd - 20.09 - But Abd - 2					າ				
Stage 1			-						
Stage 2 -	•		-	-			-		
Platoon blocked, % -			-	-			-		
Mov Cap-1 Maneuver - - 1165 - 239 673 Mov Cap-2 Maneuver - - - - - 239 - Stage 1 - - - - 697 - Stage 2 - - - - 474 - Approach EB WB NB HCM Control Delay, s 0 1.7 16 HCM LOS C Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - 1165 - HCM Lane V/C Ratio 0.294 - 0.09 - HCM Control Delay (s) 16 - 8.4 0			-	-		-	-	530	-
Mov Cap-2 Maneuver - - - 239 - Stage 1 - - - - 697 - Stage 2 - - - - 474 - Approach EB WB NB HCM Control Delay, s 0 1.7 16 HCM LOS C C Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - 1165 - HCM Lane V/C Ratio 0.294 - 0.09 - HCM Control Delay (s) 16 - 8.4 0			-	-	4	1145	-	220	472
Stage 1 - </td <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>0/3</td>			-	-			-		0/3
Stage 2 - - - - 474 - Approach EB WB NB HCM Control Delay, s 0 1.7 16 HCM LOS C C Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - 1165 - HCM Lane V/C Ratio 0.294 - 0.09 - HCM Control Delay (s) 16 - 8.4 0			-	-			-		-
Approach EB WB NB HCM Control Delay, s 0 1.7 16 HCM LOS C Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - - 1165 - HCM Lane V/C Ratio 0.294 - - 0.09 - HCM Control Delay (s) 16 - 8.4 0			-	-			-		
HCM Control Delay, s	Stage 2		-	-		-	-	4/4	-
HCM Control Delay, s									
Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - - 1165 - HCM Lane V/C Ratio 0.294 - - 0.09 - HCM Control Delay (s) 16 - 8.4 0									
Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 463 - - 1165 - HCM Lane V/C Ratio 0.294 - - 0.09 - HCM Control Delay (s) 16 - - 8.4 0			0			1.7			
Capacity (veh/h) 463 1165 - HCM Lane V/C Ratio 0.294 0.09 - HCM Control Delay (s) 16 8.4 0	HCM LOS							С	
Capacity (veh/h) 463 1165 - HCM Lane V/C Ratio 0.294 0.09 - HCM Control Delay (s) 16 8.4 0									
Capacity (veh/h) 463 1165 - HCM Lane V/C Ratio 0.294 0.09 - HCM Control Delay (s) 16 8.4 0	Minor Lane/Major Mvmt	NBLn1 EI	BT_	EBR	WBL \	NBT			
HCM Lane V/C Ratio 0.294 0.09 - HCM Control Delay (s) 16 8.4 0						-			
HCM Control Delay (s) 16 8.4 0			-			_			
3 , ,									
HCM Lane LOS C A A	HCM Lane LOS	C							
HCM 95th %tile Q(veh) 1.2 0.3 -									

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† ‡			414	Y	7,27,
Traffic Vol, veh/h	673	15	20	817	15	20
Future Vol, veh/h	673	15	20	817	15	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	732	16	22	888	16	22
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	748	0	1228	374
Stage 1	-	-	-	-	740	-
Stage 2	-	-	-	-	488	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	856	-	170	623
Stage 1	-	-	-	-	433	-
Stage 2	-	-	-	-	583	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	856	-	161	623
Mov Cap-2 Maneuver	-	-	-	-	161	-
Stage 1	-	-	-	-	433	-
Stage 2	-	-	-	-	553	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		19.9	
HCM LOS					C	
					_	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT			
Capacity (veh/h)	279 -	LDIX	856 -			
HCM Lane V/C Ratio	0.136		0.025 -			
HCM Control Delay (s)	19.9	-	9.3 0.2			
HCM Lane LOS	C -	-	A A			
HCM 95th %tile Q(veh)	0.5 -	-	0.1 -			
HOW BUT BUILD (VOII)	0.5		0.1			

Intersection						
).5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u> </u>	LDIN	- 11 <i>D</i> L	4	¥	1151
Traffic Vol, veh/h	421	10	13		10	13
Future Vol, veh/h	421	10	13		10	13
Conflicting Peds, #/hr	0	0	0		0	0
Sign Control	Free	Free	Free		Stop	Stop
RT Channelized	-		-			None
Storage Length	-	-	_	-	0	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	_	_	0	-
Peak Hour Factor	92	92	92		92	92
Heavy Vehicles, %	2	2	2		2	2
Mvmt Flow	458	11	14		11	14
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	468		984	463
Stage 1	-	-	-		463	-
Stage 2	-	-	-	-	521	-
Critical Hdwy	_	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	_	-	1094		275	599
Stage 1	-	-	-	-	634	-
Stage 2	-	-	-	-	596	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1094	-	270	599
Mov Cap-2 Maneuver	-	-	-	-	270	-
Stage 1	-	-	-	-	634	-
Stage 2	-	-	-	-	585	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		14.8	
HCM LOS					В	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT			
Capacity (veh/h)	392 -	-	1094 -			
HCM Lane V/C Ratio	0.064 -		0.013 -			
HCM Control Delay (s)	14.8 -	-	8.3 0			
HCM Lane LOS	В -	-	A A			
HCM 95th %tile Q(veh)	0.2 -	-	0 -			

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€î∌			र्सी के	
Traffic Volume (vph)	56	17	19	99	30	23	31	758	104	41	616	2
Future Volume (vph)	56	17	19	99	30	23	31	758	104	41	616	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt		0.972			0.980			0.983				
Flt Protected		0.971			0.968			0.998			0.997	
Satd. Flow (prot)	0	1747	0	0	1731	0	0	3507	0	0	3509	0
Flt Permitted		0.763			0.777			0.916			0.857	
Satd. Flow (perm)	0	1373	0	0	1389	0	0	3219	0	0	3017	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			16			39			1	
Link Speed (mph)		35			45			45			45	
Link Distance (ft)		295			409			373			284	
Travel Time (s)		5.7			6.2			5.7			4.3	
Peak Hour Factor	0.96	0.96	0.96	0.84	0.84	0.84	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (%)	2%	0%	7%	4%	4%	5%	4%	1%	0%	11%	2%	0%
Adj. Flow (vph)	58	18	20	118	36	27	32	790	108	44	655	2
Shared Lane Traffic (%)									, , ,			_
Lane Group Flow (vph)	0	96	0	0	181	0	0	930	0	0	701	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2011	0		2011	0	g	2011	0		2011	0	···g···
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	1.00	9	15		9	15		9
Number of Detectors	1	1	•	1	1	,	1	0	•	1	0	•
Detector Template	Left	Left		Left	Left		Left			Left		
Leading Detector (ft)	20	20		20	20		20	0		20	0	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	20		20	20		20	6		20	6	
Detector 1 Type	CI+Ex			CI+Ex			CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0112/	011211		01121	02		01. ZX	011211		51. ZX	01127	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	3		1 01111	7		1 01111	1		1 01111	5	
Permitted Phases	3	- U		7	,		1	•		5	- C	
Detector Phase	3	3		7	7		1	1		5	5	
Switch Phase	J	U		,	,			•		Ü	Ü	
Minimum Initial (s)	4.0	4.0		4.0	4.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.0	9.0		9.0	9.0		40.0	40.0		40.0	40.0	
Total Split (s)	20.0	20.0		20.0	20.0		35.0	35.0		35.0	35.0	
Total Split (%)	36.4%	36.4%		36.4%	36.4%		63.6%	63.6%		63.6%	63.6%	
Maximum Green (s)	15.0	15.0		15.0	15.0		29.0	29.0		29.0	29.0	
maximum Green (5)	13.0	10.0		13.0	15.0		Z7.U	Z7.U		27.0	27.U	

14: Route 28 & Basin Road/Zena Road

	•	→	\rightarrow	•	←	•	•	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Yellow Time (s)	4.0	4.0		4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		11.0			11.2			33.7			33.7	
Actuated g/C Ratio		0.21			0.21			0.64			0.64	
v/c Ratio		0.32			0.59			0.44			0.36	
Control Delay		16.5			24.5			7.3			7.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		16.5			24.5			7.3			7.0	
LOS		В			С			Α			Α	
Approach Delay		16.5			24.5			7.3			7.0	
Approach LOS		В			С			Α			Α	
Queue Length 50th (ft)		19			44			74			55	
Queue Length 95th (ft)		50			85			134			101	
Internal Link Dist (ft)		215			329			293			204	
Turn Bay Length (ft)												
Base Capacity (vph)		408			409			2091			1947	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.24			0.44			0.44			0.36	
Intersection Summary												
Area Type:	Other											

Cycle Length: 55

Actuated Cycle Length: 52.3

Natural Cycle: 55

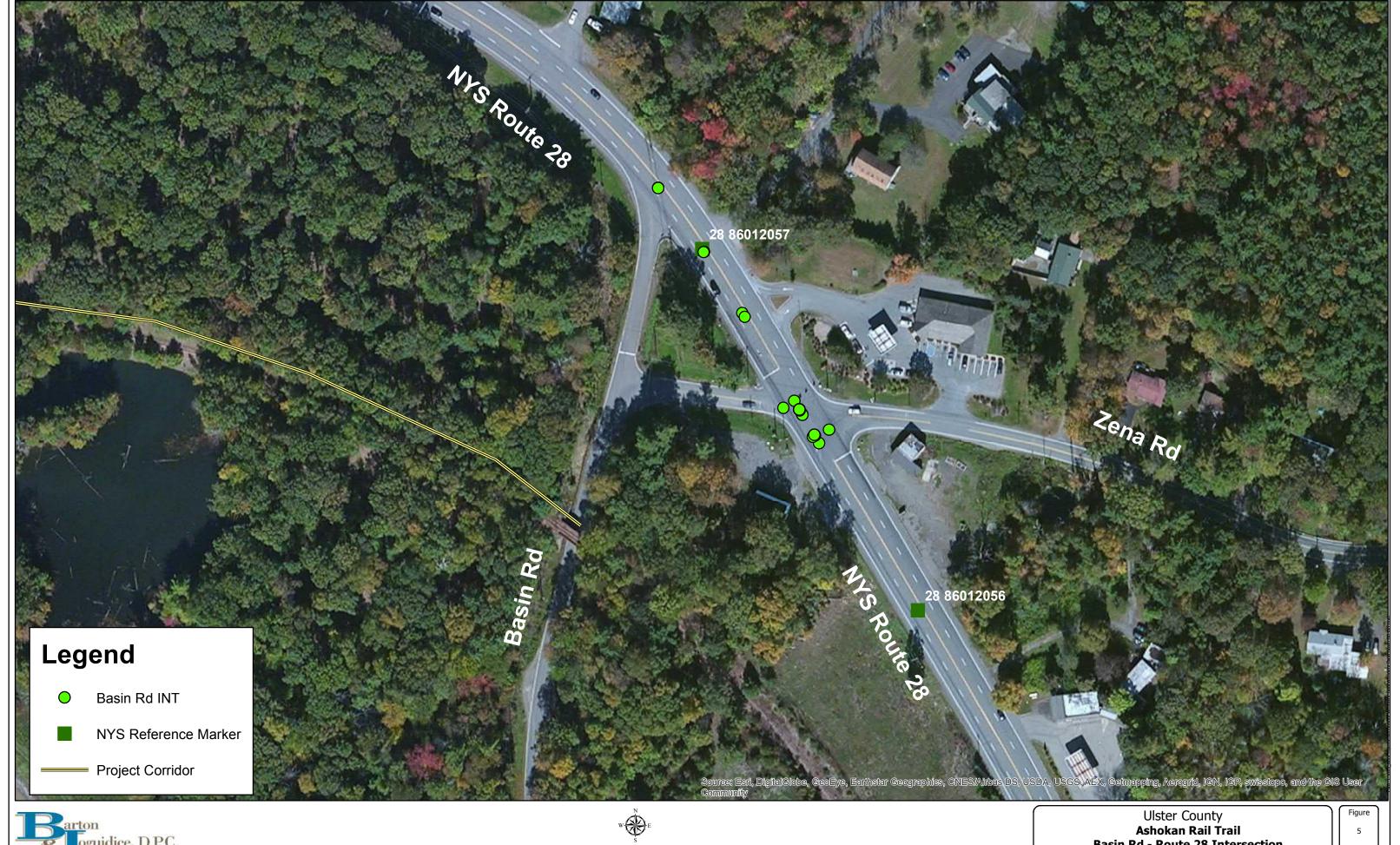
Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 67.5% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 14: Route 28 & Basin Road/Zena Road

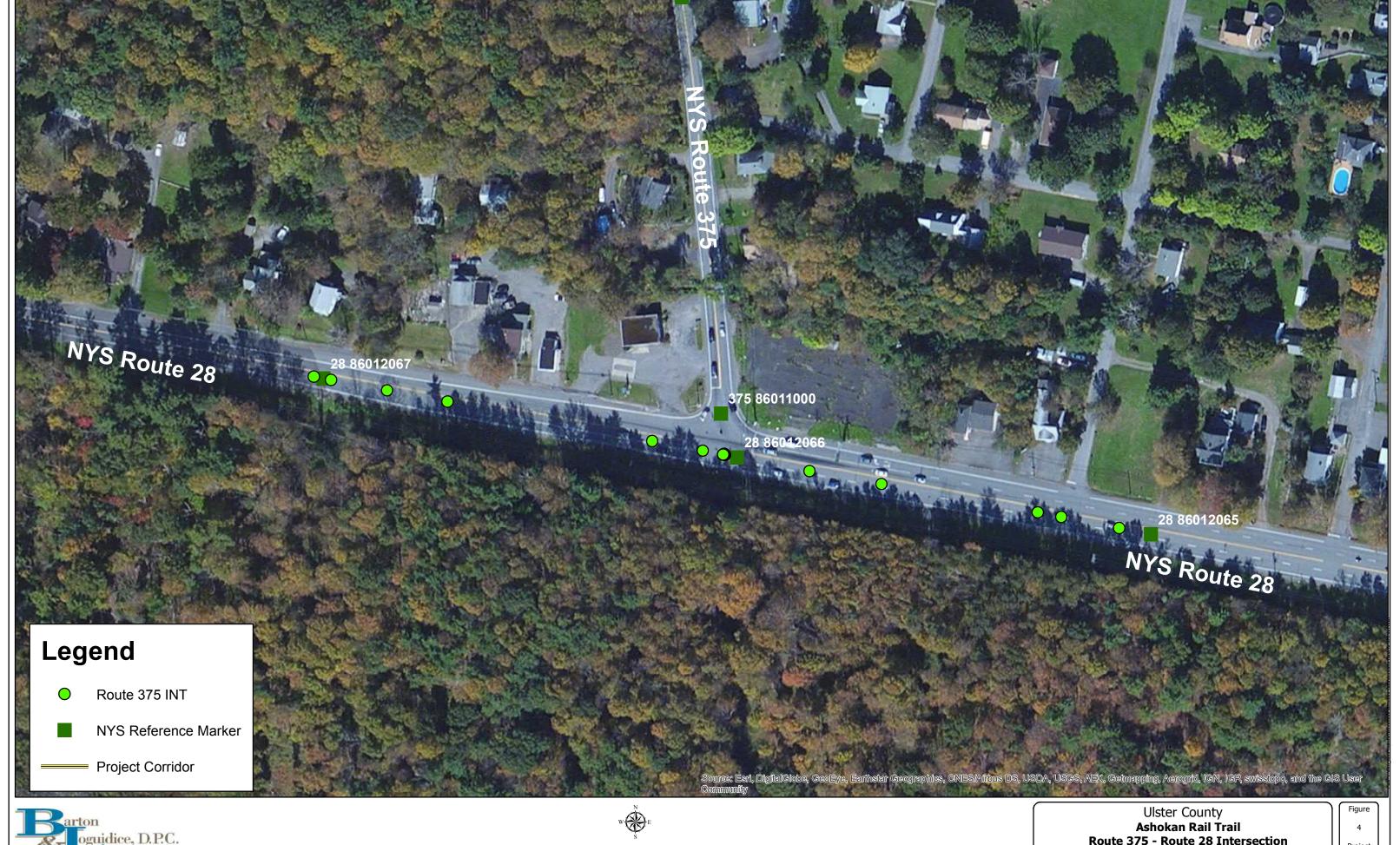


	ၨ	-	←	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	41∱		VV DIX	JDL W	JUK
Traffic Volume (vph)	45	4 T 355	T 418	382	333	48
Future Volume (vph)	45	355	418	382	333	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.93	0.95	1.00	0.850	0.983	1.00
FIt Protected		0.004		0.830		
	0	0.994	1001	1500	0.958	0
Satd. Flow (prot)	0	3518	1881	1599	1754	0
Flt Permitted	0	0.866	1001	1500	0.958	0
Satd. Flow (perm)	0	3065	1881	1599	1754	0
Right Turn on Red				Yes	.=	Yes
Satd. Flow (RTOR)					17	
Link Speed (mph)		45	45		40	
Link Distance (ft)		448	397		403	
Travel Time (s)		6.8	6.0		6.9	
Peak Hour Factor	0.89	0.89	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	2%	2%
Adj. Flow (vph)	51	399	431	394	387	56
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	450	431	394	443	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	Loit	0	0	. tigitt	12	. ugin
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		10	10		10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		1	1			9
Number of Detectors	1	1	1	Diaht	1	
Detector Template	Left	,		Right	Left	
Leading Detector (ft)	20	6	6	20	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	20	6	6	20	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm	NA	NA	pt+ov	Prot	
Protected Phases		5	1	13	3	
Permitted Phases	5	J			J	
Detector Phase	5	5	1	13	3	
Switch Phase	J	J	ı	1 3	J	
	10.0	10.0	10.0		4.0	
Minimum Initial (s)	10.0	10.0	10.0		6.0	
Minimum Split (s)	16.0	16.0	16.0		11.0	
Total Split (s)	25.0	25.0	25.0		25.0	
Total Split (%)	50.0%	50.0%	50.0%		50.0%	
Maximum Green (s)	19.0	19.0	19.0		20.0	

	۶	→	←	•	>	✓	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Yellow Time (s)	5.0	5.0	5.0		4.0		
All-Red Time (s)	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0		
Total Lost Time (s)		6.0	6.0		5.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0		
Recall Mode	Max	Max	Max		None		
Walk Time (s)	7.0	7.0	7.0		7.0		
Flash Dont Walk (s)	11.0	11.0	11.0		11.0		
Pedestrian Calls (#/hr)	0	0	0		0		
Act Effct Green (s)		19.1	19.1	45.9	15.7		
Actuated g/C Ratio		0.42	0.42	1.00	0.34		
v/c Ratio		0.35	0.55	0.25	0.73		
Control Delay		11.1	14.6	0.4	20.2		
Queue Delay		0.0	0.0	0.0	0.0		
Total Delay		11.1	14.6	0.4	20.2		
LOS Approach Doloy		B 11.1	B 7.8	Α	C 20.2		
Approach Delay Approach LOS		11.1 B	7.8 A		20.2 C		
Queue Length 50th (ft)		42	85	0	94		
Queue Length 95th (ft)		77	172	0	160		
Internal Link Dist (ft)		368	317	U	323		
Turn Bay Length (ft)		300	317		323		
Base Capacity (vph)		1278	784	1578	779		
Starvation Cap Reductn		0	0	0	0		
Spillback Cap Reductn		0	0	0	0		
Storage Cap Reductn		0	0	0	0		
Reduced v/c Ratio		0.35	0.55	0.25	0.57		
Intersection Summary							
Area Type:	Other						
Cycle Length: 50							
Actuated Cycle Length: 4	5.9						
Natural Cycle: 45							
Control Type: Actuated-U	Incoordinated	t					
Maximum v/c Ratio: 0.73							
Intersection Signal Delay:	: 11.8			In	tersection	LOS: B	
Intersection Capacity Utili	ization 68.7%	, 0		IC	CU Level o	of Service C	
Analysis Period (min) 15							
	Route 28 & R	oute 375					
42					15		

Appendix D

Crash Data

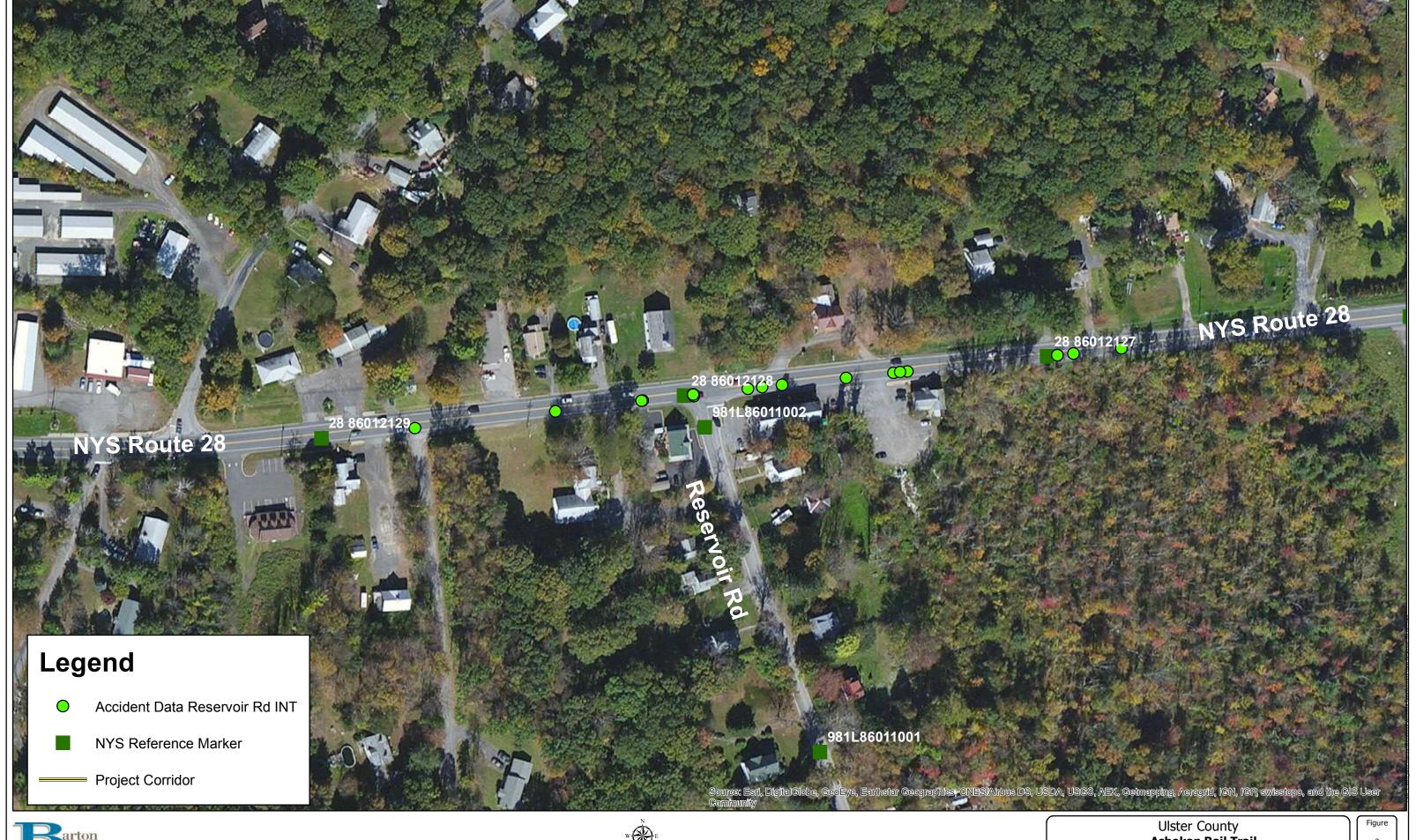


1 inch = 104 feet

Basin Rd - Route 28 Intersection

Ulster County January 2017

Project No. 369.007 New York

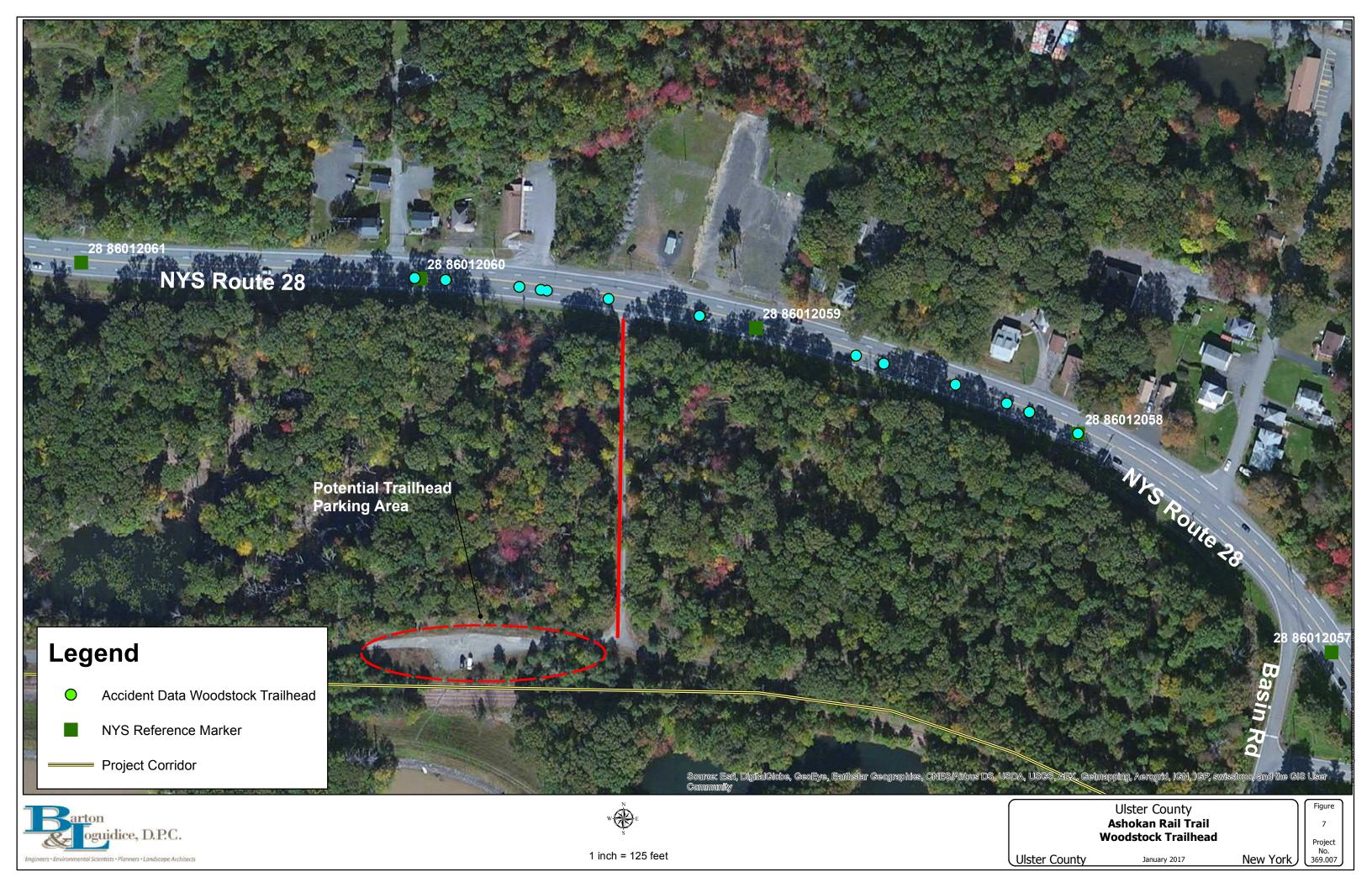

1 inch = 104 feet

Route 375 - Route 28 Intersection

Ulster County

Project No. 369.007

New York



Ulster County Ashokan Rail Trail **Reservoir Rd - Route 28 Intersection**

Ulster County January 2017 New York

Project No. 369.007

ANDREW M. CUOMO

ROSE HARVEY

Governor

Commissioner

October 3, 2016

Ms. Corinne Steinmuller Environmental Scientist II Barton and Loguidice 10 Airline Drive Albany, NY 12203

Re: DEC

Ashokan Rail Trail 16PR06122

Dear Ms. Steinmuller:

Thank you for requesting the comments of the Division for Historic Preservation of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the submitted materials in accordance with the New York State Historic Preservation Act of 1980 (section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the Division for Historic Preservation and relate only to Historic/Cultural resources. They do not include potential impacts that must be considered as part of the environmental review of the project pursuant to the State Environmental Quality Review Act (New York Environmental Conservation Law Article 8) and its implementing regulations (6NYCRR Part 617).

We note that the proposed project is located partially within the National Register eligible Ulster and Delaware Railroad Corridor. The historic section of the railway, extending from Shokan to Phoenicia, is listed under National Register Criterion A for its association with historical development of the towns of Shandaken and Olive from the period 1897-1942. We understand that the proposed project will include construction of a pedestrian and bicycle pathway along the existing rail bed extending approximately 11.5 miles from West Hurley to Olive. The proposed rail trail will affect approximately six miles of the historic railway, and will include removal of the rail and ties, repairs to existing culverts, and construction of multiple trailheads within the twenty foot wide easement.

We are pleased that this adaptive reuse project will retain the rail corridor along with its historic feeling, association, and use as a transportation route. Based on this review, it is the opinion of the SHPO that the proposed project will have No Adverse Impact upon the historic Ulster and Delaware Railroad Corridor provided the following conditions are incorporated into the project:

- 1. A Preservation Plan is developed for the historic rail corridor. At minimum the Plan will identify all historic structures and engineering features that will be impacted by the project.
- 2. Historic interpretation of the railway will be integrated into development of the rail trail. Interpretive materials should include interpretive signage along the rail trail. A qualified professional should be retained to develop the preservation and interpretive plans.

3. Materials related to documentation and interpretation of historic features should be submitted to our office for review in the preliminary and pre-final stages.

Any additional measures that would further ensure the preservation and understanding of the historic railway are encouraged. Towards this goal, we suggest the following:

- Small sections of track (roughly 50') may be retained at the beginning and end of the
 proposed rail trail. One or both ends of this could display the existing heavy gauge
 rails along with a sample of the previous iteration of light rail as part of an interpretive
 exhibit.
- Additional historic features including buildings, structures, and engineering features that are identified along the eligible route will be protected and interpreted in accordance with the Preservation Plan.

Consultation with our office should continue as the preservation and interpretation measures suggested above are developed. Plans, specifications, and other documentation requested in this letter should be provided via our Cultural Resource Information System (CRIS) at www.nysparks.com/shpo/online-tools/. Once on the CRIS site, you can log in as a guest and choose "submit" at the very top menu. Next choose "submit new information for an existing project". You will need this project number and your e-mail address.

If you have any questions, I can be reached at (518) 268-2164.

Sincerely,

Weston Davey

Historic Site Restoration Coordinator weston.davey@parks.ny.gov

via e-mail only

CC: Scott Ballard (DEC)

Charles Laing (NYCDEP)

Christopher White (Ulster County)

Barton & Loguidice, D.P.C.

Memo To: Project File Date: May 16, 2017

From: Rosemary McCormick Project No.: 369.007.001

Hydrogeologist II

Subject: Environmental Soil Sampling Program Results

Ashokan Rail Trail, Ulster County, NY

Project Area and Description

Barton & Loguidice, D.P.C. (B&L), has been retained by Ulster County to provide preliminary design services for the proposed Ashokan Rail Trail located in the Towns of Olive and Hurley, Ulster County, New York. Ulster County is proposing the construction of an 11.5-mile pedestrian and bicycle trail which will run from Basin Road in the Town of Hurley to NYS Route 28A in the Town of Olive. The proposed action includes the creation of a recreational trail corridor on a former rail line north of the Ashokan Reservoir. The project includes repurposing of the existing ballast, removal of rail ties, creation of trailheads, construction of a pedestrian bridge, and maintenance to existing culvert structures. The location of the project area is shown on the enclosed index map and Figures 1-5. The project corridor can also be found on the USGS 7½-minute Kingston West, Ashokan, West Shokan, Bearsville, and Phoenicia quadrangles between 42° 0'20.87"N, 74°16'16.63"W and 41°59'5.60"N, 74° 5'13.93"W (NAD 83).

Areas adjacent to the project corridor are generally rural in nature and consist of residential and commercial property to the north associated with NYS Route 28. To the south of the corridor, the Ashokan Reservoir serves as a drinking water source for New York City and is recreationally limited to permitted fishing and non-motorized boat usage. The railway itself travels through mature mid-successional forest and will cross the Esopus Creek on the western end of the proposed trail.

Environmental Soil Sampling Program:

In order to investigate and characterize the chemical composition of the surface and shallow subsurface soils that will be potentially be disturbed during the construction of the rail trail corridor and associated trail head areas, B&L collected 11 soil samples on April 4, 2017 as part of the environmental soil sampling program.

Collection of Soil Samples along the Rail Trail Corridor:

B&L collected four shallow subsurface soil samples at a depth of 1 to 2 feet below the ground surface (bgs) of the soil that exists immediately adjacent to the slag material to determine if the slag has had a detrimental impact on the adjacent and/or underlying soils due to leaching, etc.

Memo to: Project File May 2017

Page 2

The soil sampling locations, which are indicated on Figures 1 through 5, were chosen with the intent of characterizing the soils at four representative locations along the 11.5 mile long rail trail corridor.

The procured soil samples were collected in accordance with B&L Standard Operating Procedures (SOPS) and the four soil samples were submitted to a qualified analytical testing laboratory for the analysis of semi-volatile organic compounds (SVOCs) using EPA Method 8270D, Pesticides using EPA Method 8081B, Herbicides using EPA Method 8151A, target analyte list (TAL) Metals using EPA Method 6010B, and Total Mercury using EPA Method 7470A/7471A.

Results of the completed field investigation reveal no parameter concentration exceedances in the analyzed surface soil samples when compared to the NYSDEC Part 375 SCOs for Restricted-Residential Use. The results of the laboratory analysis are summarized in attached Table 1 and the unvalidated analytical laboratory test report is included in Attachment A.

Collection of Soil Samples Downgradient of the Former Mobil Station on State Route 28:

In preparing the Draft Hazardous Materials Survey Report for the project site, B&L determined that a fairly large oil spill occurred in 2008 at a former Mobil Station located on State Route 28 upgradient of the proposed Rail Trail corridor (refer to Figure 1). Although site remediation activities occurred at the former Mobil Station in 2013, B&L collected three shallow subsurface soil samples at a depth of 1 to 2 feet bgs downgradient of the former Mobil Station within the confines of the proposed rail trail corridor.

The three soil samples were collected in accordance with B&L SOPS and the soil samples were submitted to Test America Laboratories, Inc., a qualified analytical testing laboratory, for the analysis of Volatile Organic Compounds (VOCs) and BTEX using EPA Method 8021, SVOCs using EPA Method 8270D, TAL Metals using EPA Method 6010B, and Total Mercury using EPA Method 7470A/7471A.

In the analyzed surface soil samples, parameter concentrations were reported below the applicable NYSDEC Part 375 SCOs for Restricted-Residential Use. The results of the laboratory analysis are summarized in Table 2 (attached) and the unvalidated analytical laboratory test report is included in Attachment A.

Memo to: Project File

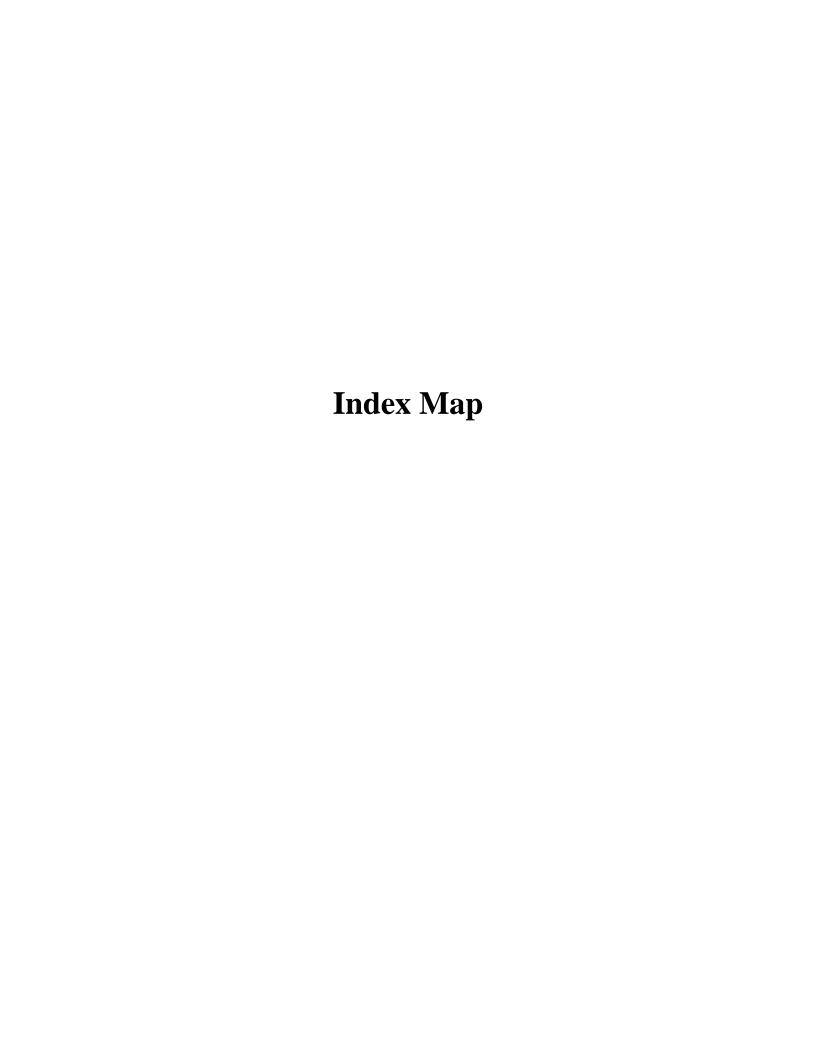
May 2017 Page 3

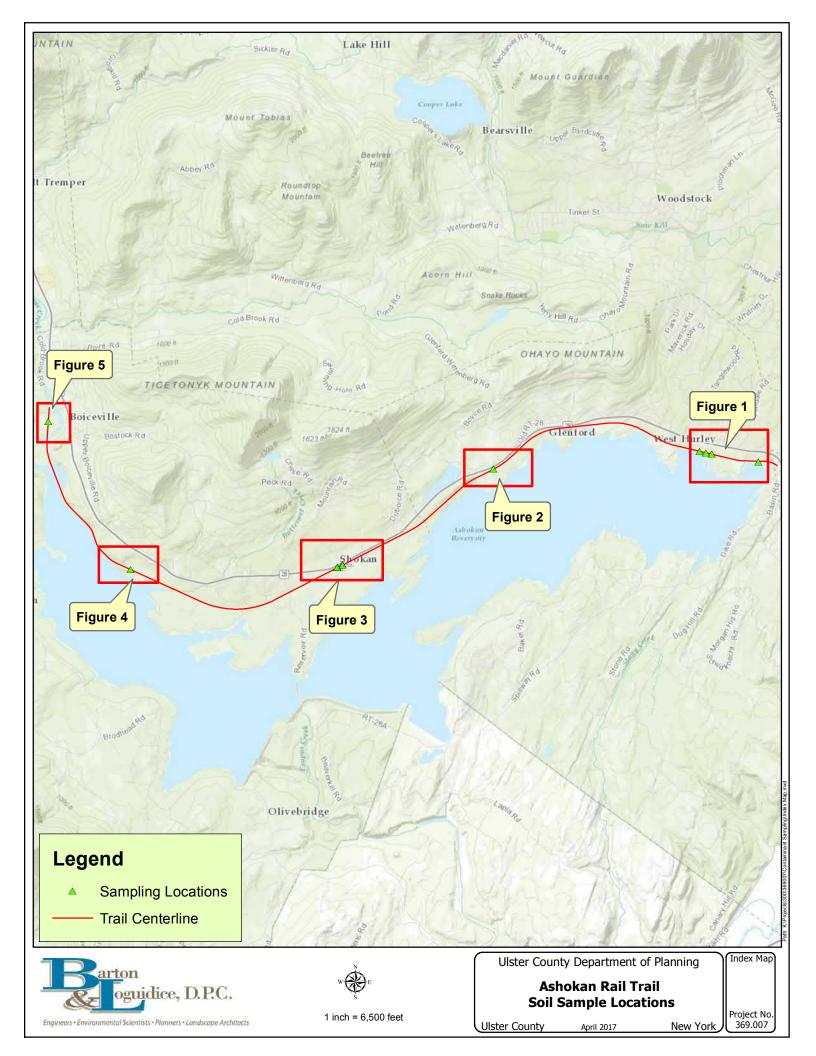
<u>Collection of Soil Samples at the Location of the Former Equipment Storage Facility/Proposed</u> Trailhead Area:

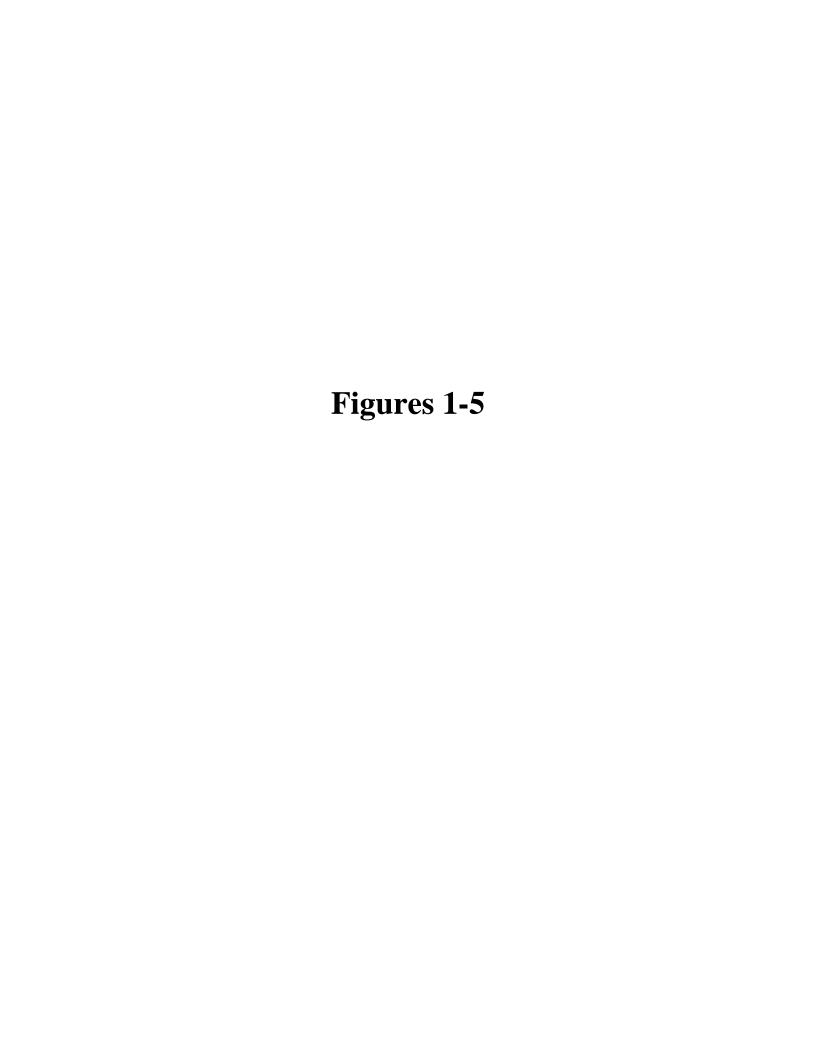
In order to determine if the prior operations at the former equipment storage area have had a detrimental impact on the subsurface soils at the proposed trailhead site, four soil samples were collected: two soil samples from 1 to 2 feet bgs and two soil samples from 8 to 10 feet bgs (refer to Figure 3).

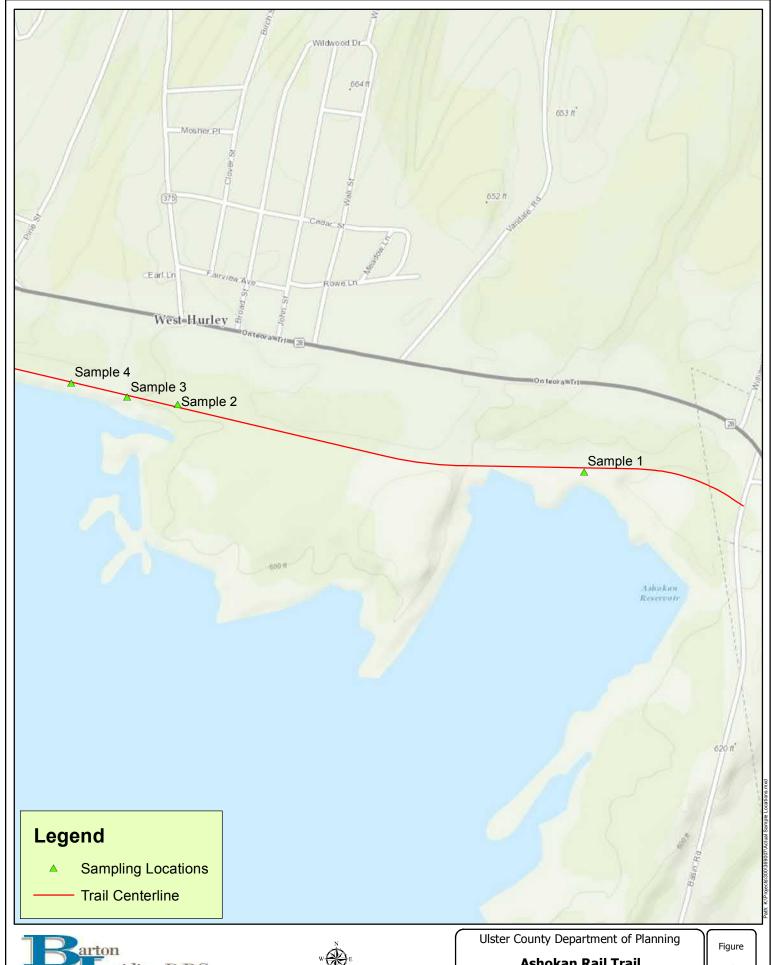
The four soil samples, collected in accordance with B&L SOPS, were submitted for the laboratory analysis of SVOCs using EPA Method 8270D, Pesticides using EPA Method 8081B, Herbicides using EPA Method 8151A, PCBs using EPA Method 8082A, TAL Metals using EPA Method 6010B, and Total Mercury using EPA Method 7470A/7471A.

There were no parameter concentration exceedances in the analyzed subsurface soil samples when compared to the NYSDEC Part 375 SCOs for Restricted-Residential Use. The results of the laboratory analysis are summarized in Table 3 (attached) and the unvalidated analytical laboratory test report is included in Attachment A.

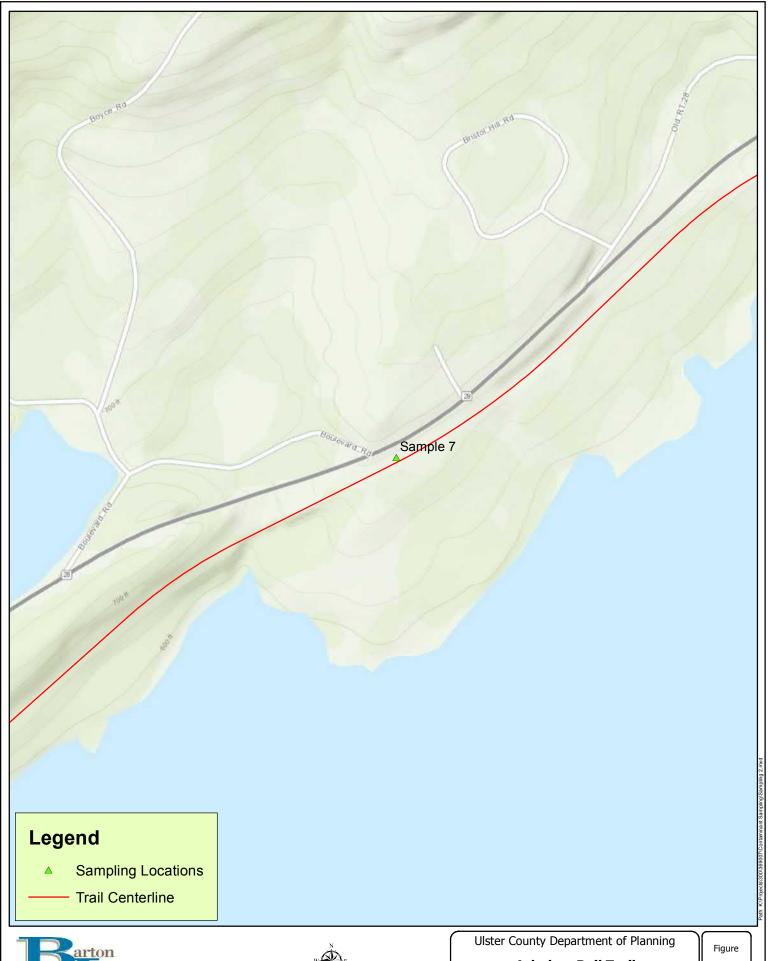

Summary and Recommendations:


When compared to the NYSDEC Part 375 SCOs for Restricted-Residential Use, analytical data for the 11 soil samples collected on April 4, 2017 demonstrate minor contamination from polycyclic aromatic hydrocarbons (PAHs) and metals. These contaminants are likely attributable to the observed slag and ballast materials and/or residuals from diesel locomotive exhaust.


On-site reuse of disturbed materials is justifiable with the appropriate precautions taken to protect human health and the environment during construction activities. All soils excavated shall be controlled and properly staged at or below the existing railroad bed elevation. Stockpiled contaminated soils would then be placed above the groundwater table and under a "clean cover" (i.e., road pavement and/or a layer of clean fill) to provide long-term protection of human health and the environment.


Furthermore, any excavated soil material that is to be transported off site should be analytically tested and characterized in order to determine if the excavated soil material satisfies the Part 375 Unrestricted Use SCOs and, therefore, can be used as clean fill material or if it must be properly disposed of at a permitted solid waste facility in accordance with State and Federal regulations.

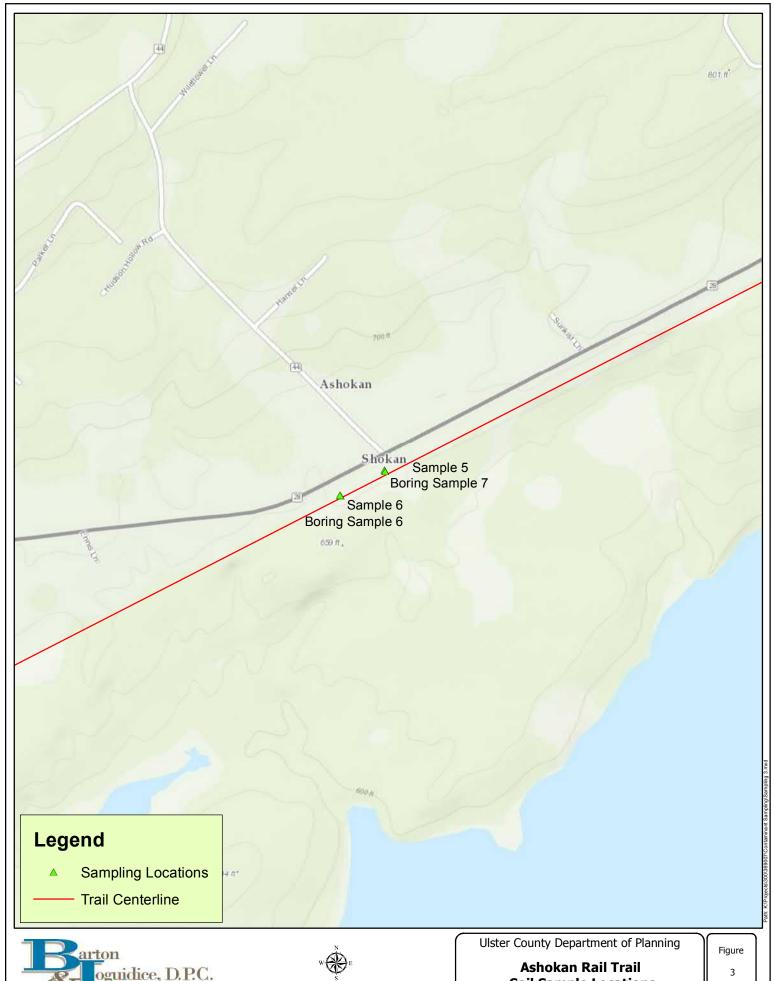
RJM/akg Attachments



Ashokan Rail Trail Soil Sample Locations

Ulster County April 2017

1 Project No. 369.007 New York



Ashokan Rail Trail Soil Sample Locations

Ulster County April 2017 New York

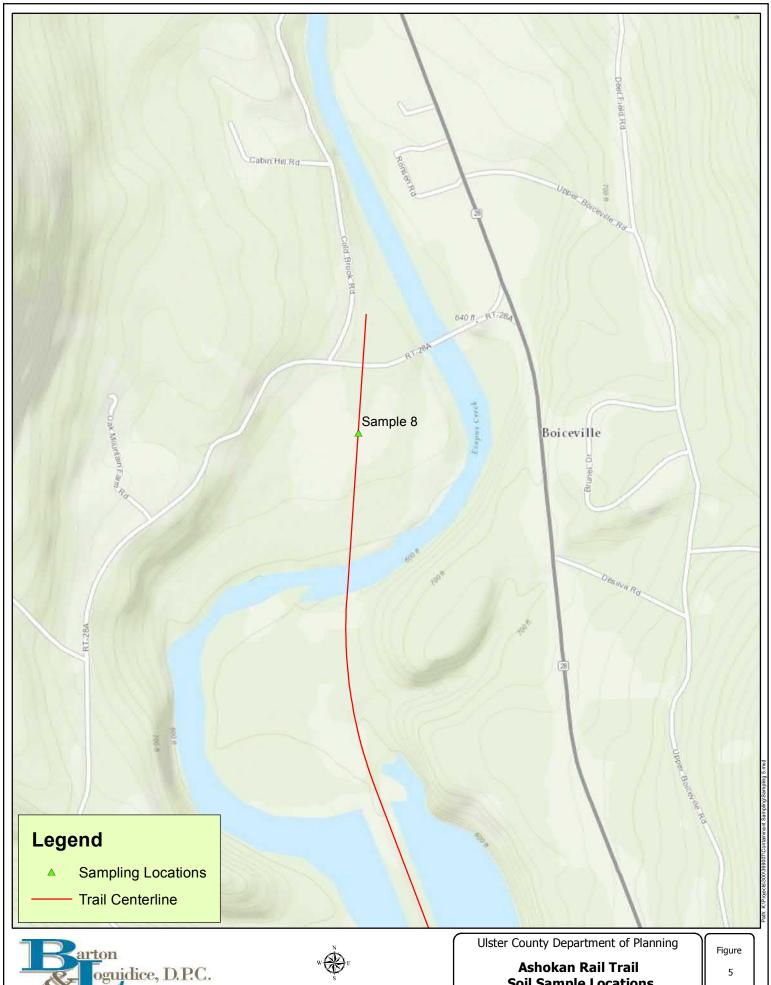
2

Project No. 369.007

Soil Sample Locations

Ulster County April 2017

Project No. 369.007 New York



Ashokan Rail Trail Soil Sample Locations

Ulster County

New York

Engineers • Environmental Scientists • Planners • Landscape Architects

1 inch = 750 feet

Soil Sample Locations

Ulster County April 2017 New York Project No. 369.007

Table 1 Collection of Soil Samples along the

Rail Trail Corridor

Ashokan Reservoir			oil Sampl	es a	along the	Ra	il Trail Co	rr	idor	
Soil Investigation, B	<u>&L 369.0</u>									
TABLE 1		Sample ID	SAMPLE-1 480-115585-1		SAMPLE-7 480-115585-7		SAMPLE-8 480-115585-8		SAMPLE-9 480-115585-9	_
Restricted Residential Soil Cleanup Obje	ectives (RRSCO)	Lab ID Date	04/04/2017 09:0		04/04/2017 12:45		04/04/2017 13:00		04/04/2017 13:25	
COMPOUND	RRSCO	Units	Result	Q	Result	Q	Result	Q	Result	_
Semivolatiles										
2,4,5-Trichlorophenol	-	ug/Kg	ND	U		C	ND	U	ND	
2,4,6-Trichlorophenol	-	ug/Kg	ND	U	ND	U	ND	U	ND	_
2,4-Dichlorophenol	-	ug/Kg	ND	U		U	ND	U	ND	_
2,4-Dimethylphenol	-	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
2,4-Dinitrophenol 2,4-Dinitrotoluene	-	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
2.6-Dinitrotoluene	-	ug/Kg	ND	U		U	ND.	U	ND.	_
2-Chloronaphthalene	-	ug/Kg	ND	U	ND	U	ND	U	ND	_
2-Chlorophenol	-	ug/Kg	ND	U		U	ND	U	ND	
2-Methylnaphthalene	-	ug/Kg	ND	U		U	ND	U	ND	_
2-Methylphenol	-	ug/Kg	ND	U		U	ND	U	ND	_
2-Nitroaniline	-	ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
2-Nitrophenol 3,3'-Dichlorobenzidine	-	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
3,3-Dichlorobenzidine 3-Nitroaniline	-	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	-
	-	ug/Kg	ND	U		U	ND	U	ND ND	_
-Bromophenyl phenyl ether	-	ug/Kg	ND	Ü		U	ND	Ü	ND.	_
-Chloro-3-methylphenol	-	ug/Kg	ND	U		U	ND	U	ND	_
-Chloroaniline	-	ug/Kg	ND	U		U	ND	U	ND	_
-Chlorophenyl phenyl ether	-	ug/Kg	ND	U		U	ND	U	ND	_
-Methylphenol	-	ug/Kg	ND	U		U	ND	U	ND	_
I-Nitroaniline	-	ug/Kg	ND ND	U U		U	ND ND	U	ND ND	_
-Nitrophenol Acenaphthene	100000	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
Acenaphthylene	100000	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
Acetophenone	-	ug/Kg	ND	U		U	ND	U	ND.	_
Inthracene	100000	ug/Kg	ND	U	ND	U	ND	U	ND)
trazine	-	ug/Kg	ND	U	ND	U	ND	U	ND)
Benzaldehyde	-	ug/Kg	ND	U		U	ND	U	ND	_
Benzo[a]anthracene	1000	ug/Kg	ND	U		U	39	J	240	_
Benzo[a]pyrene	1000	ug/Kg	ND ND	U		U	ND	U .I	210 320	_
Benzo[b]fluoranthene Benzo[g,h,i]perylene	1000 100000	ug/Kg ug/Kg	ND ND	U		U	52 22	J	130	_
enzo[g,n,njperylene enzo[k]fluoranthene	3900	ug/Kg ug/Kg	ND ND	U		U	ND	U	190	_
siphenyl	-	ug/Kg	ND	U		U	ND	U	ND	_
is (2-chloroisopropyl) ether	-	ug/Kg	ND	Ü		U	ND	U	ND	_
is(2-chloroethoxy)methane	-	ug/Kg	ND	U		U	ND	U	ND	_
sis(2-chloroethyl)ether	-	ug/Kg	ND	U		U	ND	U	ND	_
is(2-ethylhexyl) phthalate	-	ug/Kg	ND	U		U	ND	U	ND	-
Butyl benzyl phthalate	-	ug/Kg	ND	U		U	ND	U	ND ND	_
aprolactam	-	ug/Kg	ND ND	U		U	ND ND	U	ND ND	_
arbazole Chrysene	3900	ug/Kg ug/Kg	ND ND	U		U	ND 62	J	370	_
Dilysene Dibenz(a,h)anthracene	330	ug/Kg ug/Kg	ND ND	U		U	ND	U	ND	_
Dibenzofuran	59000	ug/Kg	ND	U		U	ND	U	ND ND	_
Diethyl phthalate	-	ug/Kg	ND	Ü	ND	U	ND	U	ND	_
imethyl phthalate	-	ug/Kg	ND	U		U	ND	U	ND	
i-n-butyl phthalate	-	ug/Kg		U		U		U		_
i-n-octyl phthalate	-	ug/Kg	ND	U		U	ND	U	ND	_
luoranthene	100000	ug/Kg	ND	U		Ξ.		J	530	_
luorene	100000	ug/Kg ug/Kg	ND ND	U		U	ND ND	U	ND ND	
lexachlorobenzene lexachlorobutadiene	-	ug/Kg ug/Kg	ND ND	U		U	ND ND	U		_
lexachlorocyclopentadiene	-	ug/Kg ug/Kg	ND ND	U		U		U		_
exachloroethane	-	ug/Kg	ND	U		U	ND.	U	ND.	_
ndeno[1,2,3-cd]pyrene	500	ug/Kg	ND	U		U		U		_
sophorone	-	ug/Kg	ND	U		U		U		_
aphthalene	100000	ug/Kg	ND	U		U		U	ND	-
litrobenzene	-	ug/Kg	ND	U		U		U		-
-Nitrosodi-n-propylamine	-	ug/Kg	ND	U		U		U		
-Nitrosodiphenylamine	- 6700	ug/Kg	ND ND	U		СС	ND ND	U	ND ND	_
Pentachlorophenol Phenanthrene	6700 100000	ug/Kg ug/Kg	ND ND	U		U	63	ı	310	_
rnenantnrene Phenol	100000	ug/Kg ug/Kg	ND ND	U		U		U		_
vrene	100000	ug/Kg ug/Kg	ND ND	U		U	61	J	360	_
, · -	-	ug/Kg	.,,,		. 45	ŭ	368	_ ĭ	2660	_

Ashokan Reservoir - Collection of Soil Samples along the Rail Trail Corridor										
Soil Investigation, B&L 369.007.001										
TABLE 1		Sample ID								
		Lab ID	480-115585-		480-115585-7		480-115585-8		480-115585-9	
Restricted Residential Soil Cleanup Objectives (RRSCO)		Date	04/04/2017 09:0		04/04/2017 12:45:00		04/04/2017 13:00:00		04/04/2017 13:25:00	
COMPOUND	RRSCO	Units	Result	Q	Result	Q	Result	Q	Result	Q
Pesticides			\ ID		ND.		ND.		ND.	
4,4'-DDD	13000	ug/Kg	ND	U	ND	U	ND	U	ND	U
4,4'-DDE	8900	ug/Kg	ND	U		U	ND	U	4	
4,4'-DDT	7900	ug/Kg	ND	U	ND	U	ND	U	4.4	
Aldrin	97	ug/Kg	ND	U	ND	U	ND	U	ND	U
alpha-BHC	480	ug/Kg	ND	U	ND	U	ND	U	ND	U
alpha-Chlordane	4200	ug/Kg	ND	U	ND	U	ND	U	ND	U
beta-BHC	360	ug/Kg	ND	U	ND	U	ND	U	ND	U
delta-BHC	100000	ug/Kg	ND	U	ND	U	ND	U	ND	U
Dieldrin	200	ug/Kg	ND	U		U	ND	U	ND	U
Endosulfan I	24000	ug/Kg	ND	U	ND	U	ND	U	ND	U
Endosulfan II	24000	ug/Kg	ND	U	ND	U	ND	U	ND	U
Endosulfan sulfate	24000	ug/Kg	ND	U	ND	U	ND	U	ND	U
Endrin	11000	ug/Kg	ND	U	ND	U	ND	U	ND	U
Endrin aldehyde	-	ug/Kg	ND	U		U	ND	U	ND	U
Endrin ketone	-	ug/Kg	ND	U	ND	U	ND	U	ND	U
gamma-BHC (Lindane)	1300	ug/Kg	ND	J	ND	U	ND	U	ND	U
gamma-Chlordane	-	ug/Kg	ND	J	ND	U	ND	U	ND	U
Heptachlor	2100	ug/Kg	ND	J	ND	U	ND	U	ND	U
Heptachlor epoxide	-	ug/Kg	ND	U	ND	U	ND	U	ND	U
Methoxychlor	-	ug/Kg	ND	U	ND	U	ND	U	ND	U
Toxaphene	-	ug/Kg	ND	U	ND	U	ND	U	ND	U
Herbicides										
2,4-D	-	ug/Kg	ND	U	ND	U	ND	U	ND	U
Silvex (2,4,5-TP)	100000	ug/Kg	ND	U	ND	U	ND	U	ND	U
Metals										
Aluminum	-	mg/Kg	13000		19200		9790		9760	
Mercury	0.81	mg/Kg	0.036		0.037		0.15		0.076	
Antimony	-	mg/Kg	ND	UF1	ND	U	ND	U	ND	U
Arsenic	16	mg/Kg	7.6		9.4		6		10.7	
Barium	400	mg/Kg	39.4	F1	119		28.7		55.3	
Beryllium	72	mg/Kg	0.54		0.88		0.36		0.44	
Cadmium	4.3	mg/Kg	0.11	J	0.1	J	0.14	J	0.19	J
Calcium	-	mg/Kg	918		1370		406		583	
Chromium	180	mg/Kg	16.7	В	26.3	В	12.5	В	15	В
Cobalt	-	mg/Kg	8.5		10.8		7.1		7.9	
Copper	270	mg/Kg	19.4		12.2		17.1		25.9	
Iron	-	mg/Kg	19600		27200		18100		26600	
Lead	400	mg/Kg	16.1		9.2		22.6		55.9	
Magnesium	-	mg/Kg	2680		3550		2840		2620	
Manganese	2000	mg/Kg	469	В	698	В	387	В	607	В
Nickel	310	mg/Kg	20.7		28		16	Ť	17.7	
Potassium	-	mg/Kg	1300	F1 ^	1370	٨	701		1070	
Selenium	180	mg/Kg	ND	··U	1.4	J	0.79	J	0.76	J,
Silver	180	mg/Kg	ND	U	ND	Ü	ND	Ü	ND	Ū
Sodium	-	mg/Kg	56.5	JB	150	JΒ	29.3	JΒ		JΒ
Thallium		mg/Kg	ND	U	ND.	U	ND	U	ND	U
Vanadium	_	mg/Kg	18.9	F1	29		15.7	J	18.1	
Zinc	10000	mg/Kg	50.9	- 1 1	59.6		49.3		80.3	
ZIIIC	10000	mg/Kg	50.9		59.6		49.3		00.3	

[|] TOUUU | TREFING | SOUTH | TOUTH | TREFING | SOUTH | TOUTH |

Table 2

Collection of Soil Samples Downgradient of the Former Mobil Station on State Route 28

Ashokan Reservoir - Samples Downgradient of Former Mobil Station										
Soil Investigation, B&L 369.007.001										
,		Sample ID	SAMPLE-2		SAMPLE-3		SAMPLE-4			
TABLE 2	Lab ID	480-115585-2	2	480-115585-3	3	480-115585-4				
Restricted Residential Soil Cleanup Objectives (RRSCO) Date	04/04/2017 09:25:00		04/04/2017 09:35:0		00 04/04/2017 09:45:0			
COMPOUND	RRSCO	Units	Result	Q	Result	Q	Result	Q		
Volatiles	•						•			
1,1,1-Trichloroethane	100000	ug/Kg	ND	U	ND	U	ND	U		
1,1,2,2-Tetrachloroethane	-	ug/Kg	ND	U	ND	U	ND	U		
1,1,2-Trichloro-1,2,2-trifluoroethane	-	ug/Kg	ND	U	ND	U	ND	U		
1,1,2-Trichloroethane	-	ug/Kg	ND	U	ND	U	ND	U		
1,1-Dichloroethane	26000	ug/Kg	ND	U	ND	U	ND	U		
1,1-Dichloroethene	100000	ug/Kg	ND	U	ND	U	ND	U		
1,2,4-Trichlorobenzene	-	ug/Kg	ND	U	ND	U	ND	U		
1,2-Dibromo-3-Chloropropane	-	ug/Kg	ND	U	ND	U	ND	U		
1,2-Dibromoethane	-	ug/Kg	ND	U	ND	U	ND	U		
1,2-Dichlorobenzene	100000	ug/Kg	ND	U	ND	U	ND	U		
1,2-Dichloroethane	3100	ug/Kg	ND	U	ND	U	ND	U		
1,2-Dichloropropane	-	ug/Kg	ND	U	ND	U	ND	U		
1,3-Dichlorobenzene	49000	ug/Kg	ND	U	ND	U	ND	U		
1.4-Dichlorobenzene	13000	ug/Kg	ND	U	ND	Ü	ND	U		
2-Butanone (MEK)	100000	ug/Kg	ND	U	ND	Ü	ND	U		
2-Hexanone	-	ug/Kg	ND	U	ND	U	ND	U		
4-Methyl-2-pentanone (MIBK)	_	ug/Kg	ND	U	ND	Ü	ND	U		
Acetone	100000	ug/Kg	45		ND	Ü	10	J		
Benzene	4800	ug/Kg	ND	U	ND	Ü	ND	U		
Bromodichloromethane	-1000	ug/Kg	ND	U	ND	U	ND	U		
Bromoform	_	ug/Kg	ND	U	ND	U	ND	U		
Bromomethane	_	ug/Kg	ND	U	ND	U	ND.	U		
Carbon disulfide	_	ug/Kg	ND	U	ND	U	ND	U		
Carbon tetrachloride	2400	ug/Kg	ND	U	ND	U	ND	U		
Chlorobenzene	100000	ug/Kg	ND	U	ND	U	ND.	U		
Chloroethane	-	ug/Kg	ND	U	ND	U	ND.	U		
Chloroform	49000	ug/Kg	ND	U	ND	U	ND	U		
Chloromethane	-	ug/Kg	ND	U	ND	U	ND	U		
cis-1,2-Dichloroethene	100000	ug/Kg	ND	U	ND	U	ND	U		
cis-1,3-Dichloropropene	-	ug/Kg	ND	U	ND	U	ND.	U		
Cyclohexane	_	ug/Kg	ND	U	ND	U	ND	U		
Dibromochloromethane	_	ug/Kg	ND	U	ND	U	ND	U		
Dichlorodifluoromethane	_	ug/Kg	ND	U	ND	U	ND	U		
Ethylbenzene	41000	ug/Kg	ND	U	ND	U	ND.	U		
Isopropylbenzene		ug/Kg	ND	U	ND	U	ND.	U		
Methyl acetate	_	ug/Kg	ND	U	ND	U	ND	U		
Methyl tert-butyl ether	100000	ug/Kg	ND	U	ND	U	ND.	U		
Methylcyclohexane	-	ug/Kg	ND	U	ND	Ü	ND	U		
Methylene Chloride	100000	ug/Kg	ND	U	ND	U	ND	U		
Styrene	-	ug/Kg	ND	U	ND	U		U		
Tetrachloroethene	19000	ug/Kg	ND	U	ND	U		U		
Toluene	100000	ug/Kg	ND	U	ND	U	ND	U		
trans-1,2-Dichloroethene	100000	ug/Kg	ND	U	ND	U	ND	U		
trans-1,3-Dichloropropene	-	ug/Kg	ND	U	ND	U	ND	U		
Trichloroethene	21000	ug/Kg	ND	U	ND	U	ND	U		
Trichlorofluoromethane	-	ug/Kg	ND	U	ND	U	ND	U		
Vinyl chloride	900	ug/Kg	ND	U	ND	U	ND	U		
Xylenes, Total	100000	ug/Kg	ND	U	ND	U		U		
Total Conc	-	~9/1.9	45		, ND	Ť	10	J		
• • • • •	1	1	75							

Ashokan Reservoir - Samples Downgradient of Former Mobil Station									
Soil Investigation, B&L 369.007.001									
TABLE 2		Sample ID	SAMPLE-2		SAMPLE-3		SAMPLE-4		
		Lab ID	480-115585-2		480-115585-		480-115585-4 04/04/2017 09:45:00		
Restricted Residential Soil Cleanup Obj	RRSCO	Units	Result	Q Q	Result	2:00 Q	Result Q		
Semivolatiles	MAGGG	Omis	Result		Result	· ·	nesun Q		
2,4,5-Trichlorophenol	-	ug/Kg	ND	U	ND	U	ND U		
2,4,6-Trichlorophenol	-	ug/Kg	ND ND	U	ND ND	U	ND U		
2,4-Dichlorophenol 2,4-Dimethylphenol	-	ug/Kg ug/Ka	ND ND	U	ND ND	U	ND U		
2,4-Dinitrophenol	-	ug/Kg	ND	U	ND	U	ND U		
2,4-Dinitrotoluene	-	ug/Kg	ND	U	ND	U	ND U		
2,6-Dinitrotoluene 2-Chloronaphthalene	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
2-Chlorophenol	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
2-Methylnaphthalene	-	ug/Kg	ND	Ū	ND	U	ND U		
2-Methylphenol	-	ug/Kg	ND	U	ND	U	ND U		
2-Nitroaniline 2-Nitrophenol	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
3,3'-Dichlorobenzidine	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
3-Nitroaniline	-	ug/Kg	ND	U	ND	U	ND U		
4,6-Dinitro-2-methylphenol	-	ug/Kg	ND	U	ND ND	U	ND U		
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
4-Chloroaniline	-	ug/Kg	ND	U	ND	U	ND U		
4-Chlorophenyl phenyl ether	-	ug/Kg	ND	U	ND	U	ND U		
4-Methylphenol	-	ug/Kg	ND	U	ND	U	ND U		
4-Nitroaniline 4-Nitrophenol	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Acenaphthene	100000	ug/Kg	ND ND	U	ND	U	ND U		
Acenaphthylene	100000	ug/Kg	ND	U	ND	U	ND U		
Acetophenone	-	ug/Kg	ND	U	ND	U	ND U		
Anthracene Atrazine	100000	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Benzaldehyde	-	ug/Kg	ND	Ū	ND	Ü	ND U		
Benzo[a]anthracene	1000	ug/Kg	ND	U	ND	U	ND U		
Benzo[a]pyrene	1000	ug/Kg	ND ND	U	ND	U	ND U		
Benzo[b]fluoranthene Benzo[g,h,i]perylene	1000 100000	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Benzo[k]fluoranthene	3900	ug/Kg	ND	Ü	ND	U	ND U		
Biphenyl	-	ug/Kg	ND	U	ND	U	ND U		
bis (2-chloroisopropyl) ether Bis(2-chloroethoxy)methane	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Bis(2-chloroethyl)ether	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Bis(2-ethylhexyl) phthalate	-	ug/Kg	74	J	ND	U	ND U		
Butyl benzyl phthalate	-	ug/Kg	ND	U	ND	U	ND U		
Caprolactam Carbazole	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Chrysene	3900	ug/Kg	ND ND	U	ND	U	ND U		
Dibenz(a,h)anthracene	330	ug/Kg	ND	U	ND	U	ND U		
Dibenzofuran	59000	ug/Kg	ND	U	ND	U			
Diethyl phthalate Dimethyl phthalate	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Di-n-butyl phthalate	-	ug/Kg	ND ND	U	ND	U	ND U		
Di-n-octyl phthalate	-	ug/Kg	ND	U	ND	U	ND U		
Fluoranthene	100000	ug/Kg	46	J	ND	U	ND U		
Fluorene Hexachlorobenzene	100000	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Hexachlorobutadiene	-	ug/Kg	ND	U	ND	U	ND U		
Hexachlorocyclopentadiene	-	ug/Kg	ND	U	ND	U	ND U		
Hexachloroethane	500	ug/Kg	ND ND	U	ND ND	U	ND U		
Indeno[1,2,3-cd]pyrene Isophorone	500	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Naphthalene	100000	ug/Kg	ND ND	U	ND.	U	ND U		
Nitrobenzene	-	ug/Kg	ND	U	ND	U	ND U		
N-Nitrosodi-n-propylamine	-	ug/Kg	ND	U	ND ND	U	ND U		
N-Nitrosodiphenylamine Pentachlorophenol	6700	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND U		
Phenanthrene	100000	ug/Kg	ND ND	U	ND	U	ND U		
Phenol	100000	ug/Kg	ND	U	ND	U	ND U		
Pyrene Total Cons	100000	ug/Kg	34	J	ND	U	ND U		
Total Conc	-	ug/Kg	154						

Ashokan Reservoir - Samples Downgradient of Former Mobil Station									
Soil Investigation, B&L 369.007.001									
TABLE 6		Sample ID	SAMPLE-2		SAMPLE-3		SAMPLE-4		
TABLE 2		Lab ID	480-115585-2	2	480-115585-3	3	480-115585-4		
Restricted Residential Soil Cleanup Ob	jectives (RRSCO	Date	04/04/2017 09:2	5:00	04/04/2017 09:3	5:00	04/04/2017 09:45:		
COMPOUND	RRSCO	Units	Result	Q	Result	Q	Result	Q	
Metals	•	•			•				
Aluminum	-	mg/Kg	17200		15500		19500		
Mercury	0.81	mg/Kg	0.06		0.095		0.044		
Antimony	-	mg/Kg	ND	U	ND	U	ND	U	
Arsenic	16	mg/Kg	13.7		9.2		11		
Barium	400	mg/Kg	57.3		60.5		68.7		
Beryllium	72	mg/Kg	0.68		0.59		0.71		
Cadmium	4.3	mg/Kg	0.19	٦	0.11	J	0.089	J	
Calcium	-	mg/Kg	966		967		939		
Chromium	180	mg/Kg	22.9	В	21.9	В	23.9	В	
Cobalt	-	mg/Kg	15.2		12.2		12.1		
Copper	270	mg/Kg	23.3		14.2		19.8		
Iron	-	mg/Kg	27600		28800		27100		
Lead	400	mg/Kg	40.9		25.5		20.5		
Magnesium	-	mg/Kg	4140		3490		3530		
Manganese	2000	mg/Kg	876	В	943	В	982	В	
Nickel	310	mg/Kg	32.3		25.9		26.7		
Potassium	-	mg/Kg	1690	^	1660	^	1700	^	
Selenium	180	mg/Kg	ND	U	ND	U	1.3	J	
Silver	180	mg/Kg	ND	U	ND	U	ND	U	
Sodium	-	mg/Kg	54.5	JΒ	58.7	JΒ	64.3	JΒ	
Thallium	-	mg/Kg	ND	U	ND	U	ND	U	
Vanadium	-	mg/Kg	28.4		26.4		30.6		
Zinc	10000	mg/Kg	88.5		75.5		85		

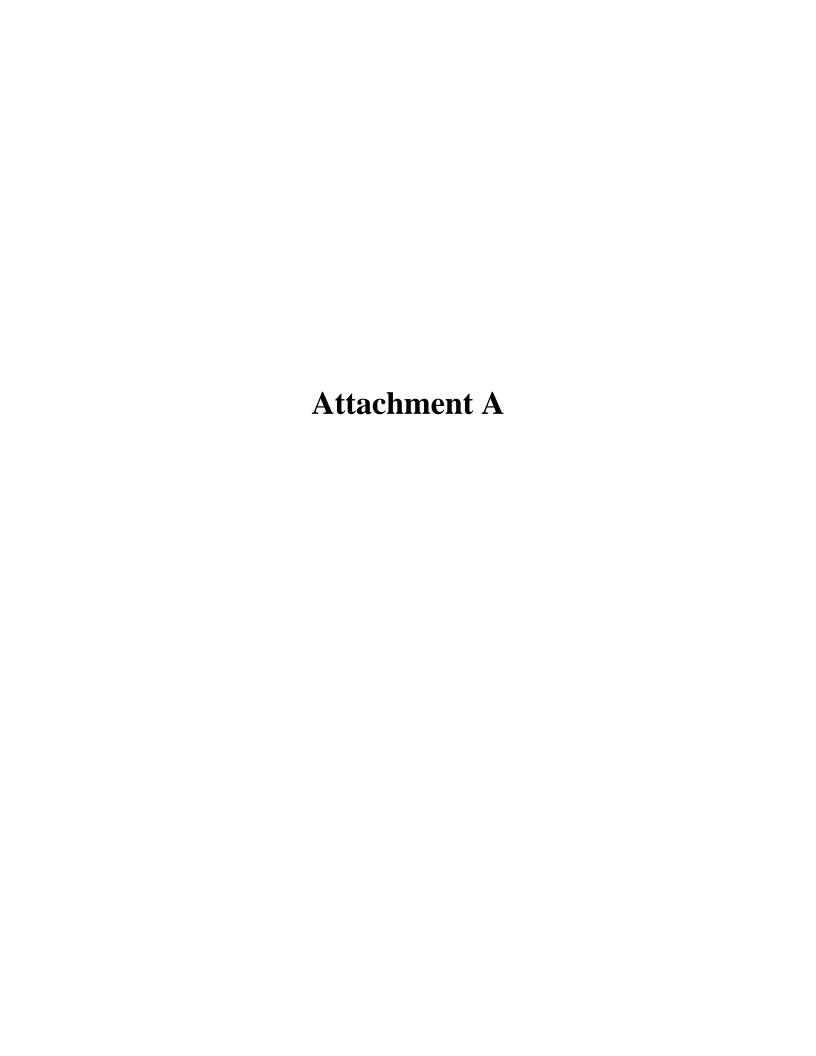
Footnotes

- ^: ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
- B : Compound was found in the blank and sample.
- F1 : MS and/or MSD Recovery is outside acceptance limits.
- J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Table 3

Collection of Soil Samples at the Location of the Former Equipment Storage Facility/Proposed Trailhead Area

Ashokan Reservoir - F Soil Investigation, B&			t Storage	Fa	cility/Prop	009	sed Trailhe	ea	d Area
John Investigation, Ba	L 303.00	Sample ID	SAMPLE-5		SAMPLE-6		B-6		B-7
TABLE 3		Lab ID	480-115585-5	480-115585-6	:	480-115585-10		480-115585-11	
Restricted Residential Soil Cleanup Object	etivos (PPSCO)	Date	04/04/2017 11:00		04/04/2017 11:15		04/04/2017 16:00	_	04/04/2017 15:20:00
COMPOUND	RRSCO	Units	Result	Q	Result	Q Q	Result	Q.	Result Q
Semivolatiles	RRSCO	Units	Result	Q	Result	Q	Result	Q	Result
2,4,5-Trichlorophenol	-	ug/Kg	ND	U	ND	U	ND	U	ND U
2,4,6-Trichlorophenol	-	ug/Kg	ND	U	ND	U	ND	U	ND U
2,4-Dichlorophenol	-	ug/Kg	ND	U	ND	U	ND	U	ND U
2,4-Dimethylphenol	-	ug/Kg	ND	U	ND	U	ND	С	ND U
2,4-Dinitrophenol	-	ug/Kg	ND	U		U		U	ND U
2,4-Dinitrotoluene	-	ug/Kg	ND	U	ND	U		U	ND U
2,6-Dinitrotoluene 2-Chloronaphthalene	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U
2-Chlorophenol	-	ug/Kg	ND ND	U	ND ND	Ü	ND	U	ND U
2-Methylnaphthalene	-	ug/Kg	ND	Ū	ND	Ū		Ū	ND U
2-Methylphenol	-	ug/Kg	ND	U	ND	U	ND	U	ND U
2-Nitroaniline	-	ug/Kg	ND	U	ND	U		U	ND U
2-Nitrophenol	-	ug/Kg	ND	U	ND	U	ND	U	ND U
3,3'-Dichlorobenzidine 3-Nitroaniline	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U
4,6-Dinitro-2-methylphenol	-	ug/Kg ug/Kg	ND ND	U	ND ND	U		U	ND U
4-Bromophenyl phenyl ether	-	ug/Kg	ND ND	U	ND ND	Ü	ND	U	ND U
4-Chloro-3-methylphenol	-	ug/Kg	ND	Ü	ND	Ū	ND	Ü	ND U
4-Chloroaniline	-	ug/Kg	ND	U	ND	U	ND	U	ND U
4-Chlorophenyl phenyl ether	-	ug/Kg	ND	U		U		С	ND U
4-Methylphenol	-	ug/Kg	ND	U	ND	U		U	ND U
4-Nitroaniline	-	ug/Kg	ND	U	ND	U	ND	U	ND U
4-Nitrophenol Acenaphthene	100000	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U
Acenaphthylene	100000	ug/Kg	ND ND	U	ND ND	U		U	ND U
Acetophenone	-	ug/Kg	ND	U	ND	Ū		U	ND U
Anthracene	100000	ug/Kg	ND	U	ND	U	ND	U	ND U
Atrazine	-	ug/Kg	ND	U	ND	U	ND	U	ND U
Benzaldehyde	-	ug/Kg	ND	U	ND	U	ND	С	ND U
Benzo[a]anthracene	1000	ug/Kg	200	J	ND	U		J	ND U
Benzo[a]pyrene	1000	ug/Kg	ND ND	U	ND ND	U		J	ND U
Benzo[b]fluoranthene Benzo[g,h,i]perylene	1000	ug/Kg ug/Kg	ND ND	U	ND ND	U	61	J	ND U
Benzo[k]fluoranthene	3900	ug/Kg	ND.	Ü		Ū		J	ND U
Biphenyl	-	ug/Kg	ND	U	ND	U		U	ND U
bis (2-chloroisopropyl) ether	-	ug/Kg	ND	U	ND	U		С	ND U
Bis(2-chloroethoxy)methane	-	ug/Kg	ND	U	ND	U		U	ND U
Bis(2-chloroethyl)ether	-	ug/Kg	ND	U	ND	U	ND	U	ND U
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U
Caprolactam		ug/Kg	ND ND	U	ND ND	U		U	ND U
Carbazole	-	ug/Kg	ND	U	ND	U		U	ND U
Chrysene	3900	ug/Kg	ND	Ū	ND	Ū	130	J	ND U
Dibenz(a,h)anthracene	330	ug/Kg	ND	U		U		U	ND U
Dibenzofuran	59000	ug/Kg	ND	U		U		U	ND U
Diethyl phthalate	-	ug/Kg	ND	U	ND	U		U	ND U
Dimethyl phthalate Di-n-butyl phthalate	-	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U
Di-n-octyl phthalate		ug/Kg	ND ND	U	ND ND	U		U	ND U
Fluoranthene	100000	ug/Kg	360	J	ND	U		Ŭ	ND U
Fluorene	100000	ug/Kg	ND	U	ND	U	ND	U	ND U
Hexachlorobenzene	-	ug/Kg	ND	J		U		U	ND U
Hexachlorobutadiene	-	ug/Kg	ND	U		U		U	ND U
Hexachlorocyclopentadiene	-	ug/Kg	ND	U		U		U	ND U
Hexachloroethane	500	ug/Kg	ND ND	U		U		J	ND U
Indeno[1,2,3-cd]pyrene Isophorone	500	ug/Kg ug/Kg	ND ND	U		U		U	ND U
Naphthalene	100000	ug/Kg	ND ND	U	ND ND	U		U	ND U
Nitrobenzene	-	ug/Kg	ND	U		U		Ü	ND U
N-Nitrosodi-n-propylamine	-	ug/Kg	ND	U		U	ND	U	ND U
N-Nitrosodiphenylamine	-	ug/Kg	ND	U	ND	U		U	ND U
Pentachlorophenol	6700	ug/Kg	ND	U	ND	U		U	ND U
Phenanthrene	100000	ug/Kg	ND ND	U	ND	U		J	ND U
Phenol Pyrene	100000 100000	ug/Kg ug/Kg	ND 300	U		U		U	ND U
Total Conc	-	ug/Kg		J	IND	U	1114	J	ט טאו
		ug/itg	000		l			_	


Soil Investigation, B&	_ 000.00				ı				I		
TABLE 3		Sample ID	SAMPLE-5		SAMPLE-6		B-6		B-7		
		Lab ID	480-115585-5	,	480-115585-6		480-115585-10	480-115585-11			
Restricted Residential Soil Cleanup Object	tives (RRSCO)	Date	04/04/2017 11:00	00:0	04/04/2017 11:15	:00	04/04/2017 16:00	:00	04/04/2017 15:20:00		
COMPOUND	RRSCO	Units	Result	Q	Result	Q	Result	Q	Result Q		
Pesticides		1									
4,4'-DDD	13000	ug/Kg	ND	U	ND	U	ND	U	ND U		
4,4'-DDE 4.4'-DDT	8900	ug/Kg	ND 9.7	U	ND ND	U	ND ND	U	ND U		
Aldrin	7900 97	ug/Kg ug/Kg	9.7 ND	J	ND ND	U	ND ND	U	ND U		
alpha-BHC	480	ug/Kg	ND	U	ND	Ü	ND ND	U	ND U		
alpha-Chlordane	4200	ug/Kg	ND	U	ND	U	ND	Ü	ND U		
beta-BHC	360	ug/Kg	ND	U	ND	U	ND	U	ND U		
delta-BHC	100000	ug/Kg	ND	U	ND	U	ND	U	ND U		
Dieldrin	200	ug/Kg	ND	U	ND	U	ND	U	ND U		
Endosulfan I	24000	ug/Kg	ND	U	ND	U	ND	U	ND U		
Endosulfan II	24000 24000	ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U		
Endosulfan sulfate Endrin	11000	ug/Kg ug/Kg	ND ND	U	ND ND	U	ND ND	U	ND U		
Endrin aldehyde	-	ug/Kg	ND	U	ND ND	U	ND ND	Ü	ND U		
Endrin ketone	-	ug/Kg	ND	U	ND ND	U	ND	Ü	ND U		
gamma-BHC (Lindane)	1300	ug/Kg	ND	U	ND	Ü	ND	Ü	ND U		
gamma-Chlordane	-	ug/Kg	ND	U	ND	Ü	ND	Ü	ND U		
Heptachlor	2100	ug/Kg	ND	U	ND	U	ND	U	ND U		
Heptachlor epoxide	-	ug/Kg	ND	U	ND	U	ND	U	ND U		
Methoxychlor	-	ug/Kg	ND	U	ND	U	ND	U	ND U		
Toxaphene	-	ug/Kg	ND	U	ND	U	ND	U	ND U		
PCBs											
PCB-1016	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
PCB-1221	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
PCB-1232	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
PCB-1242	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
PCB-1248	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
PCB-1254	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
PCB-1260	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
Total Conc	1000	mg/Kg	ND		ND		ND		ND		
Herbicides			,								
2,4-D	-	ug/Kg	ND	U	ND	U	ND	U	ND U		
Silvex (2,4,5-TP)	100000	ug/Kg	ND	U	ND	U	ND	U	ND U		
Metals		, ,			1				-		
Aluminum	-	mg/Kg	18900		10800		9450		13700		
Mercury	0.81	mg/Kg	0.2		0.35		0.054		0.06		
Antimony	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
Arsenic	16	mg/Kg	9.6		16		6.8		8.4		
Barium	400	mg/Kg	81.5		69.1		43.2		59.4		
Beryllium Cadmium	72 4.3	mg/Kg	0.86 0.44		0.58 0.12	J	0.39 0.084	J	0.57 0.12 J		
Calcium	4.3	mg/Kg mg/Kg	5670		1710	J	913	J	0.12 J 1110		
Chromium	180	mg/Kg	26	В	17.4	В	15	В	20.5 B		
Cobalt	-	mg/Kg	13.5	_	15.6	_	9	_	10.3		
Copper	270	mg/Kg	24.2		28.3		14.9		22.7		
Iron	-	mg/Kg	27600		24900		21000		23000		
Lead	400	mg/Kg	170		35.6		14.5		27.4		
Magnesium	-	mg/Kg	4350	_	3130		3190		2800		
Manganese Niekal	2000	mg/Kg	661	В	722	В	481	В	985 B		
Nickel Potassium	310	mg/Kg	29.5 2340	٨	27.1 1340	٨	22.3 911		24.6 1190		
Selenium	180	mg/Kg mg/Kg	0.77	J	0.65	J	ND	U	1190 1.3 J		
Silver	180	mg/Kg	ND	U	ND	U	ND ND	Ü	ND U		
Sodium	-	mg/Kg	84.6	JΒ	75.2	JB		JΒ	183 B		
Thallium	-	mg/Kg	ND	U	ND	U	ND	U	ND U		
Vanadium	-	mg/Kg	30.8		17.2		14.9		21.8		
Zinc	10000	mg/Kg	126		51.7		48.5		62.8		

- Pootnotes

 ^: ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

 B: Compound was found in the blank and sample.

- F1: MS and/or MSD Recovery is outside acceptance limits.
 J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
 U: Indicates the analyte was analyzed for but not detected.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-115585-1

Client Project/Site: Ashokan

For:

Barton & Loguidice, D.P.C. 10 Airline Drive Suite 200 Albany, New York 12205

Attn: Ms. Rosemary McCormick

7

Authorized for release by: 4/13/2017 11:35:00 AM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

..... Links

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	12
Surrogate Summary	47
QC Sample Results	50
QC Association Summary	65
Lab Chronicle	70
Certification Summary	76
Method Summary	77
Sample Summary	78
Chain of Custody	79
Receipt Checklists	80

6

8

10

12

Definitions/Glossary

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier	Description
a,aaiiiioi	a, a a i i i i i i	-000: pt:0::

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Χ Surrogate is outside control limits

GC Semi VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Х Surrogate is outside control limits

applicable.

Metals

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
۸	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
4	MS. MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity

MDA Minimum detectable activity EDL **Estimated Detection Limit** MDC Minimum detectable concentration MDL Method Detection Limit

ML Minimum Level (Dioxin) NC

Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC **RER** Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 80

4/13/2017

Case Narrative

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Job ID: 480-115585-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-115585-1

Receipt

The samples were received on 4/5/2017 1:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-350542 recovered above the upper control limit for 2-Nitrophenol, 4-Nitrophenol and Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SAMPLE-1 (480-115585-1), SAMPLE-2 (480-115585-2), SAMPLE-3 (480-115585-3), SAMPLE-4 (480-115585-4), SAMPLE-5 (480-115585-5), SAMPLE-6 (480-115585-6), SAMPLE-7 (480-115585-7), SAMPLE-8 (480-115585-8), SAMPLE-9 (480-115585-9), B-6 (480-115585-10) and B-7 (480-115585-11).

Method(s) 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: SAMPLE-5 (480-115585-5). These results have been reported and qualified.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: SAMPLE-5 (480-115585-5), SAMPLE-6 (480-115585-6) and SAMPLE-9 (480-115585-9). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following sample was diluted due to the nature of the sample matrix: SAMPLE-5 (480-115585-5). As such, surrogate recoveries are below the calibration range, estimated and not representative. Elevated reporting limits (RLs) are provided.

Method(s) 8081B: For method 8081, the recovery of the one surrogate in samples SAMPLE-9 (480-115585-9) exceeds quality control limits due to the sample matrix. The recovery of the secondary surrogate is within quality control criteria; no corrective action is required.

Method(s) 8151A: The continuing calibration verification (CCV) associated with batch 480-350883 recovered above the upper control limit for Silvex (2,4,5-TP), 2,4-D and 2,4-Dichlorophenylacetic acid. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SAMPLE-1 (480-115585-1), SAMPLE-5 (480-115585-5), SAMPLE-6 (480-115585-6), SAMPLE-7 (480-115585-7), SAMPLE-8 (480-115585-8), SAMPLE-9 (480-115585-9), B-6 (480-115585-10) and B-7 (480-115585-11).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The low level continuing calibration verification (CCVL 480-351308/27) for analytical batch 480-351308 recovered above the upper control limit for Total Potassium. The samples associated with this CCVL were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples SAMPLE-1 (480-115585-1), SAMPLE-2 (480-115585-2), SAMPLE-3 (480-115585-3), SAMPLE-4 (480-115585-4), SAMPLE-5 (480-115585-5), SAMPLE-6 (480-115585-6), SAMPLE-7 (480-115585-7), (LCSSRM 480-350423/2-), (480-115585-B-1-E MS), (480-115585-B-1-F MSD) and (480-115585-B-1-D PDS) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following samples required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: SAMPLE-1 (480-115585-1), SAMPLE-5 (480-115585-5), SAMPLE-6 (480-115585-6), SAMPLE-7 (480-115585-7), SAMPLE-8 (480-115585-8), SAMPLE-9 (480-115585-9), B-6 (480-115585-10), B-7 (480-115585-11), (480-115585-A-8 MS) and (480-115585-A-8 MSD).

TestAmerica Buffalo 4/13/2017 2

3

4

9

11

12

14

Case Narrative

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Job ID: 480-115585-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

 $No\ additional\ analytical\ or\ quality\ issues\ were\ noted,\ other\ than\ those\ described\ above\ or\ in\ the\ Definitions/Glossary\ page.$

4

J

7

Q

10

1 0

13

14

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

Client Sample ID: SAMPLE-1 Lab Sample ID: 480-115585-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	13000		11.7	5.2	mg/Kg	1	₩	6010C	Total/NA
Arsenic	7.6		2.3	0.47	mg/Kg	1	₩	6010C	Total/NA
Barium	39.4	F1	0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.54		0.23	0.033	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.11	J	0.23	0.035	mg/Kg	1	₩	6010C	Total/NA
Calcium	918		58.7	3.9	mg/Kg	1	₩	6010C	Total/NA
Chromium	16.7	В	0.59	0.23	mg/Kg	1	₩	6010C	Total/NA
Cobalt	8.5		0.59	0.059	mg/Kg	1	₩	6010C	Total/NA
Copper	19.4		1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Iron	19600		11.7	4.1	mg/Kg	1	₩	6010C	Total/NA
Lead	16.1		1.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Magnesium	2680		23.5	1.1	mg/Kg	1	₩	6010C	Total/NA
Manganese	469	В	0.23	0.038	mg/Kg	1	₩	6010C	Total/NA
Nickel	20.7		5.9	0.27	mg/Kg	1	₩	6010C	Total/NA
Potassium	1300	F1 ^	35.2	23.5	mg/Kg	1	₩	6010C	Total/NA
Sodium	56.5	JB	164	15.3	mg/Kg	1	₩	6010C	Total/NA
Vanadium	18.9	F1	0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Zinc	50.9		2.3	0.75	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.036		0.022	0.0087	mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: SAMPLE-2

Lab Sample ID: 480-115585-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	45		21	3.5	ug/Kg		₩	8260C	Total/NA
Bis(2-ethylhexyl) phthalate	74	J	200	67	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	46	J	200	21	ug/Kg	1	☼	8270D	Total/NA
Pyrene	34	J	200	23	ug/Kg	1	₩	8270D	Total/NA
Aluminum	17200		12.4	5.5	mg/Kg	1	₩	6010C	Total/NA
Arsenic	13.7		2.5	0.50	mg/Kg	1	☼	6010C	Total/NA
Barium	57.3		0.62	0.14	mg/Kg	1	Ċ.	6010C	Total/NA
Beryllium	0.68		0.25	0.035	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.19	J	0.25	0.037	mg/Kg	1	₩	6010C	Total/NA
Calcium	966		62.0	4.1	mg/Kg	1	₽	6010C	Total/NA
Chromium	22.9	В	0.62	0.25	mg/Kg	1	₩	6010C	Total/NA
Cobalt	15.2		0.62	0.062	mg/Kg	1	₩	6010C	Total/NA
Copper	23.3		1.2	0.26	mg/Kg	1	₽	6010C	Total/NA
Iron	27600		12.4	4.3	mg/Kg	1	₩	6010C	Total/NA
Lead	40.9		1.2	0.30	mg/Kg	1	₩	6010C	Total/NA
Magnesium	4140		24.8	1.1	mg/Kg	1	₩	6010C	Total/NA
Manganese	876	В	0.25	0.040	mg/Kg	1	₩	6010C	Total/NA
Nickel	32.3		6.2	0.29	mg/Kg	1	₩	6010C	Total/NA
Potassium	1690	^	37.2	24.8	mg/Kg	1	₩	6010C	Total/NA
Sodium	54.5	JB	174	16.1	mg/Kg	1	₩	6010C	Total/NA
Vanadium	28.4		0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Zinc	88.5		2.5	0.79	mg/Kg	1	Ď.	6010C	Total/NA
Mercury	0.060		0.022	0.0089	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SAMPLE-3

Lab Sample ID: 480-115585-3

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: SAMPLE-3 (Continued) Lab Sample ID: 480-115585-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	15500		12.0	5.3	mg/Kg		₩	6010C	Total/NA
Arsenic	9.2		2.4	0.48	mg/Kg	1	₩	6010C	Total/NA
Barium	60.5		0.60	0.13	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.59		0.24	0.033	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	J	0.24	0.036	mg/Kg	1	₩	6010C	Total/NA
Calcium	967		59.8	3.9	mg/Kg	1	₩	6010C	Total/NA
Chromium	21.9	В	0.60	0.24	mg/Kg	1	₩	6010C	Total/NA
Cobalt	12.2		0.60	0.060	mg/Kg	1	₩	6010C	Total/NA
Copper	14.2		1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Iron	28800		12.0	4.2	mg/Kg	1	₩	6010C	Total/NA
Lead	25.5		1.2	0.29	mg/Kg	1	₩	6010C	Total/NA
Magnesium	3490		23.9	1.1	mg/Kg	1	₩	6010C	Total/NA
Manganese	943	В	0.24	0.038	mg/Kg	1	₩	6010C	Total/NA
Nickel	25.9		6.0	0.28	mg/Kg	1	₩	6010C	Total/NA
Potassium	1660	٨	35.9	23.9	mg/Kg	1	₩	6010C	Total/NA
Sodium	58.7	JB	167	15.5	mg/Kg	1	₩	6010C	Total/NA
Vanadium	26.4		0.60	0.13	mg/Kg	1	₩	6010C	Total/NA
Zinc	75.5		2.4	0.77	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.095		0.024	0.0098	mg/Kg	1	₩	7471B	Total/NA

Clier

ent Sample ID: SAMPLE-4	Lab Sample ID: 480-115585-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	10	J	20	3.3	ug/Kg		₩	8260C	Total/NA
Aluminum	19500		13.0	5.7	mg/Kg	1	₩	6010C	Total/NA
Arsenic	11.0		2.6	0.52	mg/Kg	1	₩	6010C	Total/NA
Barium	68.7		0.65	0.14	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.71		0.26	0.036	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.089	J	0.26	0.039	mg/Kg	1	₩	6010C	Total/NA
Calcium	939		65.1	4.3	mg/Kg	1	₩	6010C	Total/NA
Chromium	23.9	В	0.65	0.26	mg/Kg	1	₩	6010C	Total/NA
Cobalt	12.1		0.65	0.065	mg/Kg	1	₩	6010C	Total/NA
Copper	19.8		1.3	0.27	mg/Kg	1	₩	6010C	Total/NA
Iron	27100		13.0	4.6	mg/Kg	1	₽	6010C	Total/NA
Lead	20.5		1.3	0.31	mg/Kg	1	₩	6010C	Total/NA
Magnesium	3530		26.1	1.2	mg/Kg	1	₽	6010C	Total/NA
Manganese	982	В	0.26	0.042	mg/Kg	1	₽	6010C	Total/NA
Nickel	26.7		6.5	0.30	mg/Kg	1	₩	6010C	Total/NA
Potassium	1700	^	39.1	26.1	mg/Kg	1	₽	6010C	Total/NA
Selenium	1.3	J	5.2	0.52	mg/Kg	1	₩	6010C	Total/NA
Sodium	64.3	JB	182	16.9	mg/Kg	1	₩	6010C	Total/NA
Vanadium	30.6		0.65	0.14	mg/Kg	1	₽	6010C	Total/NA
Zinc	85.0		2.6	0.83	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.044		0.023	0.0093		1	₩	7471B	Total/NA

C

Client Sample ID: SAMPLE-5	Lab Sample ID: 480-115585-
SHELL SALIDLE ID. SAMPLE-3	Lab Sallible ID. 400-1 15505

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Benzo[a]anthracene	200 J	2000	200 ug/Kg		Total/NA
Fluoranthene	360 J	2000	210 ug/Kg	10 ☼ 8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: SAMPLE-5 (Continued)

Lab Sample ID: 480-115585-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Pyrene	300	J	2000	240	ug/Kg	10	₩	8270D	Total/NA
4,4'-DDT	9.7	J	20	4.6	ug/Kg	10	₩	8081B	Total/NA
Aluminum	18900		12.8	5.6	mg/Kg	1	₩	6010C	Total/NA
Arsenic	9.6		2.6	0.51	mg/Kg	1	₩	6010C	Total/NA
Barium	81.5		0.64	0.14	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.86		0.26	0.036	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.44		0.26	0.038	mg/Kg	1	₩	6010C	Total/NA
Calcium	5670		63.8	4.2	mg/Kg	1	₩	6010C	Total/NA
Chromium	26.0	В	0.64	0.26	mg/Kg	1	₩	6010C	Total/NA
Cobalt	13.5		0.64	0.064	mg/Kg	1	₩	6010C	Total/NA
Copper	24.2		1.3	0.27	mg/Kg	1	¢	6010C	Total/NA
Iron	27600		12.8	4.5	mg/Kg	1	₩	6010C	Total/NA
Lead	170		1.3	0.31	mg/Kg	1	₩	6010C	Total/NA
Magnesium	4350		25.5	1.2	mg/Kg	1	₩	6010C	Total/NA
Manganese	661	В	0.26	0.041	mg/Kg	1	₩	6010C	Total/NA
Nickel	29.5		6.4	0.29	mg/Kg	1	₩	6010C	Total/NA
Potassium	2340	Λ	38.3	25.5	mg/Kg	1	₩	6010C	Total/NA
Selenium	0.77	J	5.1	0.51	mg/Kg	1	₩	6010C	Total/NA
Sodium	84.6	JB	179	16.6	mg/Kg	1	₩	6010C	Total/NA
Vanadium	30.8		0.64	0.14	mg/Kg	1	₩	6010C	Total/NA
Zinc	126		2.6	0.82	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.20		0.023	0.0092	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SAMPLE-6

Lab Sample ID: 480-115585-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	10800		12.5	5.5	mg/Kg	1	₩	6010C	Total/NA
Arsenic	16.0		2.5	0.50	mg/Kg	1	₩	6010C	Total/NA
Barium	69.1		0.63	0.14	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.58		0.25	0.035	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.12	J	0.25	0.038	mg/Kg	1	₩	6010C	Total/NA
Calcium	1710		62.5	4.1	mg/Kg	1	₩	6010C	Total/NA
Chromium	17.4	В	0.63	0.25	mg/Kg	1		6010C	Total/NA
Cobalt	15.6		0.63	0.063	mg/Kg	1	₩	6010C	Total/NA
Copper	28.3		1.3	0.26	mg/Kg	1	₩	6010C	Total/NA
Iron	24900		12.5	4.4	mg/Kg	1		6010C	Total/NA
Lead	35.6		1.3	0.30	mg/Kg	1	₩	6010C	Total/NA
Magnesium	3130		25.0	1.2	mg/Kg	1	₩	6010C	Total/NA
Manganese	722	В	0.25	0.040	mg/Kg	1	₽	6010C	Total/NA
Nickel	27.1		6.3	0.29	mg/Kg	1	₩	6010C	Total/NA
Potassium	1340	٨	37.5	25.0	mg/Kg	1	₩	6010C	Total/NA
Selenium	0.65	J	5.0	0.50	mg/Kg	1	₩.	6010C	Total/NA
Sodium	75.2	JB	175	16.3	mg/Kg	1	₩	6010C	Total/NA
Vanadium	17.2		0.63	0.14	mg/Kg	1	₩	6010C	Total/NA
Zinc	51.7		2.5	0.80	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.35		0.023	0.0092	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SAMPLE-7

Lab Sample ID: 480-115585-7

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

Client Sample ID: SAMPLE-7 (Continued)

Lab Sample ID: 480-115585-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	19200	· -	11.2	4.9	mg/Kg		₩	6010C	Total/NA
Arsenic	9.4		2.2	0.45	mg/Kg	1	₩	6010C	Total/NA
Barium	119		0.56	0.12	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.88		0.22	0.031	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.10	J	0.22	0.034	mg/Kg	1	₩	6010C	Total/NA
Calcium	1370		56.1	3.7	mg/Kg	1	₩	6010C	Total/NA
Chromium	26.3	В	0.56	0.22	mg/Kg	1	₩	6010C	Total/NA
Cobalt	10.8		0.56	0.056	mg/Kg	1	₩	6010C	Total/NA
Copper	12.2		1.1	0.24	mg/Kg	1	₩	6010C	Total/NA
Iron	27200		11.2	3.9	mg/Kg	1	₩	6010C	Total/NA
Lead	9.2		1.1	0.27	mg/Kg	1	₩	6010C	Total/NA
Magnesium	3550		22.4	1.0	mg/Kg	1	₩	6010C	Total/NA
Manganese	698	В	0.22	0.036	mg/Kg	1	₩	6010C	Total/NA
Nickel	28.0		5.6	0.26	mg/Kg	1	₩	6010C	Total/NA
Potassium	1370	٨	33.6	22.4	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.4	J	4.5	0.45	mg/Kg	1	₽	6010C	Total/NA
Sodium	150	JB	157	14.6	mg/Kg	1	₩	6010C	Total/NA
Vanadium	29.0		0.56	0.12	mg/Kg	1	₩	6010C	Total/NA
Zinc	59.6		2.2	0.72	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.037		0.023	0.0092	mg/Kg	1	☼	7471B	Total/NA

Client Sample ID: SAMPLE-8

Lab Sample ID: 480-115585-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type			
Benzo[a]anthracene	39	J	200	20	ug/Kg	1	₩	8270D	Total/NA			
Benzo[b]fluoranthene	52	J	200	32	ug/Kg	1	₩	8270D	Total/NA			
Benzo[g,h,i]perylene	22	J	200	21	ug/Kg	1	₩	8270D	Total/NA			
Chrysene	62	J	200	44	ug/Kg	1	₽	8270D	Total/NA			
Fluoranthene	69	J	200	21	ug/Kg	1	₩	8270D	Total/NA			
Phenanthrene	63	J	200	29	ug/Kg	1	₩	8270D	Total/NA			
Pyrene	61	J	200	23	ug/Kg	1	₽	8270D	Total/NA			
Aluminum	9790		12.2	5.4	mg/Kg	1	₩	6010C	Total/NA			
Arsenic	6.0		2.4	0.49	mg/Kg	1	₩	6010C	Total/NA			
Barium	28.7		0.61	0.13	mg/Kg	1	т Ф	6010C	Total/NA			
Beryllium	0.36		0.24	0.034	mg/Kg	1	₩	6010C	Total/NA			
Cadmium	0.14	J	0.24	0.037	mg/Kg	1	₩	6010C	Total/NA			
Calcium	406		61.2	4.0	mg/Kg	1	₩.	6010C	Total/NA			
Chromium	12.5	В	0.61	0.24	mg/Kg	1	₩	6010C	Total/NA			
Cobalt	7.1		0.61	0.061	mg/Kg	1	₩	6010C	Total/NA			
Copper	17.1		1.2	0.26	mg/Kg	1	₩.	6010C	Total/NA			
Iron	18100		12.2	4.3	mg/Kg	1	₩	6010C	Total/NA			
Lead	22.6		1.2	0.29	mg/Kg	1	₩	6010C	Total/NA			
Magnesium	2840		24.5	1.1	mg/Kg	1	₽	6010C	Total/NA			
Manganese	387	В	0.24	0.039	mg/Kg	1	₩	6010C	Total/NA			
Nickel	16.0		6.1	0.28	mg/Kg	1	₩	6010C	Total/NA			
Potassium	701		36.7	24.5	mg/Kg	1	т Ф	6010C	Total/NA			
Selenium	0.79	J	4.9	0.49	mg/Kg	1	₩	6010C	Total/NA			
Sodium	29.3	JB	171	15.9	mg/Kg	1	≎	6010C	Total/NA			
Vanadium	15.7		0.61	0.13	mg/Kg	1	₩.	6010C	Total/NA			
Zinc	49.3		2.4	0.78	mg/Kg	1	₩	6010C	Total/NA			

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: SAMPLE-8 (Continued) Lab Sample ID: 480-115585-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Mercury	0.15	0.024	0.0099 mg/Kg	1	Total/NA

Lab Sample ID: 480-115585-9 **Client Sample ID: SAMPLE-9**

· · ·										
Benzo[a]pyrene	_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]filoranthene 320 J	Benzo[a]anthracene	240	J	1000	100	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene 130 J 1000 110 ug/kg 5 8 270D Total/NA Benzo[k]fluoranthene 190 J 1000 130 ug/kg 5 8 270D Total/NA Chrysene 370 J 1000 230 ug/kg 5 8 270D Total/NA Fluoranthene 310 J 1000 110 ug/kg 5 8 270D Total/NA Phenanthrene 310 J 1000 150 ug/kg 5 8 270D Total/NA Pyrene 360 J 1000 120 ug/kg 5 8 270D Total/NA 4,4*DDT 4.4 2.0 0.42 ug/kg 1 8 081B Total/NA Aluminum 9760 12.8 5.6 mg/kg 1 8 010C Total/NA Arsenic 10.7 2.6 0.51 mg/kg 1 6 010C Total/NA Beryllium 0.44 0.26 <td< td=""><td>Benzo[a]pyrene</td><td>210</td><td>J</td><td>1000</td><td>150</td><td>ug/Kg</td><td>5</td><td>₩</td><td>8270D</td><td>Total/NA</td></td<>	Benzo[a]pyrene	210	J	1000	150	ug/Kg	5	₩	8270D	Total/NA
Benzok/filluoranthene 190 J 1000 130 ug/kg 5 8270D Total/NA Chrysene 370 J 1000 230 ug/kg 5 8270D Total/NA Fluoranthene 510 J 1000 110 ug/kg 5 8270D Total/NA Pyrene 360 J 1000 120 ug/kg 5 8270D Total/NA Pyrene 360 J 1000 120 ug/kg 5 8270D Total/NA A,4-DDE 4.0 2.0 0.42 ug/kg 1 8081B Total/NA A,4-DDT 4.4 2.0 0.47 ug/kg 1 8081B Total/NA Aluminum 9760 12.8 5.6 0.51 mg/kg 1 6010C Total/NA Arsenic 10.7 2.6 0.51 mg/kg 1 6010C Total/NA Berlium 0.44 0.26 0.036 mg	Benzo[b]fluoranthene	320	J	1000	160	ug/Kg	5	₩	8270D	Total/NA
Chrysene 370 J 1000 230 ug/Kg 5 % 8270D Total/NA Fluoranthene 530 J 1000 110 ug/Kg 5 % 8270D Total/NA Phenanthrene 360 J 1000 150 ug/Kg 5 % 8270D Total/NA Pyrene 360 J 1000 120 ug/Kg 5 % 8270D Total/NA 4,4*DDE 4.0 2.0 0.42 ug/Kg 1 % 8081B Total/NA 4,4*DDT 4.4 2.0 0.47 ug/Kg 1 % 6010C Total/NA Aluminum 9760 12.8 5.6 mg/Kg 1 % 6010C Total/NA Beryllium 55.3 0.64 0.14 mg/Kg 1 % 6010C Total/NA Cadium 583 64.2 4.2 mg/Kg 1 % 6010C Total/NA	Benzo[g,h,i]perylene	130	J	1000	110	ug/Kg	5	₽	8270D	Total/NA
Fluoranthene	Benzo[k]fluoranthene	190	J	1000	130	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene 310 J 1000 150 19/Kg 5	Chrysene	370	J	1000	230	ug/Kg	5	₩	8270D	Total/NA
Pyrene 360 J 1000 120 ug/Kg 5 8 8270D Total/NA 4,4'-DDE 4.0 2.0 0.42 ug/Kg 1 8 881B Total/NA 4,4'-DDT 4.4 2.0 0.47 ug/Kg 1 8 881B Total/NA Aluminum 9760 12.8 5.6 mg/Kg 1 6 010C Total/NA Arsenic 10.7 2.6 0.51 mg/Kg 1 6 010C Total/NA Beryllium 0.44 0.26 0.036 mg/Kg 1 6 010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/Kg 1 6 010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 6 010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6 010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6 010C	Fluoranthene	530	J	1000	110	ug/Kg	5	₩	8270D	Total/NA
4,4'-DDE 4.0 2.0 0.42 ug/Kg 1 8081B Total/NA 4,4'-DDT 4.4 2.0 0.47 ug/Kg 1 8081B Total/NA Aluminum 9760 12.8 5.6 mg/Kg 1 6010C Total/NA Arsenic 10.7 2.6 0.51 mg/Kg 1 6010C Total/NA Barium 55.3 0.64 0.14 mg/Kg 1 6010C Total/NA Beryllium 0.44 0.26 0.036 mg/Kg 1 6010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/Kg 1 6010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6010C Total/NA <td>Phenanthrene</td> <td>310</td> <td>J</td> <td>1000</td> <td>150</td> <td>ug/Kg</td> <td>5</td> <td>₩</td> <td>8270D</td> <td>Total/NA</td>	Phenanthrene	310	J	1000	150	ug/Kg	5	₩	8270D	Total/NA
4,4'-DDT 4.4' 2.0 0.47 ug/Kg 1 8881B Total/NA Aluminum 9760 12.8 5.6 mg/Kg 1 6010C Total/NA Arsenic 10.7' 2.6 0.51 mg/Kg 1 6010C Total/NA Barium 55.3' 0.64 0.14 mg/Kg 1 6010C Total/NA Beryllium 0.44 0.26 0.036 mg/Kg 1 6010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/Kg 1 6010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 6010C Total/NA Mickel 17.7 0.4 0.30 mg/Kg 1 6010C Total/NA Potassium <	Pyrene	360	J	1000	120	ug/Kg	5	₩	8270D	Total/NA
Aluminum 9760 12.8 5.6 mg/kg 1 % 6010C Total/NA Arsenic 10.7 2.6 0.51 mg/kg 1 % 6010C Total/NA Barium 55.3 0.64 0.14 mg/kg 1 % 6010C Total/NA Beryllium 0.44 0.26 0.036 mg/kg 1 % 6010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/kg 1 % 6010C Total/NA Calcium 583 64.2 4.2 mg/kg 1 % 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/kg 1 % 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/kg 1 % 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/kg 1 % 6010C Total/NA Copper 25.9 1.3 0.27 mg/kg 1 % </td <td>4,4'-DDE</td> <td>4.0</td> <td></td> <td>2.0</td> <td>0.42</td> <td>ug/Kg</td> <td>1</td> <td>Ċ.</td> <td>8081B</td> <td>Total/NA</td>	4,4'-DDE	4.0		2.0	0.42	ug/Kg	1	Ċ.	8081B	Total/NA
Arsenic 10.7 2.6 0.51 mg/Kg 1 6010C Total/NA Barium 55.3 0.64 0.14 mg/Kg 1 6010C Total/NA Beryllium 0.44 0.26 0.036 mg/Kg 1 6010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/Kg 1 6010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 6010C Total/NA Lead 55.9 1.3 0.27 mg/Kg 1 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 6010C Total/NA	4,4'-DDT	4.4		2.0	0.47	ug/Kg	1	₩	8081B	Total/NA
Barium 55.3 0.64 0.14 mg/Kg 1 6010C Total/NA Beryllium 0.44 0.26 0.036 mg/Kg 1 6010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/Kg 1 6010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 6010C Total/NA	Aluminum	9760		12.8	5.6	mg/Kg	1	₩	6010C	Total/NA
Beryllium 0.44 0.26 0.036 mg/Kg 1 % 6010C Total/NA Cadmium 0.19 J 0.26 0.039 mg/Kg 1 % 6010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 % 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 % 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 % 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 % 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 % 6010C Total/NA Lead 55.9 1.3 0.31 mg/Kg 1 % 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 % 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 % 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 % 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 % 6010C Total/NA Sodium 47.8 JB 1 80 0.64 0.14 mg/Kg 1 % 6010C Total/NA	Arsenic	10.7		2.6	0.51	mg/Kg	1	Ϋ́	6010C	Total/NA
Cadmium 0.19 J 0.26 0.039 mg/Kg 1 6010C Total/NA Calcium 583 64.2 4.2 mg/Kg 1 6010C Total/NA Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 6010C Total/NA Lead 55.9 1.3 0.31 mg/Kg 1 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 6010C Total/NA Manganese 607 B 0.26 0.041 mg/Kg 1 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 6010C Total/	Barium	55.3		0.64	0.14	mg/Kg	1	₩	6010C	Total/NA
Calcium 583 64.2 4.2 mg/kg 1 m	Beryllium	0.44		0.26	0.036	mg/Kg	1	₩	6010C	Total/NA
Chromium 15.0 B 0.64 0.26 mg/Kg 1 6010C Total/NA Cobalt 7.9 0.64 0.064 mg/Kg 1 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 6010C Total/NA Lead 55.9 1.3 0.31 mg/Kg 1 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 6010C Total/NA Manganese 607 B 0.26 0.041 mg/Kg 1 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 6010C Total/N	Cadmium	0.19	J	0.26	0.039	mg/Kg	1	ф	6010C	Total/NA
Cobalt 7.9 0.64 0.064 mg/Kg 1 cm 6010C Total/NA Copper 25.9 1.3 0.27 mg/Kg 1 cm 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 cm 6010C Total/NA Lead 55.9 1.3 0.31 mg/Kg 1 cm 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 cm 6010C Total/NA Manganese 607 B 0.26 0.041 mg/Kg 1 cm 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 cm 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 cm 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 cm 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 cm 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 cm 6010C Total/NA <td>Calcium</td> <td>583</td> <td></td> <td>64.2</td> <td>4.2</td> <td>mg/Kg</td> <td>1</td> <td>₩</td> <td>6010C</td> <td>Total/NA</td>	Calcium	583		64.2	4.2	mg/Kg	1	₩	6010C	Total/NA
Copper 25.9 1.3 0.27 mg/Kg 1 % 6010C Total/NA Iron 26600 12.8 4.5 mg/Kg 1 % 6010C Total/NA Lead 55.9 1.3 0.31 mg/Kg 1 % 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 % 6010C Total/NA Manganese 607 B 0.26 0.041 mg/Kg 1 % 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 % 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 % 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 % 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 % 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 % 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 % 6010C Total/NA	Chromium	15.0	В	0.64	0.26	mg/Kg	1	₩	6010C	Total/NA
Iron	Cobalt	7.9		0.64	0.064	mg/Kg	1	₩.	6010C	Total/NA
Lead 55.9 1.3 0.31 mg/Kg 1 & 6010C Total/NA Magnesium 2620 25.7 1.2 mg/Kg 1 & 6010C Total/NA Manganese 607 B 0.26 0.041 mg/Kg 1 & 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 & 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 & 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 & 6010C Total/NA Sodium 47.8 J B 180 16.7 mg/Kg 1 & 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 & 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 & 6010C Total/NA	Copper	25.9		1.3	0.27	mg/Kg	1	₩	6010C	Total/NA
Magnesium 2620 25.7 1.2 mg/Kg 1 % 6010C Total/NA Manganese 607 B 0.26 0.041 mg/Kg 1 % 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 % 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 % 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 % 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 % 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 % 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 % 6010C Total/NA	Iron	26600		12.8	4.5	mg/Kg	1	₩	6010C	Total/NA
Manganese 607 B 0.26 0.041 mg/Kg 1 © 6010C Total/NA Nickel 17.7 6.4 0.30 mg/Kg 1 © 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 © 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 © 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 © 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 © 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 © 6010C Total/NA	Lead	55.9		1.3	0.31	mg/Kg	1	₩.	6010C	Total/NA
Nickel 17.7 6.4 0.30 mg/Kg 1 * 6010C Total/NA Potassium 1070 38.5 25.7 mg/Kg 1 * 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 * 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 * 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 * 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 * 6010C Total/NA	Magnesium	2620		25.7	1.2	mg/Kg	1	₩	6010C	Total/NA
Potassium 1070 38.5 25.7 mg/Kg 1 to 6010C Total/NA Selenium 0.76 J 5.1 0.51 mg/Kg 1 to 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 to 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 to 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 to 6010C Total/NA	Manganese	607	В	0.26	0.041	mg/Kg	1	☼	6010C	Total/NA
Selenium 0.76 J 5.1 0.51 mg/Kg 1 * 6010C Total/NA Sodium 47.8 JB 180 16.7 mg/Kg 1 * 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 * 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 * 6010C Total/NA	Nickel	17.7		6.4	0.30	mg/Kg	1	₩	6010C	Total/NA
Sodium 47.8 JB 180 16.7 mg/Kg 1 ** 6010C Total/NA Vanadium 18.1 0.64 0.14 mg/Kg 1 ** 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 ** 6010C Total/NA	Potassium	1070		38.5	25.7	mg/Kg	1	₽	6010C	Total/NA
Vanadium 18.1 0.64 0.14 mg/Kg 1 * 6010C Total/NA Zinc 80.3 2.6 0.82 mg/Kg 1 * 6010C Total/NA	Selenium	0.76	J	5.1	0.51	mg/Kg	1	☼	6010C	Total/NA
Zinc 80.3 2.6 0.82 mg/Kg 1 * 6010C Total/NA	Sodium	47.8	JB	180	16.7	mg/Kg	1	æ	6010C	Total/NA
	Vanadium	18.1		0.64	0.14	mg/Kg	1	₩	6010C	Total/NA
Mercury 0.076 0.024 0.0099 mg/Kg 1 * 7471B Total/NA	Zinc	80.3		2.6	0.82	mg/Kg	1	₩	6010C	Total/NA
	Mercury	0.076		0.024	0.0099	mg/Kg	1	ф.	7471B	Total/NA

Client Sample ID: B-6 Lab Sample ID: 480-115585-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	90	J	200	20	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	82	J	200	29	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	150	J	200	31	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	61	J	200	21	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	64	J	200	26	ug/Kg	1	₩	8270D	Total/NA
Chrysene	130	J	200	44	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	240		200	21	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	57	J	200	24	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	70	J	200	29	ug/Kg	1	₩	8270D	Total/NA
Pyrene	170	J	200	23	ug/Kg	1	Д	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: B-6 (Continued) Lab Sample ID: 480-115585-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	9450		12.3	5.4	mg/Kg		₩	6010C	Total/NA
Arsenic	6.8		2.5	0.49	mg/Kg	1	₩	6010C	Total/NA
Barium	43.2		0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.39		0.25	0.035	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.084	J	0.25	0.037	mg/Kg	1	₩	6010C	Total/NA
Calcium	913		61.7	4.1	mg/Kg	1		6010C	Total/NA
Chromium	15.0	В	0.62	0.25	mg/Kg	1	₩	6010C	Total/NA
Cobalt	9.0		0.62	0.062	mg/Kg	1	₩	6010C	Total/NA
Copper	14.9		1.2	0.26	mg/Kg	1	₩.	6010C	Total/NA
Iron	21000		12.3	4.3	mg/Kg	1	₩	6010C	Total/NA
Lead	14.5		1.2	0.30	mg/Kg	1	₩	6010C	Total/NA
Magnesium	3190		24.7	1.1	mg/Kg	1	₩.	6010C	Total/NA
Manganese	481	В	0.25	0.039	mg/Kg	1	₩	6010C	Total/NA
Nickel	22.3		6.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Potassium	911		37.0	24.7	mg/Kg	1	₩.	6010C	Total/NA
Sodium	89.8	JB	173	16.0	mg/Kg	1	₩	6010C	Total/NA
Vanadium	14.9		0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Zinc	48.5		2.5	0.79	mg/Kg	1	₩.	6010C	Total/NA
Mercury	0.054		0.022	0.0088	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: B-7 Lab Sample ID: 480-115585-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	13700		11.8	5.2		- - 1	₩	6010C	Total/NA
Arsenic	8.4		2.4	0.47	0 0	1	₩	6010C	Total/NA
Barium	59.4		0.59	0.13	0 0	1	₩	6010C	Total/NA
Beryllium	0.57		0.24	0.033		1	₩.	6010C	Total/NA
Cadmium	0.12	J	0.24	0.035	mg/Kg	1	₩	6010C	Total/NA
Calcium	1110		59.0	3.9	mg/Kg	1	₩	6010C	Total/NA
Chromium	20.5	В	0.59	0.24	mg/Kg	1		6010C	Total/NA
Cobalt	10.3		0.59	0.059	mg/Kg	1	₩	6010C	Total/NA
Copper	22.7		1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Iron	23000		11.8	4.1	mg/Kg	1	Д	6010C	Total/NA
Lead	27.4		1.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Magnesium	2800		23.6	1.1	mg/Kg	1	₩	6010C	Total/NA
Manganese	985	В	0.24	0.038	mg/Kg	1	₩.	6010C	Total/NA
Nickel	24.6		5.9	0.27	mg/Kg	1	₩	6010C	Total/NA
Potassium	1190		35.4	23.6	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.3	J	4.7	0.47	mg/Kg	1	₩.	6010C	Total/NA
Sodium	183	В	165	15.4	mg/Kg	1	₩	6010C	Total/NA
Vanadium	21.8		0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Zinc	62.8		2.4	0.76	mg/Kg	1	₩.	6010C	Total/NA
Mercury	0.060		0.022	0.0091	mg/Kg	1	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C.

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-1

Matrix: Solid Percent Solids: 85.3

Client Sample ID: SAMPLE-1 Date Collected: 04/04/17 09:00

Method: 8270D - Semivola Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		200	53	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 15:43	1
2,4,6-Trichlorophenol	ND		200	39	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
2,4-Dichlorophenol	ND		200	21	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
2,4-Dimethylphenol	ND		200	47	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
2,4-Dinitrophenol	ND		1900	910	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
2,4-Dinitrotoluene	ND		200	40	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
2,6-Dinitrotoluene	ND		200	23	ug/Kg	\$	04/05/17 08:29	04/06/17 15:43	1
2-Chloronaphthalene	ND		200	32	ug/Kg	₩	04/05/17 08:29	04/06/17 15:43	1
2-Chlorophenol	ND		200	36	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
2-Methylnaphthalene	ND		200	39	ug/Kg		04/05/17 08:29	04/06/17 15:43	1
2-Methylphenol	ND		200	23	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
2-Nitroaniline	ND		380	29	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
2-Nitrophenol	ND		200		ug/Kg		04/05/17 08:29	04/06/17 15:43	1
3,3'-Dichlorobenzidine	ND		380	230	ug/Kg	₩	04/05/17 08:29	04/06/17 15:43	1
3-Nitroaniline	ND		380		ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
4,6-Dinitro-2-methylphenol	ND		380		ug/Kg		04/05/17 08:29	04/06/17 15:43	1
4-Bromophenyl phenyl ether	ND		200	28	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
4-Chloro-3-methylphenol	ND		200		ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
4-Chloroaniline	ND		200		ug/Kg	 \$	04/05/17 08:29	04/06/17 15:43	1
4-Chlorophenyl phenyl ether	ND		200		ug/Kg	₩	04/05/17 08:29	04/06/17 15:43	1
4-Methylphenol	ND		380		ug/Kg	☆	04/05/17 08:29	04/06/17 15:43	. 1
4-Nitroaniline	ND		380			· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 15:43	· · · · · · · · · · · · · · · · · · ·
4-Nitrophenol	ND		380		ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Acenaphthene	ND		200	29	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Acenaphthylene	ND		200		ug/Kg		04/05/17 08:29	04/06/17 15:43	
Acetophenone	ND		200		ug/Kg		04/05/17 08:29	04/06/17 15:43	1
Anthracene	ND ND		200		ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Atrazine	ND		200		ug/Kg		04/05/17 08:29	04/06/17 15:43	
Benzaldehyde	ND ND		200	160	ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Benzo[a]anthracene	ND ND		200	20	ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
	ND		200	29			04/05/17 08:29	04/06/17 15:43	1
Benzo[a]pyrene	ND ND		200	31	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Benzo[b]fluoranthene	ND ND		200		ug/Kg	~ ☆	04/05/17 08:29		
Benzo[g,h,i]perylene				21	ug/Kg			04/06/17 15:43 04/06/17 15:43	
Benzo[k]fluoranthene	ND		200		ug/Kg	~ \$	04/05/17 08:29		1
Biphenyl	ND		200	29	ug/Kg	₩	04/05/17 08:29	04/06/17 15:43	1
bis (2-chloroisopropyl) ether	ND		200		ug/Kg		04/05/17 08:29		1
Bis(2-chloroethoxy)methane	ND		200		ug/Kg	₽		04/06/17 15:43	1
Bis(2-chloroethyl)ether	ND		200		ug/Kg	*	04/05/17 08:29		1
Bis(2-ethylhexyl) phthalate	ND		200		ug/Kg			04/06/17 15:43	
Butyl benzyl phthalate	ND		200		ug/Kg	φ.		04/06/17 15:43	1
Caprolactam	ND		200		ug/Kg	φ.		04/06/17 15:43	1
Carbazole	ND		200		ug/Kg		04/05/17 08:29		1
Chrysene	ND		200		ug/Kg	φ.	04/05/17 08:29	04/06/17 15:43	1
Dibenz(a,h)anthracene	ND		200		ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Dibenzofuran	ND		200		ug/Kg		04/05/17 08:29	04/06/17 15:43	1
Diethyl phthalate	ND		200		ug/Kg	*	04/05/17 08:29		1
Dimethyl phthalate	ND		200		ug/Kg	*	04/05/17 08:29	04/06/17 15:43	1
Di-n-butyl phthalate	ND		200		ug/Kg		04/05/17 08:29		1
Di-n-octyl phthalate	ND		200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 15:43	1

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-1

Date Collected: 04/04/17 09:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-1

Matrix: Solid

Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		200	21	ug/Kg	<u></u>	04/05/17 08:29	04/06/17 15:43	1
Fluorene	ND		200	23	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Hexachlorobenzene	ND		200	27	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Hexachlorobutadiene	ND		200	29	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Hexachlorocyclopentadiene	ND		200	27	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Hexachloroethane	ND		200	25	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Indeno[1,2,3-cd]pyrene	ND		200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Isophorone	ND		200	42	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Naphthalene	ND		200	25	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Nitrobenzene	ND		200	22	ug/Kg	≎	04/05/17 08:29	04/06/17 15:43	1
N-Nitrosodi-n-propylamine	ND		200	33	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
N-Nitrosodiphenylamine	ND		200	160	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Pentachlorophenol	ND		380	200	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Phenanthrene	ND		200	29	ug/Kg	☼	04/05/17 08:29	04/06/17 15:43	1
Phenol	ND		200	30	ug/Kg	₽	04/05/17 08:29	04/06/17 15:43	1
Pyrene	ND		200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 15:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	98		54 - 120				04/05/17 08:29	04/06/17 15:43	1
2-Fluorobiphenyl	72		60 - 120				04/05/17 08:29	04/06/17 15:43	1
2-Fluorophenol	63		52 - 120				04/05/17 08:29	04/06/17 15:43	1
Nitrobenzene-d5	65		53 - 120				04/05/17 08:29	04/06/17 15:43	1
Phenol-d5	66		54 - 120				04/05/17 08:29	04/06/17 15:43	1
p-Terphenyl-d14	87		65 - 121				04/05/17 08:29	04/06/17 15:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.9	0.37	ug/Kg	<u> </u>	04/06/17 07:39	04/07/17 10:41	1
4,4'-DDE	ND		1.9	0.40	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
4,4'-DDT	ND		1.9	0.45	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Aldrin	ND		1.9	0.47	ug/Kg	₽	04/06/17 07:39	04/07/17 10:41	1
alpha-BHC	ND		1.9	0.35	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
alpha-Chlordane	ND		1.9	0.96	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
beta-BHC	ND		1.9	0.35	ug/Kg	₽	04/06/17 07:39	04/07/17 10:41	1
delta-BHC	ND		1.9	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Dieldrin	ND		1.9	0.46	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Endosulfan I	ND		1.9	0.37	ug/Kg	φ.	04/06/17 07:39	04/07/17 10:41	1
Endosulfan II	ND		1.9	0.35	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Endosulfan sulfate	ND		1.9	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Endrin	ND		1.9	0.38	ug/Kg	₽	04/06/17 07:39	04/07/17 10:41	1
Endrin aldehyde	ND		1.9	0.49	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Endrin ketone	ND		1.9	0.47	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
gamma-BHC (Lindane)	ND		1.9	0.35	ug/Kg	₽	04/06/17 07:39	04/07/17 10:41	1
gamma-Chlordane	ND		1.9	0.61	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Heptachlor	ND		1.9	0.42	ug/Kg	☼	04/06/17 07:39	04/07/17 10:41	1
Heptachlor epoxide	ND		1.9	0.50	ug/Kg	₽	04/06/17 07:39	04/07/17 10:41	1
Methoxychlor	ND		1.9	0.39	ug/Kg	₽	04/06/17 07:39	04/07/17 10:41	1
Toxaphene	ND		19	11	ug/Kg	₩	04/06/17 07:39	04/07/17 10:41	1

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-1

Date Collected: 04/04/17 09:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-1

. Matrix: Solid

Percent Solids: 85.3

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	97		45 - 120	04/06/17 07:39	04/07/17 10:41	1
Tetrachloro-m-xylene	59		30 - 124	04/06/17 07:39	04/07/17 10:41	1

Method: 8151A - Herbicides (C Analyte 2,4-D Silvex (2,4,5-TP)	Result Qualified ND ND	r RL 19		Unit ug/Kg ug/Kq	— D	Prepared 04/05/17 09:29 04/05/17 09:29	Analyzed 04/07/17 18:47	Dil Fac
Surrogate 2,4-Dichlorophenylacetic acid	%Recovery Qualified		0.9	ug/Kg	~	Prepared 04/05/17 09:29	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13000		11.7	5.2	mg/Kg	<u></u>	04/05/17 16:15	04/10/17 16:45	1
Antimony	ND	F1	17.6	0.47	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Arsenic	7.6		2.3	0.47	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Barium	39.4	F1	0.59	0.13	mg/Kg	₽	04/05/17 16:15	04/10/17 16:45	1
Beryllium	0.54		0.23	0.033	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Cadmium	0.11	J	0.23	0.035	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Calcium	918		58.7	3.9	mg/Kg	φ.	04/05/17 16:15	04/10/17 16:45	1
Chromium	16.7	В	0.59	0.23	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Cobalt	8.5		0.59	0.059	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Copper	19.4		1.2	0.25	mg/Kg	φ.	04/05/17 16:15	04/10/17 16:45	1
Iron	19600		11.7	4.1	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Lead	16.1		1.2	0.28	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Magnesium	2680		23.5	1.1	mg/Kg	φ.	04/05/17 16:15	04/10/17 16:45	1
Manganese	469	В	0.23	0.038	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Nickel	20.7		5.9	0.27	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Potassium	1300	F1 ^	35.2	23.5	mg/Kg	₽	04/05/17 16:15	04/10/17 16:45	1
Selenium	ND		4.7	0.47	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Silver	ND		0.70	0.23	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Sodium	56.5	JB	164	15.3	mg/Kg	₩	04/05/17 16:15	04/10/17 16:45	1
Thallium	ND		7.0	0.35	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Vanadium	18.9	F1	0.59	0.13	mg/Kg	☼	04/05/17 16:15	04/10/17 16:45	1
Zinc	50.9		2.3	0.75	mg/Kg		04/05/17 16:15	04/10/17 16:45	1

Method: 74/1B - Mercury (CVAA)	D 14	0 110	ъ.	MDI	1114	_	B	A l	DU E.
Analyte	Result	Qualifier	RL _		Unit	— U	Prepared	Analyzed	Dil Fac
Mercury	0.036		0.022	0.0087	mg/Kg	₩	04/05/17 09:15	04/05/17 12:06	1

 Client Sample ID: SAMPLE-2
 Lab Sample ID: 480-115585-2

 Date Collected: 04/04/17 09:25
 Matrix: Solid

 Date Received: 04/05/17 01:00
 Percent Solids: 86.2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.2	0.31	ug/Kg	\	04/05/17 05:00	04/05/17 16:14	1
1,1,2,2-Tetrachloroethane	ND	4.2	0.68	ug/Kg	☼	04/05/17 05:00	04/05/17 16:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.2	0.96	ug/Kg	☼	04/05/17 05:00	04/05/17 16:14	1
1,1,2-Trichloroethane	ND	4.2	0.55	ug/Kg	₽	04/05/17 05:00	04/05/17 16:14	1
1,1-Dichloroethane	ND	4.2	0.51	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1

TestAmerica Buffalo

Page 14 of 80

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-2

Date Collected: 04/04/17 09:25

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Toluene-d8 (Surr)

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-2

Matrix: Solid

Percent Solids: 86.2

Analyte	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND	4.2	0.52	ug/Kg	<u>₩</u>	04/05/17 05:00	04/05/17 16:14	1
1,2,4-Trichlorobenzene	ND	4.2	0.26	ug/Kg	₽	04/05/17 05:00	04/05/17 16:14	1
1,2-Dibromo-3-Chloropropane	ND	4.2	2.1	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
1,2-Dibromoethane	ND	4.2	0.54	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
1,2-Dichlorobenzene	ND	4.2	0.33	ug/Kg	₽	04/05/17 05:00	04/05/17 16:14	1
1,2-Dichloroethane	ND	4.2	0.21	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
1,2-Dichloropropane	ND	4.2	2.1	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
1,3-Dichlorobenzene	ND	4.2	0.22	ug/Kg	☆	04/05/17 05:00	04/05/17 16:14	1
1,4-Dichlorobenzene	ND	4.2	0.59	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
2-Butanone (MEK)	ND	21	1.5	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
2-Hexanone	ND	21	2.1	ug/Kg		04/05/17 05:00	04/05/17 16:14	1
4-Methyl-2-pentanone (MIBK)	ND	21	1.4	ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
Acetone	45	21		ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
Benzene	ND	4.2		ug/Kg			04/05/17 16:14	1
Bromodichloromethane	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
Bromoform	ND	4.2		ug/Kg	₩	04/05/17 05:00	04/05/17 16:14	1
Bromomethane	ND	4.2		ug/Kg			04/05/17 16:14	1
Carbon disulfide	ND	4.2	2.1		₩		04/05/17 16:14	1
Carbon tetrachloride	ND	4.2		ug/Kg	₩		04/05/17 16:14	1
Chlorobenzene	ND	4.2		ug/Kg			04/05/17 16:14	1
Chloroethane	ND	4.2		ug/Kg	₩		04/05/17 16:14	1
Chloroform	ND	4.2		ug/Kg	₩		04/05/17 16:14	1
Chloromethane	ND	4.2		ug/Kg			04/05/17 16:14	 1
cis-1,2-Dichloroethene	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
cis-1,3-Dichloropropene	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
Cyclohexane	ND	4.2		ug/Kg			04/05/17 16:14	
Dibromochloromethane	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
Dichlorodifluoromethane	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
Ethylbenzene	ND	4.2		ug/Kg			04/05/17 16:14	
Isopropylbenzene	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
Methyl acetate	ND	21		ug/Kg	₽		04/05/17 16:14	1
Methyl tert-butyl ether	ND ND	4.2	0.41				04/05/17 16:14	1
	ND ND	4.2		ug/Kg ug/Kg	₽		04/05/17 16:14	1
Methylone Chlorida	ND ND	4.2			≎		04/05/17 16:14	
Methylene Chloride	ND			ug/Kg				1
Styrene		4.2 4.2		ug/Kg	₽		04/05/17 16:14	1
Tetrachloroethene	ND ND			ug/Kg			04/05/17 16:14	1
Toluene	ND	4.2		ug/Kg	' '		04/05/17 16:14	
trans-1,2-Dichloroethene	ND	4.2		ug/Kg	×.		04/05/17 16:14	1
trans-1,3-Dichloropropene	ND	4.2		ug/Kg	₽		04/05/17 16:14	1
Trichloroethene	ND	4.2		ug/Kg			04/05/17 16:14	1
Trichlorofluoromethane	ND	4.2		ug/Kg	1.tr		04/05/17 16:14	1
Vinyl chloride	ND	4.2		ug/Kg	₩		04/05/17 16:14	1
Xylenes, Total	ND	8.4	0.71	ug/Kg	₽	04/05/17 05:00	04/05/17 16:14	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	64 - 126				04/05/17 05:00	04/05/17 16:14	1
4-Bromofluorobenzene (Surr)	84	72 - 126				04/05/17 05:00	04/05/17 16:14	1
Dibromofluoromethane (Surr)	101	60 - 140				04/05/17 05:00	04/05/17 16:14	1
Taluana de (Cum)		74 405				04/05/47 05:00	04/05/17 16:14	

TestAmerica Buffalo

04/05/17 05:00 04/05/17 16:14

71 - 125

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Client Sample ID: SAMPLE-2 Lab Sample ID: 480-115585-2

Date Collected: 04/04/17 09:25

Date Received: 04/05/17 01:00

Matrix: Solid
Percent Solids: 86.2

Method: 8270D - Semivolatile Analyte	Result (MDL	Unit	D	Propared	Analyzed	Dil Fa
<u> </u>	ND ND	200	53		— =	Prepared 04/05/17 08:29	04/06/17 16:10	
2,4,5-Trichlorophenol	ND ND	200	39	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
2,4,6-Trichlorophenol				ug/Kg	☆			
2,4-Dichlorophenol	ND	200		ug/Kg	· · · · · · · .	04/05/17 08:29	04/06/17 16:10	
2,4-Dimethylphenol	ND	200		ug/Kg		04/05/17 08:29	04/06/17 16:10	
2,4-Dinitrophenol	ND	1900	910	ug/Kg	☆	04/05/17 08:29	04/06/17 16:10	
2,4-Dinitrotoluene	ND	200	41	ug/Kg	% .	04/05/17 08:29	04/06/17 16:10	
2,6-Dinitrotoluene	ND	200	23	ug/Kg	☆	04/05/17 08:29	04/06/17 16:10	
2-Chloronaphthalene	ND	200	32	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
2-Chlorophenol	ND	200		ug/Kg		04/05/17 08:29	04/06/17 16:10	
2-Methylnaphthalene	ND	200	39	ug/Kg	₩		04/06/17 16:10	
2-Methylphenol	ND	200		ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
2-Nitroaniline	ND	380	29	ug/Kg	, .	04/05/17 08:29	04/06/17 16:10	
2-Nitrophenol	ND	200		ug/Kg	☆		04/06/17 16:10	
3,3'-Dichlorobenzidine	ND	380	230	ug/Kg	₿		04/06/17 16:10	
3-Nitroaniline	ND	380		ug/Kg				
4,6-Dinitro-2-methylphenol	ND	380	200	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
4-Bromophenyl phenyl ether	ND	200	28	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
4-Chloro-3-methylphenol	ND	200	49	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
4-Chloroaniline	ND	200	49	ug/Kg	₽	04/05/17 08:29	04/06/17 16:10	
4-Chlorophenyl phenyl ether	ND	200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
4-Methylphenol	ND	380	23	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
4-Nitroaniline	ND	380	100	ug/Kg	₽	04/05/17 08:29	04/06/17 16:10	
4-Nitrophenol	ND	380	140	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
Acenaphthene	ND	200	29	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
Acenaphthylene	ND	200	25	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
Acetophenone	ND	200	27	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
Anthracene	ND	200	49	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
Atrazine	ND	200	68	ug/Kg	ф	04/05/17 08:29	04/06/17 16:10	
Benzaldehyde	ND	200	160	ug/Kg	☼	04/05/17 08:29	04/06/17 16:10	
Benzo[a]anthracene	ND	200	20	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
Benzo[a]pyrene	ND	200	29	ug/Kg		04/05/17 08:29	04/06/17 16:10	
Benzo[b]fluoranthene	ND	200	31	ug/Kg	₽	04/05/17 08:29	04/06/17 16:10	
Benzo[g,h,i]perylene	ND	200	21	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	
Benzo[k]fluoranthene	ND	200		ug/Kg	φ.		04/06/17 16:10	
Biphenyl	ND	200	29	ug/Kg	₩		04/06/17 16:10	
ois (2-chloroisopropyl) ether	ND	200		ug/Kg	≎	04/05/17 08:29		
Bis(2-chloroethoxy)methane	ND	200		ug/Kg			04/06/17 16:10	
Bis(2-chloroethyl)ether	ND	200		ug/Kg	₩		04/06/17 16:10	
Bis(2-ethylhexyl) phthalate	74 .			ug/Kg	₩		04/06/17 16:10	
Butyl benzyl phthalate	ND	200		ug/Kg			04/06/17 16:10	
Caprolactam	ND ND	200		ug/Kg ug/Kg	₽		04/06/17 16:10	
Carbazole	ND ND	200		ug/Kg ug/Kg	₽		04/06/17 16:10	
	ND	200					04/06/17 16:10	
Chrysene				ug/Kg			04/06/17 16:10 04/06/17 16:10	
Dibenz(a,h)anthracene	ND	200		ug/Kg	₩			
Dibenzofuran	ND	200		ug/Kg			04/06/17 16:10	
Diethyl phthalate	ND	200		ug/Kg	₩		04/06/17 16:10	
Dimethyl phthalate	ND	200		ug/Kg	₩		04/06/17 16:10	
Di-n-butyl phthalate	ND	200	2.4	ug/Kg	.	DAIDEIAZ 00:00	04/06/17 16:10	

TestAmerica Buffalo

2

Ē

6

9

11

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-2

Date Collected: 04/04/17 09:25

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-2

Matrix: Solid

Percent Solids: 86.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	46	J	200	21	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 16:10	1
Fluorene	ND		200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Hexachlorobenzene	ND		200	27	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Hexachlorobutadiene	ND		200	29	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Hexachlorocyclopentadiene	ND		200	27	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Hexachloroethane	ND		200	25	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Indeno[1,2,3-cd]pyrene	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Isophorone	ND		200	42	ug/Kg	☆	04/05/17 08:29	04/06/17 16:10	1
Naphthalene	ND		200	25	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Nitrobenzene	ND		200	22	ug/Kg	☆	04/05/17 08:29	04/06/17 16:10	1
N-Nitrosodi-n-propylamine	ND		200	34	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
N-Nitrosodiphenylamine	ND		200	160	ug/Kg	.	04/05/17 08:29	04/06/17 16:10	1
Pentachlorophenol	ND		380	200	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Phenanthrene	ND		200	29	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Phenol	ND		200	30	ug/Kg	☆	04/05/17 08:29	04/06/17 16:10	1
Pyrene	34	J	200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	98		54 - 120				04/05/17 08:29	04/06/17 16:10	1
2-Fluorobiphenyl	72		60 - 120				04/05/17 08:29	04/06/17 16:10	1
2-Fluorophenol	60		52 - 120				04/05/17 08:29	04/06/17 16:10	1
Nitrobenzene-d5	65		53 - 120				04/05/17 08:29	04/06/17 16:10	1
Phenol-d5	63		54 - 120				04/05/17 08:29	04/06/17 16:10	1
p-Terphenyl-d14	83		65 - 121				04/05/17 08:29	04/06/17 16:10	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	17200		12.4	5.5	mg/Kg	— Ţ	04/05/17 16:15		1
Antimony	ND		18.6	0.50	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Arsenic	13.7		2.5		mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Barium	57.3		0.62	0.14	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:12	1
Beryllium	0.68		0.25	0.035	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Cadmium	0.19	J	0.25	0.037	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Calcium	966		62.0	4.1	mg/Kg		04/05/17 16:15	04/10/17 17:12	1
Chromium	22.9	В	0.62	0.25	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Cobalt	15.2		0.62	0.062	mg/Kg	☼	04/05/17 16:15	04/10/17 17:12	1
Copper	23.3		1.2	0.26	mg/Kg	₩.	04/05/17 16:15	04/10/17 17:12	1
Iron	27600		12.4	4.3	mg/Kg	☼	04/05/17 16:15	04/10/17 17:12	1
Lead	40.9		1.2	0.30	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Magnesium	4140		24.8	1.1	mg/Kg	₩.	04/05/17 16:15	04/10/17 17:12	1
Manganese	876	В	0.25	0.040	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Nickel	32.3		6.2	0.29	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Potassium	1690	^	37.2	24.8	mg/Kg	₩.	04/05/17 16:15	04/10/17 17:12	1
Selenium	ND		5.0	0.50	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Silver	ND		0.74	0.25	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Sodium	54.5	JB	174	16.1	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:12	1
Thallium	ND		7.4	0.37	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Vanadium	28.4		0.62	0.14	mg/Kg	₩	04/05/17 16:15	04/10/17 17:12	1
Zinc	88.5		2.5	0.79	mg/Kg		04/05/17 16:15	04/10/17 17:12	1

TestAmerica Buffalo

3

7

8

10

12

13

14

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Client Sample ID: SAMPLE-2 Lab Sample ID: 480-115585-2

Date Collected: 04/04/17 09:25
Date Received: 04/05/17 01:00

Matrix: Solid Percent Solids: 86.2

 Method: 7471B - Mercury (CVAA)

 Analyte
 Result Mercury
 Qualifier
 RL 0.022
 MDL 0.089
 Unit mg/Kg
 D 04/05/17 09:15
 Prepared 04/05/17 12:12
 Analyzed Dil Fac 04/05/17 12:12
 D 04/05/17 12:12
 Unit 04/05/17 09:15
 D 04/05/17 12:12
 <

Client Sample ID: SAMPLE-3 Lab Sample ID: 480-115585-3

Date Collected: 04/04/17 09:35

Date Received: 04/05/17 01:00

Matrix: Solid
Percent Solids: 81.9

Analyte	nic Compo Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	0.29	ug/Kg	-	04/05/17 05:00	04/05/17 17:05	1
1,1,2,2-Tetrachloroethane	ND		4.0	0.65	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	0.92	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
1,1,2-Trichloroethane	ND		4.0	0.52	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
1,1-Dichloroethane	ND		4.0	0.49	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
1,1-Dichloroethene	ND		4.0	0.49	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
1,2,4-Trichlorobenzene	ND		4.0	0.24	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
1,2-Dibromo-3-Chloropropane	ND		4.0	2.0	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
1,2-Dibromoethane	ND		4.0	0.52	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
1,2-Dichlorobenzene	ND		4.0	0.31	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
1,2-Dichloroethane	ND		4.0		ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
1,2-Dichloropropane	ND		4.0	2.0	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
1,3-Dichlorobenzene	ND		4.0	0.21	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
1,4-Dichlorobenzene	ND		4.0	0.56	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
2-Butanone (MEK)	ND		20	1.5	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
2-Hexanone	ND		20	2.0	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
4-Methyl-2-pentanone (MIBK)	ND		20	1.3	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Acetone	ND		20	3.4	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Benzene	ND		4.0	0.20	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
Bromodichloromethane	ND		4.0	0.54	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Bromoform	ND		4.0	2.0	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
Bromomethane	ND		4.0	0.36	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
Carbon disulfide	ND		4.0	2.0	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
Carbon tetrachloride	ND		4.0	0.39	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Chlorobenzene	ND		4.0	0.53	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
Chloroethane	ND		4.0	0.91	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Chloroform	ND		4.0	0.25	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Chloromethane	ND		4.0	0.24	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
cis-1,2-Dichloroethene	ND		4.0	0.51	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
cis-1,3-Dichloropropene	ND		4.0	0.58	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
Cyclohexane	ND		4.0	0.56	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
Dibromochloromethane	ND		4.0	0.51	ug/Kg	☼	04/05/17 05:00	04/05/17 17:05	1
Dichlorodifluoromethane	ND		4.0	0.33	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Ethylbenzene	ND		4.0	0.28	ug/Kg		04/05/17 05:00	04/05/17 17:05	1
Isopropylbenzene	ND		4.0	0.61	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Methyl acetate	ND		20	2.4	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Methyl tert-butyl ether	ND		4.0		ug/Kg		04/05/17 05:00	04/05/17 17:05	1
Methylcyclohexane	ND		4.0		ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Methylene Chloride	ND		4.0	1.8	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Styrene	ND		4.0		ug/Kg	ф		04/05/17 17:05	1
Tetrachloroethene	ND		4.0		ug/Kg	₽	04/05/17 05:00	04/05/17 17:05	1
Toluene	ND		4.0		ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1

TestAmerica Buffalo

3

6

9

. . 12

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Client Sample ID: SAMPLE-3 Lab Sample ID: 480-115585-3

Date Collected: 04/04/17 09:35

Date Received: 04/05/17 01:00

Matrix: Solid
Percent Solids: 81.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		4.0	0.41	ug/Kg	<u> </u>	04/05/17 05:00	04/05/17 17:05	1
trans-1,3-Dichloropropene	ND		4.0	1.8	ug/Kg	.	04/05/17 05:00	04/05/17 17:05	1
Trichloroethene	ND		4.0	0.88	ug/Kg	☆	04/05/17 05:00	04/05/17 17:05	1
Trichlorofluoromethane	ND		4.0	0.38	ug/Kg	☆	04/05/17 05:00	04/05/17 17:05	1
Vinyl chloride	ND		4.0	0.49	ug/Kg	☆	04/05/17 05:00	04/05/17 17:05	1
Xylenes, Total	ND		8.0	0.68	ug/Kg	₩	04/05/17 05:00	04/05/17 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		64 - 126				04/05/17 05:00	04/05/17 17:05	1
4-Bromofluorobenzene (Surr)	91		72 - 126				04/05/17 05:00	04/05/17 17:05	1
Dibromofluoromethane (Surr)	100		60 - 140				04/05/17 05:00	04/05/17 17:05	1
Toluene-d8 (Surr)	92		71 - 125				04/05/17 05:00	04/05/17 17:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		200	55	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 16:36	1
2,4,6-Trichlorophenol	ND		200	41	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2,4-Dichlorophenol	ND		200	22	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2,4-Dimethylphenol	ND		200	49	ug/Kg		04/05/17 08:29	04/06/17 16:36	1
2,4-Dinitrophenol	ND		2000	940	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2,4-Dinitrotoluene	ND		200	42	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2,6-Dinitrotoluene	ND		200	24	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
2-Chloronaphthalene	ND		200	34	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2-Chlorophenol	ND		200	37	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2-Methylnaphthalene	ND		200	41	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
2-Methylphenol	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2-Nitroaniline	ND		400	30	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
2-Nitrophenol	ND		200	58	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
3,3'-Dichlorobenzidine	ND		400	240	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
3-Nitroaniline	ND		400	57	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
4,6-Dinitro-2-methylphenol	ND		400	200	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
4-Bromophenyl phenyl ether	ND		200	29	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
4-Chloro-3-methylphenol	ND		200	51	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
4-Chloroaniline	ND		200	51	ug/Kg		04/05/17 08:29	04/06/17 16:36	1
4-Chlorophenyl phenyl ether	ND		200	25	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
4-Methylphenol	ND		400	24	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
4-Nitroaniline	ND		400	110	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
4-Nitrophenol	ND		400	140	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Acenaphthene	ND		200	30	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Acenaphthylene	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Acetophenone	ND		200	28	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Anthracene	ND		200	51	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Atrazine	ND		200	71	ug/Kg		04/05/17 08:29	04/06/17 16:36	1
Benzaldehyde	ND		200	160	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Benzo[a]anthracene	ND		200	20	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Benzo[a]pyrene	ND		200	30	ug/Kg	φ.	04/05/17 08:29	04/06/17 16:36	1
Benzo[b]fluoranthene	ND		200	32	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Benzo[g,h,i]perylene	ND		200	22	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Benzo[k]fluoranthene	ND		200	26	ug/Kg	.	04/05/17 08:29	04/06/17 16:36	1
Biphenyl	ND		200	30	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1

TestAmerica Buffalo

3

_

0

8

10

10

13

1 E

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-3

Date Collected: 04/04/17 09:35

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-3

Matrix: Solid

Percent Solids: 81.9

Method: 8270D - Semivolat Analyte	Result C	•	RL	MDL		D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND		200	41	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 16:36	1
Bis(2-chloroethoxy)methane	ND		200	43	ug/Kg		04/05/17 08:29	04/06/17 16:36	1
Bis(2-chloroethyl)ether	ND		200	26	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Bis(2-ethylhexyl) phthalate	ND		200	70	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Butyl benzyl phthalate	ND		200	34	ug/Kg		04/05/17 08:29	04/06/17 16:36	1
Caprolactam	ND		200	61	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Carbazole	ND		200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Chrysene	ND		200	46	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Dibenz(a,h)anthracene	ND		200	36	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Dibenzofuran	ND		200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Diethyl phthalate	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Dimethyl phthalate	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Di-n-butyl phthalate	ND		200	35	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Di-n-octyl phthalate	ND		200	24	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Fluoranthene	ND		200	22	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Fluorene	ND		200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Hexachlorobenzene	ND		200	28	ug/Kg		04/05/17 08:29	04/06/17 16:36	1
Hexachlorobutadiene	ND		200	30	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Hexachlorocyclopentadiene	ND		200	28	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Hexachloroethane	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Indeno[1,2,3-cd]pyrene	ND		200	25	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
Isophorone	ND		200	43	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Naphthalene	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Nitrobenzene	ND		200	23	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
N-Nitrosodi-n-propylamine	ND		200	35	ug/Kg	☼	04/05/17 08:29	04/06/17 16:36	1
N-Nitrosodiphenylamine	ND		200	170	ug/Kg	\$	04/05/17 08:29	04/06/17 16:36	1
Pentachlorophenol	ND		400	200	ug/Kg	₽	04/05/17 08:29	04/06/17 16:36	1
Phenanthrene	ND		200	30	ug/Kg	₩	04/05/17 08:29	04/06/17 16:36	1
Phenol	ND		200	31	ug/Kg	ф.	04/05/17 08:29	04/06/17 16:36	1
Pyrene	ND		200	24	ug/Kg	≎	04/05/17 08:29	04/06/17 16:36	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		54 - 120				04/05/17 08:29	04/06/17 16:36	1
2-Fluorobiphenyl	75		60 - 120				04/05/17 08:29	04/06/17 16:36	1
2-Fluorophenol	65		52 - 120				04/05/17 08:29	04/06/17 16:36	1
Nitrobenzene-d5	72		53 - 120				04/05/17 08:29	04/06/17 16:36	1
Phenol-d5	69		54 - 120				04/05/17 08:29	04/06/17 16:36	1
p-Terphenyl-d14	85		65 - 121				04/05/17 08:29	04/06/17 16:36	1
Method: 6010C - Metals (IC	•								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010C - Metals (ICP)									
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	15500		12.0	5.3	mg/Kg	\	04/05/17 16:15	04/10/17 17:15	1
Antimony	ND		17.9	0.48	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Arsenic	9.2		2.4	0.48	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Barium	60.5		0.60	0.13	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Beryllium	0.59		0.24	0.033	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Cadmium	0.11 J		0.24	0.036	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Calcium	967		59.8	3.9	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Chromium	21.9 B		0.60	0.24	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
Cobalt	12.2		0.60	0.060	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1

TestAmerica Buffalo

Page 20 of 80

4/13/2017

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-3

Date Collected: 04/04/17 09:35

Date Received: 04/05/17 01:00

Date Collected: 04/04/17 09:45

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-3

Matrix: Solid Percent Solids: 81.9

Method: 6010C - Metals Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	14.2		1.2	0.25	mg/Kg	<u> </u>	04/05/17 16:15	04/10/17 17:15	1
Iron	28800		12.0	4.2	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:15	1
Lead	25.5		1.2	0.29	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Magnesium	3490		23.9	1.1	mg/Kg	₽	04/05/17 16:15	04/10/17 17:15	1
Manganese	943	В	0.24	0.038	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Nickel	25.9		6.0	0.28	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Potassium	1660	^	35.9	23.9	mg/Kg	₽	04/05/17 16:15	04/10/17 17:15	1
Selenium	ND		4.8	0.48	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Silver	ND		0.72	0.24	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Sodium	58.7	JB	167	15.5	mg/Kg	₽	04/05/17 16:15	04/10/17 17:15	1
Thallium	ND		7.2	0.36	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Vanadium	26.4		0.60	0.13	mg/Kg	☼	04/05/17 16:15	04/10/17 17:15	1
Zinc	75.5		2.4	0.77	mg/Kg	₩	04/05/17 16:15	04/10/17 17:15	1
- Method: 7471B - Mercu	ıry (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.095		0.024	0.0098	mg/Kg	<u> </u>	04/05/17 09:15	04/05/17 12:14	1

Client Sample ID: SAMPLE-4

E-4 Lab Sample ID: 480-115585-4 Matrix: Solid

Matrix: Solid
Percent Solids: 83.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	3.9	0.29	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
1,1,2,2-Tetrachloroethane	ND	3.9	0.64	ug/Kg	≎	04/05/17 05:00	04/05/17 16:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	3.9	0.90	ug/Kg	≎	04/05/17 05:00	04/05/17 16:39	1
1,1,2-Trichloroethane	ND	3.9	0.51	ug/Kg		04/05/17 05:00	04/05/17 16:39	1
1,1-Dichloroethane	ND	3.9	0.48	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
1,1-Dichloroethene	ND	3.9	0.48	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
1,2,4-Trichlorobenzene	ND	3.9	0.24	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
1,2-Dibromo-3-Chloropropane	ND	3.9	2.0	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
1,2-Dibromoethane	ND	3.9	0.50	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
1,2-Dichlorobenzene	ND	3.9	0.31	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
1,2-Dichloroethane	ND	3.9	0.20	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
1,2-Dichloropropane	ND	3.9	2.0	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
1,3-Dichlorobenzene	ND	3.9	0.20	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
1,4-Dichlorobenzene	ND	3.9	0.55	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
2-Butanone (MEK)	ND	20	1.4	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
2-Hexanone	ND	20	2.0	ug/Kg	φ.	04/05/17 05:00	04/05/17 16:39	1
4-Methyl-2-pentanone (MIBK)	ND	20	1.3	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Acetone	10 J	20	3.3	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Benzene	ND	3.9	0.19	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
Bromodichloromethane	ND	3.9	0.53	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Bromoform	ND	3.9	2.0	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Bromomethane	ND	3.9	0.35	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
Carbon disulfide	ND	3.9	2.0	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Carbon tetrachloride	ND	3.9	0.38	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Chlorobenzene	ND	3.9	0.52	ug/Kg		04/05/17 05:00	04/05/17 16:39	1
Chloroethane	ND	3.9	0.89	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1

TestAmerica Buffalo

Page 21 of 80

4/13/2017

3

5

10

12

14

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-4

Date Collected: 04/04/17 09:45

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Toluene-d8 (Surr)

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-4

04/05/17 05:00 04/05/17 16:39

Matrix: Solid

Percent Solids: 83.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		3.9	0.24	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
Chloromethane	ND		3.9	0.24	ug/Kg	φ.	04/05/17 05:00	04/05/17 16:39	1
cis-1,2-Dichloroethene	ND		3.9	0.50	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
cis-1,3-Dichloropropene	ND		3.9	0.57	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
Cyclohexane	ND		3.9	0.55	ug/Kg	₩.	04/05/17 05:00	04/05/17 16:39	1
Dibromochloromethane	ND		3.9	0.50	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
Dichlorodifluoromethane	ND		3.9	0.32	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
Ethylbenzene	ND		3.9	0.27	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
Isopropylbenzene	ND		3.9	0.59	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Methyl acetate	ND		20	2.4	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Methyl tert-butyl ether	ND		3.9	0.39	ug/Kg	₽	04/05/17 05:00	04/05/17 16:39	1
Methylcyclohexane	ND		3.9	0.60	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Methylene Chloride	ND		3.9	1.8	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Styrene	ND		3.9	0.20	ug/Kg		04/05/17 05:00	04/05/17 16:39	1
Tetrachloroethene	ND		3.9	0.53	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Toluene	ND		3.9	0.30	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
trans-1,2-Dichloroethene	ND		3.9	0.41	ug/Kg		04/05/17 05:00	04/05/17 16:39	1
trans-1,3-Dichloropropene	ND		3.9	1.7	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Trichloroethene	ND		3.9	0.87	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Trichlorofluoromethane	ND		3.9	0.37	ug/Kg	φ.	04/05/17 05:00	04/05/17 16:39	1
Vinyl chloride	ND		3.9	0.48	ug/Kg	☼	04/05/17 05:00	04/05/17 16:39	1
Xylenes, Total	ND		7.9	0.66	ug/Kg	₩	04/05/17 05:00	04/05/17 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		64 - 126				04/05/17 05:00	04/05/17 16:39	1
4-Bromofluorobenzene (Surr)	91		72 - 126				04/05/17 05:00	04/05/17 16:39	1
Dibromofluoromethane (Surr)	102		60 - 140				04/05/17 05:00	04/05/17 16:39	1

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	200	55	ug/Kg	<u></u>	04/05/17 08:29	04/06/17 17:03	1
2,4,6-Trichlorophenol	ND	200	40	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
2,4-Dichlorophenol	ND	200	21	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
2,4-Dimethylphenol	ND	200	49	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
2,4-Dinitrophenol	ND	2000	930	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
2,4-Dinitrotoluene	ND	200	42	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
2,6-Dinitrotoluene	ND	200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
2-Chloronaphthalene	ND	200	33	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
2-Chlorophenol	ND	200	37	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
2-Methylnaphthalene	ND	200	40	ug/Kg	φ.	04/05/17 08:29	04/06/17 17:03	1
2-Methylphenol	ND	200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
2-Nitroaniline	ND	390	30	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
2-Nitrophenol	ND	200	57	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
3,3'-Dichlorobenzidine	ND	390	240	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
3-Nitroaniline	ND	390	56	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
4,6-Dinitro-2-methylphenol	ND	390	200	ug/Kg	₽	04/05/17 08:29	04/06/17 17:03	1
4-Bromophenyl phenyl ether	ND	200	28	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
4-Chloro-3-methylphenol	ND	200	50	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
4-Chloroaniline	ND	200	50	ug/Kg	₽	04/05/17 08:29	04/06/17 17:03	1

71 - 125

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-4

Date Collected: 04/04/17 09:45

Date Received: 04/05/17 01:00

Project/Site: Ashokan

2,4,6-Tribromophenol

2-Fluorobiphenyl

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-4

Matrix: Solid

Percent Solids: 83.6

Method: 8270D - Semivolatile	Organic Compounds	(GC/MS) (C	ontinued)
Analyte	Result Qualifier	RL	MDL U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chlorophenyl phenyl ether	ND		200	25	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 17:03	1
4-Methylphenol	ND		390	24	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
4-Nitroaniline	ND		390	110	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
4-Nitrophenol	ND		390	140	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Acenaphthene	ND		200	30	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Acenaphthylene	ND		200	26	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Acetophenone	ND		200	27	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Anthracene	ND		200	50	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Atrazine	ND		200	70	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Benzaldehyde	ND		200	160	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Benzo[a]anthracene	ND		200	20	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Benzo[a]pyrene	ND		200	30	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Benzo[b]fluoranthene	ND		200	32	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Benzo[g,h,i]perylene	ND		200	21	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Benzo[k]fluoranthene	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 17:03	1
Biphenyl	ND		200	30	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
bis (2-chloroisopropyl) ether	ND		200	40	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Bis(2-chloroethoxy)methane	ND		200	43	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Bis(2-chloroethyl)ether	ND		200	26	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Bis(2-ethylhexyl) phthalate	ND		200	69	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Butyl benzyl phthalate	ND		200	33	ug/Kg	₩.	04/05/17 08:29	04/06/17 17:03	1
Caprolactam	ND		200	61	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Carbazole	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Chrysene	ND		200	45	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Dibenz(a,h)anthracene	ND		200		ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Dibenzofuran	ND		200	24	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Diethyl phthalate	ND		200	26	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Dimethyl phthalate	ND		200	24	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
Di-n-butyl phthalate	ND		200	34	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Di-n-octyl phthalate	ND		200	24	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Fluoranthene	ND		200	21	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Fluorene	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Hexachlorobenzene	ND		200	27	ug/Kg	₩.	04/05/17 08:29	04/06/17 17:03	1
Hexachlorobutadiene	ND		200	30	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Hexachlorocyclopentadiene	ND		200	27	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Hexachloroethane	ND		200	26	ug/Kg	☼	04/05/17 08:29	04/06/17 17:03	1
Indeno[1,2,3-cd]pyrene	ND		200	25	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Isophorone	ND		200	43	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Naphthalene	ND		200	26	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Nitrobenzene	ND		200	23	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
N-Nitrosodi-n-propylamine	ND		200	34	ug/Kg	☆	04/05/17 08:29	04/06/17 17:03	1
N-Nitrosodiphenylamine	ND		200	160	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Pentachlorophenol	ND		390	200	ug/Kg	≎	04/05/17 08:29	04/06/17 17:03	1
Phenanthrene	ND		200		ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Phenol	ND		200	31	ug/Kg		04/05/17 08:29	04/06/17 17:03	1
Pyrene	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 17:03	1
Surrogate	%Recovery	O lifia	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

<u>04/05/17 08:29</u> <u>04/06/17 17:03</u>

04/05/17 08:29 04/06/17 17:03

54 - 120

60 - 120

100

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-4

Date Collected: 04/04/17 09:45

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-4

Matrix: Solid

Percent Solids: 83.6

Method: 8270D - Semivolatile Organic Comp	ounds (GC/MS) (Continued)
---	---------------------------

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	69		52 - 120	04/05/17 08:29	04/06/17 17:03	1
Nitrobenzene-d5	76		53 - 120	04/05/17 08:29	04/06/17 17:03	1
Phenol-d5	72		54 - 120	04/05/17 08:29	04/06/17 17:03	1
p-Terphenyl-d14	87		65 - 121	04/05/17 08:29	04/06/17 17:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	19500		13.0	5.7	mg/Kg	₩	04/05/17 16:15	04/10/17 17:19	1
Antimony	ND		19.5	0.52	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Arsenic	11.0		2.6	0.52	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Barium	68.7		0.65	0.14	mg/Kg	₽	04/05/17 16:15	04/10/17 17:19	1
Beryllium	0.71		0.26	0.036	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Cadmium	0.089	J	0.26	0.039	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Calcium	939		65.1	4.3	mg/Kg	₽	04/05/17 16:15	04/10/17 17:19	1
Chromium	23.9	В	0.65	0.26	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Cobalt	12.1		0.65	0.065	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Copper	19.8		1.3	0.27	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:19	1
Iron	27100		13.0	4.6	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Lead	20.5		1.3	0.31	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Magnesium	3530		26.1	1.2	mg/Kg	\$	04/05/17 16:15	04/10/17 17:19	1
Manganese	982	В	0.26	0.042	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Nickel	26.7		6.5	0.30	mg/Kg	≎	04/05/17 16:15	04/10/17 17:19	1
Potassium	1700	^	39.1	26.1	mg/Kg	\$	04/05/17 16:15	04/10/17 17:19	1
Selenium	1.3	J	5.2	0.52	mg/Kg	≎	04/05/17 16:15	04/10/17 17:19	1
Silver	ND		0.78	0.26	mg/Kg	≎	04/05/17 16:15	04/10/17 17:19	1
Sodium	64.3	JB	182	16.9	mg/Kg	\$	04/05/17 16:15	04/10/17 17:19	1
Thallium	ND		7.8	0.39	mg/Kg	☼	04/05/17 16:15	04/10/17 17:19	1
Vanadium	30.6		0.65	0.14	mg/Kg	₽	04/05/17 16:15	04/10/17 17:19	1
Zinc	85.0		2.6	0.83	mg/Kg	\$	04/05/17 16:15	04/10/17 17:19	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.044		0.023	0.0093	mg/Kg	₽	04/05/17 09:15	04/05/17 12:15	1

 Client Sample ID: SAMPLE-5
 Lab Sample ID: 480-115585-5

 Date Collected: 04/04/17 11:00
 Matrix: Solid

 Date Received: 04/05/17 01:00
 Percent Solids: 83.8

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		2000	550	ug/Kg	<u>₩</u>	04/05/17 08:29	04/06/17 17:29	10
2,4,6-Trichlorophenol	ND		2000	400	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
2,4-Dichlorophenol	ND		2000	210	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
2,4-Dimethylphenol	ND		2000	490	ug/Kg	φ.	04/05/17 08:29	04/06/17 17:29	10
2,4-Dinitrophenol	ND		20000	9300	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
2,4-Dinitrotoluene	ND		2000	420	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
2,6-Dinitrotoluene	ND		2000	240	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
2-Chloronaphthalene	ND		2000	330	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
2-Chlorophenol	ND		2000	370	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
2-Methylnaphthalene	ND		2000	400	ug/Kg		04/05/17 08:29	04/06/17 17:29	10

TestAmerica Buffalo

Page 24 of 80

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-5

Date Collected: 04/04/17 11:00

Project/Site: Ashokan

Dimethyl phthalate

Di-n-butyl phthalate

Di-n-octyl phthalate

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Hexachlorocyclopentadiene

Fluoranthene

Fluorene

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-5

Matrix: Solid

Percent Solids: 83.8

Method: 8270D - Semivolati Analyte	ile Organic Compo Result Qua		ontinued) MDL		D	Prepared	Analyzed	Dil Fa
2-Methylphenol	ND	2000	240	ug/Kg		04/05/17 08:29		10
2-Nitroaniline	ND	3900		ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
2-Nitrophenol	ND	2000	570	ug/Kg		04/05/17 08:29	04/06/17 17:29	10
3,3'-Dichlorobenzidine	ND	3900	2400	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
3-Nitroaniline	ND	3900		ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
4,6-Dinitro-2-methylphenol	ND	3900	2000	ug/Kg		04/05/17 08:29	04/06/17 17:29	10
4-Bromophenyl phenyl ether	ND	2000	290	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
4-Chloro-3-methylphenol	ND	2000	500	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
4-Chloroaniline	ND	2000		ug/Kg		04/05/17 08:29	04/06/17 17:29	10
4-Chlorophenyl phenyl ether	ND	2000	250	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
4-Methylphenol	ND	3900	240	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
4-Nitroaniline	ND	3900		ug/Kg		04/05/17 08:29	04/06/17 17:29	10
4-Nitrophenol	ND	3900		ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
Acenaphthene	ND	2000		ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
Acenaphthylene	ND	2000	260	ug/Kg	ф.	04/05/17 08:29	04/06/17 17:29	10
Acetophenone	ND	2000		ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
Anthracene	ND	2000	500	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
Atrazine	ND	2000	700	ug/Kg	ф.	04/05/17 08:29	04/06/17 17:29	10
Benzaldehyde	ND	2000	1600	ug/Kg	≎	04/05/17 08:29	04/06/17 17:29	10
Benzo[a]anthracene	200 J	2000	200	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
Benzo[a]pyrene	ND	2000	300	ug/Kg		04/05/17 08:29	04/06/17 17:29	10
Benzo[b]fluoranthene	ND	2000	320	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
Benzo[g,h,i]perylene	ND	2000	210	ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
Benzo[k]fluoranthene	ND	2000	260	ug/Kg		04/05/17 08:29	04/06/17 17:29	10
Biphenyl	ND	2000	300	ug/Kg	≎	04/05/17 08:29	04/06/17 17:29	10
bis (2-chloroisopropyl) ether	ND	2000	400	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
Bis(2-chloroethoxy)methane	ND	2000	430	ug/Kg	.	04/05/17 08:29	04/06/17 17:29	10
Bis(2-chloroethyl)ether	ND	2000	260	ug/Kg	≎	04/05/17 08:29	04/06/17 17:29	10
Bis(2-ethylhexyl) phthalate	ND	2000	690	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
Butyl benzyl phthalate	ND	2000	330	ug/Kg		04/05/17 08:29	04/06/17 17:29	10
Caprolactam	ND	2000		ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
Carbazole	ND	2000		ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
Chrysene	ND	2000	450	ug/Kg	φ.	04/05/17 08:29	04/06/17 17:29	10
Dibenz(a,h)anthracene	ND	2000	360	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
Dibenzofuran	ND	2000		ug/Kg	₽	04/05/17 08:29	04/06/17 17:29	10
Diethyl phthalate	ND	2000	260	ug/Kg		04/05/17 08:29	04/06/17 17:29	10

TestAmerica Buffalo

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

04/05/17 08:29 04/06/17 17:29

© 04/05/17 08:29 04/06/17 17:29

☼ 04/05/17 08:29 04/06/17 17:29

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

240 ug/Kg350 ug/Kg

240 ug/Kg

210 ug/Kg

240 ug/Kg

270 ug/Kg

300 ug/Kg

250 ug/Kg

430 ug/Kg

260 ug/Kg

230 ug/Kg

ug/Kg

ug/Kg

270

260

ND

360 J

3

5

7

9

11

13

10

10

10

10

10

10

10

10

10

10

10

10

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-5

Date Collected: 04/04/17 11:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-5

Matrix: Solid

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	ND		2000	350	ug/Kg	₩	04/05/17 08:29	04/06/17 17:29	10
N-Nitrosodiphenylamine	ND		2000	1600	ug/Kg	\$	04/05/17 08:29	04/06/17 17:29	10
Pentachlorophenol	ND		3900	2000	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
Phenanthrene	ND		2000	300	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
Phenol	ND		2000	310	ug/Kg	\$	04/05/17 08:29	04/06/17 17:29	10
Pyrene	300	J	2000	240	ug/Kg	☼	04/05/17 08:29	04/06/17 17:29	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	135	X	54 - 120				04/05/17 08:29	04/06/17 17:29	10
2-Fluorobiphenyl	86		60 - 120				04/05/17 08:29	04/06/17 17:29	10
2-Fluorophenol	75		52 - 120				04/05/17 08:29	04/06/17 17:29	10
Nitrobenzene-d5	79		53 - 120				04/05/17 08:29	04/06/17 17:29	10
Phenol-d5	77		54 - 120				04/05/17 08:29	04/06/17 17:29	10
p-Terphenyl-d14	82		65 - 121				04/05/17 08:20	04/06/17 17:29	10

Method: 8081B - Organoc Analyte		les (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND			3.8	ug/Kg	<u></u>	04/06/17 07:39		10
4,4'-DDE	ND		20	4.1	ug/Kg	☼	04/06/17 07:39	04/07/17 11:01	10
4,4'-DDT	9.7	J	20	4.6	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Aldrin	ND		20	4.8	ug/Kg		04/06/17 07:39	04/07/17 11:01	10
alpha-BHC	ND		20	3.5	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
alpha-Chlordane	ND		20	9.8	ug/Kg	☼	04/06/17 07:39	04/07/17 11:01	10
beta-BHC	ND		20	3.5	ug/Kg		04/06/17 07:39	04/07/17 11:01	10
delta-BHC	ND		20	3.7	ug/Kg	☼	04/06/17 07:39	04/07/17 11:01	10
Dieldrin	ND		20	4.7	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Endosulfan I	ND		20	3.8	ug/Kg		04/06/17 07:39	04/07/17 11:01	10
Endosulfan II	ND		20	3.5	ug/Kg	☼	04/06/17 07:39	04/07/17 11:01	10
Endosulfan sulfate	ND		20	3.7	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Endrin	ND		20	3.9	ug/Kg	φ.	04/06/17 07:39	04/07/17 11:01	10
Endrin aldehyde	ND		20	5.0	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Endrin ketone	ND		20	4.8	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
gamma-BHC (Lindane)	ND		20	3.6	ug/Kg	ф.	04/06/17 07:39	04/07/17 11:01	10
gamma-Chlordane	ND		20	6.3	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Heptachlor	ND		20	4.3	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Heptachlor epoxide	ND		20	5.1	ug/Kg	₽	04/06/17 07:39	04/07/17 11:01	10
Methoxychlor	ND		20	4.0	ug/Kg	☼	04/06/17 07:39	04/07/17 11:01	10
Toxaphene	ND		200	110	ug/Kg	₩	04/06/17 07:39	04/07/17 11:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	121	X	45 - 120				04/06/17 07:39	04/07/17 11:01	10
Tetrachloro-m-xylene	60		30 - 124				04/06/17 07:39	04/07/17 11:01	10

Method: 8082A - Polyo	chlorinated Bipheny	'Is (PCBs) b	y Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.048	mg/Kg	<u> </u>	04/05/17 11:54	04/06/17 00:59	1
PCB-1221	ND		0.25	0.048	mg/Kg	₩	04/05/17 11:54	04/06/17 00:59	1
PCB-1232	ND		0.25	0.048	mg/Kg	₩	04/05/17 11:54	04/06/17 00:59	1
PCB-1242	ND		0.25	0.048	mg/Kg	₩.	04/05/17 11:54	04/06/17 00:59	1
PCB-1248	ND		0.25	0.048	mg/Kg	₩	04/05/17 11:54	04/06/17 00:59	1

TestAmerica Buffalo

Page 26 of 80

4/13/2017

3

4

6

8

10

13

_

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: SAMPLE-5 Lab Sample ID: 480-115585-5

Date Collected: 04/04/17 11:00 **Matrix: Solid** Date Received: 04/05/17 01:00

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND		0.25	0.12	mg/Kg	<u>₩</u>	04/05/17 11:54	04/06/17 00:59	1
PCB-1260	ND		0.25	0.12	mg/Kg		04/05/17 11:54	04/06/17 00:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	104		65 - 174				04/05/17 11:54	04/06/17 00:59	1
Tetrachloro-m-xylene	102		60 - 154				04/05/17 11:54	04/06/17 00:59	1

Method: 8151A - Herbicides	s (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND ND	20	12	ug/Kg	<u></u>	04/05/17 09:29	04/07/17 19:17	1
Silvex (2,4,5-TP)	ND	20	7.1	ug/Kg	₩	04/05/17 09:29	04/07/17 19:17	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	92	28 - 129				04/05/17 09:29	04/07/17 19:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	18900		12.8	5.6	mg/Kg	<u> </u>	04/05/17 16:15	04/10/17 17:22	1
Antimony	ND		19.1	0.51	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Arsenic	9.6		2.6	0.51	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Barium	81.5		0.64	0.14	mg/Kg	ф	04/05/17 16:15	04/10/17 17:22	1
Beryllium	0.86		0.26	0.036	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Cadmium	0.44		0.26	0.038	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Calcium	5670		63.8	4.2	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:22	1
Chromium	26.0	В	0.64	0.26	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Cobalt	13.5		0.64	0.064	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Copper	24.2		1.3	0.27	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Iron	27600		12.8	4.5	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Lead	170		1.3	0.31	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Magnesium	4350		25.5	1.2	mg/Kg	₩.	04/05/17 16:15	04/10/17 17:22	1
Manganese	661	В	0.26	0.041	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Nickel	29.5		6.4	0.29	mg/Kg	☼	04/05/17 16:15	04/10/17 17:22	1
Potassium	2340	^	38.3	25.5	mg/Kg	₩.	04/05/17 16:15	04/10/17 17:22	1
Selenium	0.77	J	5.1	0.51	mg/Kg	₩	04/05/17 16:15	04/10/17 17:22	1
Silver	ND		0.77	0.26	mg/Kg	☼	04/05/17 16:15	04/10/17 17:22	1
Sodium	84.6	JB	179	16.6	mg/Kg	₩.	04/05/17 16:15	04/10/17 17:22	1
Thallium	ND		7.7	0.38	mg/Kg	☆	04/05/17 16:15	04/10/17 17:22	1
Vanadium	30.8		0.64	0.14	mg/Kg	☆	04/05/17 16:15	04/10/17 17:22	1
Zinc	126		2.6	0.82	mg/Kg		04/05/17 16:15	04/10/17 17:22	1

Method: 7471B - Mercury (CVAA) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	0.023	0.0092	mg/Kg		04/05/17 09:15	04/05/17 12:19	1

Client Sample ID: SAMPLE-6 Lab Sample ID: 480-115585-6 Date Collected: 04/04/17 11:15 **Matrix: Solid** Date Received: 04/05/17 01:00 Percent Solids: 82.9

Method: 8270D - Semivolatile	Organic Compounds	(GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	1000	270	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 17:56	5

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-6

Date Collected: 04/04/17 11:15

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-6

Matrix: Solid

Percent Solids: 82.9

Method: 8270D - Semivolatil Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
2,4,6-Trichlorophenol	ND		1000	200	ug/Kg	<u></u>	04/05/17 08:29	04/06/17 17:56	
2,4-Dichlorophenol	ND		1000	110	ug/Kg	☆	04/05/17 08:29	04/06/17 17:56	
2,4-Dimethylphenol	ND		1000	240	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 17:56	
2,4-Dinitrophenol	ND		9700	4600	ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	į
2,4-Dinitrotoluene	ND		1000	210	ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	į
2,6-Dinitrotoluene	ND		1000	120	ug/Kg		04/05/17 08:29	04/06/17 17:56	
2-Chloronaphthalene	ND		1000	160	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	į
2-Chlorophenol	ND		1000	180	ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	
2-Methylnaphthalene	ND		1000	200	ug/Kg		04/05/17 08:29	04/06/17 17:56	
2-Methylphenol	ND		1000	120	ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	
2-Nitroaniline	ND		1900	150	ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	į
2-Nitrophenol	ND		1000	280	ug/Kg	· · · · · · · .	04/05/17 08:29	04/06/17 17:56	
3,3'-Dichlorobenzidine	ND		1900	1200	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	į
3-Nitroaniline	ND		1900	280	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	į
4,6-Dinitro-2-methylphenol	ND		1900	1000	ug/Kg		04/05/17 08:29	04/06/17 17:56	
4-Bromophenyl phenyl ether	ND		1000	140	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	
4-Chloro-3-methylphenol	ND		1000	250	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	į
4-Chloroaniline	ND		1000	250	ug/Kg		04/05/17 08:29	04/06/17 17:56	
4-Chlorophenyl phenyl ether	ND		1000	120	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	
4-Methylphenol	ND		1900	120	ug/Kg	☆	04/05/17 08:29	04/06/17 17:56	
4-Nitroaniline	ND		1900		ug/Kg		04/05/17 08:29	04/06/17 17:56	
4-Nitrophenol	ND ND		1900	700	ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	·
Acenaphthene	ND ND		1000	150	ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	į
Acenaphthylene	ND		1000	130	ug/Kg ug/Kg	· · · · · ·	04/05/17 08:29	04/06/17 17:56	
Acetophenone	ND ND		1000	130	ug/Kg ug/Kg	☆	04/05/17 08:29	04/06/17 17:56	;
Anthracene	ND ND		1000	250	ug/Kg ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	•
Atrazine	ND		1000	350	ug/Kg ug/Kg		04/05/17 08:29	04/06/17 17:56	
	ND ND		1000	790	ug/Kg ug/Kg	☆	04/05/17 08:29	04/06/17 17:56	
Benzaldehyde Benzalalanthraeana	ND ND		1000	100	ug/Kg ug/Kg	☆	04/05/17 08:29	04/06/17 17:56	
Benzo[a]anthracene	ND		1000	150			04/05/17 08:29	04/06/17 17:56	
Benzo[a]pyrene Benzo[b]fluoranthene	ND ND				ug/Kg	☆			
	ND ND		1000	160	ug/Kg	☆	04/05/17 08:29	04/06/17 17:56	
Benzo[g,h,i]perylene			1000	110	ug/Kg		04/05/17 08:29	04/06/17 17:56	
Benzo[k]fluoranthene	ND		1000	130	ug/Kg		04/05/17 08:29	04/06/17 17:56	
Biphenyl	ND		1000	150	ug/Kg		04/05/17 08:29	04/06/17 17:56	
bis (2-chloroisopropyl) ether	ND		1000		ug/Kg		04/05/17 08:29		
Bis(2-chloroethoxy)methane	ND		1000	210	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	
Bis(2-chloroethyl)ether	ND		1000	130	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	!
Bis(2-ethylhexyl) phthalate	ND		1000	340	ug/Kg	<u>.</u> .	04/05/17 08:29	04/06/17 17:56	
Butyl benzyl phthalate	ND		1000	160	0 0	Ψ.	04/05/17 08:29	04/06/17 17:56	
Caprolactam	ND		1000	300	ug/Kg	Ţ.	04/05/17 08:29	04/06/17 17:56	;
Carbazole	ND		1000	120	ug/Kg		04/05/17 08:29	04/06/17 17:56	
Chrysene	ND		1000	220	ug/Kg	Ţ.	04/05/17 08:29	04/06/17 17:56	
Dibenz(a,h)anthracene	ND		1000	180	ug/Kg	Ţ.	04/05/17 08:29	04/06/17 17:56	
Dibenzofuran	ND		1000		ug/Kg	_{.,,} .	04/05/17 08:29	04/06/17 17:56	
Diethyl phthalate	ND		1000		ug/Kg	≎	04/05/17 08:29	04/06/17 17:56	
Dimethyl phthalate	ND		1000		ug/Kg	*	04/05/17 08:29	04/06/17 17:56	;
Di-n-butyl phthalate	ND		1000		ug/Kg			04/06/17 17:56	
Di-n-octyl phthalate	ND		1000		ug/Kg	₩		04/06/17 17:56	
Fluoranthene	ND		1000	110	ug/Kg	☼	04/05/17 08:29	04/06/17 17:56	

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-6

Date Collected: 04/04/17 11:15

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-6

Matrix: Solid

Percent Solids: 82.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		1000	120	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 17:56	5
Hexachlorobenzene	ND		1000	130	ug/Kg	φ.	04/05/17 08:29	04/06/17 17:56	5
Hexachlorobutadiene	ND		1000	150	ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	5
Hexachlorocyclopentadiene	ND		1000	130	ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	5
Hexachloroethane	ND		1000	130	ug/Kg		04/05/17 08:29	04/06/17 17:56	5
Indeno[1,2,3-cd]pyrene	ND		1000	120	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	5
Isophorone	ND		1000	210	ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	5
Naphthalene	ND		1000	130	ug/Kg		04/05/17 08:29	04/06/17 17:56	5
Nitrobenzene	ND		1000	110	ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	5
N-Nitrosodi-n-propylamine	ND		1000	170	ug/Kg	☼	04/05/17 08:29	04/06/17 17:56	5
N-Nitrosodiphenylamine	ND		1000	810	ug/Kg		04/05/17 08:29	04/06/17 17:56	5
Pentachlorophenol	ND		1900	1000	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	5
Phenanthrene	ND		1000	150	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	5
Phenol	ND		1000	150	ug/Kg	₽	04/05/17 08:29	04/06/17 17:56	5
Pyrene	ND		1000	120	ug/Kg	₩	04/05/17 08:29	04/06/17 17:56	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	97		54 - 120				04/05/17 08:29	04/06/17 17:56	5
2-Fluorobiphenyl	81		60 - 120				04/05/17 08:29	04/06/17 17:56	5
2-Fluorophenol	72		52 - 120				04/05/17 08:29	04/06/17 17:56	5
Nitrobenzene-d5	73		53 - 120				04/05/17 08:29	04/06/17 17:56	5
Phenol-d5	72		54 - 120				04/05/17 08:29	04/06/17 17:56	5
p-Terphenyl-d14	76		65 - 121				04/05/17 08:29	04/06/17 17:56	5

Analyte	hlorine Pesticides (G Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	2.0	0.38	ug/Kg	₩	04/06/17 07:39	04/07/17 11:21	1
4,4'-DDE	ND	2.0	0.42	ug/Kg	₽	04/06/17 07:39	04/07/17 11:21	1
4,4'-DDT	ND	2.0	0.46	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Aldrin	ND	2.0	0.49	ug/Kg	\$	04/06/17 07:39	04/07/17 11:21	1
alpha-BHC	ND	2.0	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
alpha-Chlordane	ND	2.0	0.98	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
beta-BHC	ND	2.0	0.36	ug/Kg	₽	04/06/17 07:39	04/07/17 11:21	1
delta-BHC	ND	2.0	0.37	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Dieldrin	ND	2.0	0.47	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Endosulfan I	ND	2.0	0.38	ug/Kg	₽	04/06/17 07:39	04/07/17 11:21	1
Endosulfan II	ND	2.0	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Endosulfan sulfate	ND	2.0	0.37	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Endrin	ND	2.0	0.39	ug/Kg	₽	04/06/17 07:39	04/07/17 11:21	1
Endrin aldehyde	ND	2.0	0.51	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Endrin ketone	ND	2.0	0.49	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
gamma-BHC (Lindane)	ND	2.0	0.36	ug/Kg	₽	04/06/17 07:39	04/07/17 11:21	1
gamma-Chlordane	ND	2.0	0.63	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Heptachlor	ND	2.0	0.43	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Heptachlor epoxide	ND	2.0	0.51	ug/Kg	₽	04/06/17 07:39	04/07/17 11:21	1
Methoxychlor	ND	2.0	0.40	ug/Kg	☼	04/06/17 07:39	04/07/17 11:21	1
Toxaphene	ND	20	12	ug/Kg	₩	04/06/17 07:39	04/07/17 11:21	1
Surrogate	%Recovery Quality	fier Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl		45 - 120				04/06/17 07:39	04/07/17 11:21	1

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-6

Date Collected: 04/04/17 11:15

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-6

Matrix: Solid

Percent Solids: 82.9

Method: 8081B - Or	ganochlorine Pesticides	(GC)	(Continued)
		1 - 7	(

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	
Tetrachloro-m-xvlene	55	30 - 124	04/06/17 07:39 04/07/17 1	1:21 1

Analyte	Result	Qualifier	RL	MDL	aphy Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.25	0.050	mg/Kg	₩	04/05/17 11:54	04/06/17 01:15	
PCB-1221	ND		0.25	0.050	mg/Kg	☼	04/05/17 11:54	04/06/17 01:15	
PCB-1232	ND		0.25	0.050	mg/Kg	₩	04/05/17 11:54	04/06/17 01:15	
PCB-1242	ND		0.25	0.050	mg/Kg	₽	04/05/17 11:54	04/06/17 01:15	
PCB-1248	ND		0.25	0.050	mg/Kg	☼	04/05/17 11:54	04/06/17 01:15	
PCB-1254	ND		0.25	0.12	mg/Kg	₩	04/05/17 11:54	04/06/17 01:15	
PCB-1260	ND		0.25	0.12	mg/Kg	₩	04/05/17 11:54	04/06/17 01:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	119		65 - 174				04/05/17 11:54	04/06/17 01:15	
Tetrachloro-m-xylene	107		60 - 154				04/05/17 11:54	04/06/17 01:15	

Method: 8151A - Herbicides (GC

Vanadium

Zinc

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND	20	12	ug/Kg	₩	04/05/17 09:29	04/07/17 19:47	1
Silvex (2,4,5-TP)	ND	20	7.1	ug/Kg	₩	04/05/17 09:29	04/07/17 19:47	1

Surrogate	%Recovery Qua	ıalifier Limi	S Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	82	28 - 1	04/05/17 09:29	04/07/17 19:47	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	10800		12.5	5.5	mg/Kg	<u></u>	04/05/17 16:15	04/10/17 17:25	1
Antimony	ND		18.8	0.50	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Arsenic	16.0		2.5	0.50	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Barium	69.1		0.63	0.14	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Beryllium	0.58		0.25	0.035	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Cadmium	0.12	J	0.25	0.038	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Calcium	1710		62.5	4.1	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Chromium	17.4	В	0.63	0.25	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Cobalt	15.6		0.63	0.063	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Copper	28.3		1.3	0.26	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Iron	24900		12.5	4.4	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Lead	35.6		1.3	0.30	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Magnesium	3130		25.0	1.2	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Manganese	722	В	0.25	0.040	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Nickel	27.1		6.3	0.29	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Potassium	1340	^	37.5	25.0	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Selenium	0.65	J	5.0	0.50	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1
Silver	ND		0.75	0.25	mg/Kg	₽	04/05/17 16:15	04/10/17 17:25	1
Sodium	75.2	JB	175	16.3	mg/Kg	\$	04/05/17 16:15	04/10/17 17:25	1
Thallium	ND		7.5	0.38	mg/Kg	☼	04/05/17 16:15	04/10/17 17:25	1

☼ 04/05/17 16:15 04/10/17 17:25

© 04/05/17 16:15 04/10/17 17:25

0.63

2.5

17.2

51.7

0.14 mg/Kg

0.80 mg/Kg

3

6

Ω

9

11

12

14

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-6

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-6

Matrix: Solid

Percent Solids: 82.9

Date Collected: 04/04/17 11:15

Date Received: 04/05/17 01:00

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.35		0.023	0.0092		— *	04/05/17 09:15		1

 Client Sample ID: SAMPLE-7
 Lab Sample ID: 480-115585-7

 Date Collected: 04/04/17 12:45
 Matrix: Solid

 Date Received: 04/05/17 01:00
 Percent Solids: 86.8

Method: 8270D - Semivolati Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	190	51			04/05/17 08:29	04/06/17 18:22	1
2,4,6-Trichlorophenol	ND	190	38	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
2,4-Dichlorophenol	ND	190		ug/Kg	≎	04/05/17 08:29	04/06/17 18:22	1
2,4-Dimethylphenol	ND	190		ug/Kg		04/05/17 08:29	04/06/17 18:22	1
2,4-Dinitrophenol	ND	1900		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
2,4-Dinitrotoluene	ND	190	39	ug/Kg	≎	04/05/17 08:29	04/06/17 18:22	1
2,6-Dinitrotoluene	ND	190		ug/Kg		04/05/17 08:29	04/06/17 18:22	1
2-Chloronaphthalene	ND	190	31	ug/Kg	₽	04/05/17 08:29	04/06/17 18:22	1
2-Chlorophenol	ND	190	35	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
2-Methylnaphthalene	ND	190		ug/Kg	ф.	04/05/17 08:29	04/06/17 18:22	1
2-Methylphenol	ND	190		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
2-Nitroaniline	ND	370		ug/Kg	₽		04/06/17 18:22	1
2-Nitrophenol	ND	190		ug/Kg			04/06/17 18:22	1
3,3'-Dichlorobenzidine	ND	370		ug/Kg	₽	04/05/17 08:29	04/06/17 18:22	1
3-Nitroaniline	ND	370		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
4,6-Dinitro-2-methylphenol	ND	370		ug/Kg	φ.	04/05/17 08:29	04/06/17 18:22	1
4-Bromophenyl phenyl ether	ND	190	27		☼	04/05/17 08:29	04/06/17 18:22	1
4-Chloro-3-methylphenol	ND	190	47		≎	04/05/17 08:29	04/06/17 18:22	1
4-Chloroaniline	ND	190	47		 ф	04/05/17 08:29	04/06/17 18:22	1
4-Chlorophenyl phenyl ether	ND	190	23	ug/Kg	≎	04/05/17 08:29	04/06/17 18:22	1
4-Methylphenol	ND	370		ug/Kg	₩	04/05/17 08:29	04/06/17 18:22	1
4-Nitroaniline	ND	370		ug/Kg	 ф	04/05/17 08:29	04/06/17 18:22	1
4-Nitrophenol	ND	370		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
Acenaphthene	ND	190		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
Acenaphthylene	ND	190		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 18:22	1
Acetophenone	ND	190		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
Anthracene	ND	190		ug/Kg	≎	04/05/17 08:29	04/06/17 18:22	1
Atrazine	ND	190		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 18:22	1
Benzaldehyde	ND	190	150		☼	04/05/17 08:29	04/06/17 18:22	1
Benzo[a]anthracene	ND	190	19	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
Benzo[a]pyrene	ND	190		ug/Kg	 ф	04/05/17 08:29	04/06/17 18:22	1
Benzo[b]fluoranthene	ND	190	30		☼	04/05/17 08:29	04/06/17 18:22	1
Benzo[g,h,i]perylene	ND	190	20		☼	04/05/17 08:29	04/06/17 18:22	1
Benzo[k]fluoranthene	ND	190		ug/Kg		04/05/17 08:29	04/06/17 18:22	1
Biphenyl	ND	190		ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
bis (2-chloroisopropyl) ether	ND	190		ug/Kg	≎	04/05/17 08:29	04/06/17 18:22	1
Bis(2-chloroethoxy)methane	ND	190		ug/Kg	 ф	04/05/17 08:29		1
Bis(2-chloroethyl)ether	ND	190		ug/Kg	≎		04/06/17 18:22	1
Bis(2-ethylhexyl) phthalate	ND	190		ug/Kg	₽		04/06/17 18:22	1
Butyl benzyl phthalate	ND	190		ug/Kg	· · · · · · · · · · · · · · · · · · ·		04/06/17 18:22	1
Caprolactam	ND	190		ug/Kg	₽		04/06/17 18:22	1
Carbazole	ND	190		ug/Kg	☆		04/06/17 18:22	1

TestAmerica Buffalo

<u>J</u>

5

7

q

11

14

4/13/2017

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-7

Date Collected: 04/04/17 12:45

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-7

Matrix: Solid

Percent Solids: 86.8

Resuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		190	43	ug/Kg	₽	04/05/17 08:29	04/06/17 18:22	1
ND		190	34	ug/Kg	₽	04/05/17 08:29	04/06/17 18:22	1
ND		190	22	ug/Kg	₩	04/05/17 08:29	04/06/17 18:22	1
ND		190	25	ug/Kg	₽	04/05/17 08:29	04/06/17 18:22	1
ND		190	22	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	32	ug/Kg	₩	04/05/17 08:29	04/06/17 18:22	1
ND		190	22	ug/Kg	₩.	04/05/17 08:29	04/06/17 18:22	1
ND		190	20	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	22	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	26	ug/Kg	₽	04/05/17 08:29	04/06/17 18:22	1
ND		190	28	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	26	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	25	ug/Kg	*	04/05/17 08:29	04/06/17 18:22	1
ND		190	23	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	40	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	25	ug/Kg		04/05/17 08:29	04/06/17 18:22	1
ND		190	21	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	32	ug/Kg	₩	04/05/17 08:29	04/06/17 18:22	1
ND		190	150	ug/Kg		04/05/17 08:29	04/06/17 18:22	1
ND		370	190	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	28	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
ND		190	29	ug/Kg		04/05/17 08:29	04/06/17 18:22	1
ND		190	22	ug/Kg	☼	04/05/17 08:29	04/06/17 18:22	1
	ND N	ND N	ND 190 ND 190 <td< td=""><td>ND 190 34 ND 190 22 ND 190 25 ND 190 22 ND 190 32 ND 190 22 ND 190 20 ND 190 26 ND 190 26 ND 190 26 ND 190 25 ND 190 23 ND 190 25 ND 190 25 ND 190 25 ND 190 32 ND 190 32 ND 190 35 ND 190 150 ND 370 190 ND 190 28 ND <</td><td>ND 190 34 ug/Kg ND 190 22 ug/Kg ND 190 25 ug/Kg ND 190 22 ug/Kg ND 190 32 ug/Kg ND 190 22 ug/Kg ND 190 20 ug/Kg ND 190 22 ug/Kg ND 190 26 ug/Kg ND 190 26 ug/Kg ND 190 26 ug/Kg ND 190 25 ug/Kg ND 190 23 ug/Kg ND 190 25 ug/Kg ND 190 25 ug/Kg ND 190 25 ug/Kg ND 190 21 ug/Kg ND 190 32 ug/Kg ND 190 32 ug/Kg ND 190 150 ug/Kg ND 190 28 ug/Kg ND 190 28 ug/Kg ND 190 28 ug/Kg ND 190 29 ug/Kg</td><td>ND 190 34 ug/Kg * ND 190 22 ug/Kg * ND 190 25 ug/Kg * ND 190 22 ug/Kg * ND 190 32 ug/Kg * ND 190 22 ug/Kg * ND 190 20 ug/Kg * ND 190 22 ug/Kg * ND 190 26 ug/Kg * ND 190 28 ug/Kg * ND 190 25 ug/Kg * ND 190 32 ug/Kg * ND 190 32 ug/Kg * ND 190 150 ug/Kg * ND 190 28 ug/Kg * ND 190 28 ug/Kg * <!--</td--><td>ND 190 34 ug/Kg</td><td>ND 190 34 ug/Kg</td></td></td<>	ND 190 34 ND 190 22 ND 190 25 ND 190 22 ND 190 32 ND 190 22 ND 190 20 ND 190 26 ND 190 26 ND 190 26 ND 190 25 ND 190 23 ND 190 25 ND 190 25 ND 190 25 ND 190 32 ND 190 32 ND 190 35 ND 190 150 ND 370 190 ND 190 28 ND <	ND 190 34 ug/Kg ND 190 22 ug/Kg ND 190 25 ug/Kg ND 190 22 ug/Kg ND 190 32 ug/Kg ND 190 22 ug/Kg ND 190 20 ug/Kg ND 190 22 ug/Kg ND 190 26 ug/Kg ND 190 26 ug/Kg ND 190 26 ug/Kg ND 190 25 ug/Kg ND 190 23 ug/Kg ND 190 25 ug/Kg ND 190 25 ug/Kg ND 190 25 ug/Kg ND 190 21 ug/Kg ND 190 32 ug/Kg ND 190 32 ug/Kg ND 190 150 ug/Kg ND 190 28 ug/Kg ND 190 28 ug/Kg ND 190 28 ug/Kg ND 190 29 ug/Kg	ND 190 34 ug/Kg * ND 190 22 ug/Kg * ND 190 25 ug/Kg * ND 190 22 ug/Kg * ND 190 32 ug/Kg * ND 190 22 ug/Kg * ND 190 20 ug/Kg * ND 190 22 ug/Kg * ND 190 26 ug/Kg * ND 190 28 ug/Kg * ND 190 25 ug/Kg * ND 190 32 ug/Kg * ND 190 32 ug/Kg * ND 190 150 ug/Kg * ND 190 28 ug/Kg * ND 190 28 ug/Kg * </td <td>ND 190 34 ug/Kg</td> <td>ND 190 34 ug/Kg</td>	ND 190 34 ug/Kg	ND 190 34 ug/Kg

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	87	54 - 120	04/05/17 08:29	04/06/17 18:22	1
2-Fluorobiphenyl	70	60 - 120	04/05/17 08:29	04/06/17 18:22	1
2-Fluorophenol	64	52 - 120	04/05/17 08:29	04/06/17 18:22	1
Nitrobenzene-d5	68	53 - 120	04/05/17 08:29	04/06/17 18:22	1
Phenol-d5	67	54 - 120	04/05/17 08:29	04/06/17 18:22	1
p-Terphenyl-d14	77	65 - 121	04/05/17 08:29	04/06/17 18:22	1

Method: 8081B - Organoci Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	1.9	0.37	ug/Kg	<u> </u>	04/06/17 07:39	04/07/17 11:40	1
4,4'-DDE	ND	1.9	0.39	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
4,4'-DDT	ND	1.9	0.44	ug/Kg	₩	04/06/17 07:39	04/07/17 11:40	1
Aldrin	ND	1.9	0.46	ug/Kg	₽	04/06/17 07:39	04/07/17 11:40	1
alpha-BHC	ND	1.9	0.34	ug/Kg	₩	04/06/17 07:39	04/07/17 11:40	1
alpha-Chlordane	ND	1.9	0.94	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
beta-BHC	ND	1.9	0.34	ug/Kg	₽	04/06/17 07:39	04/07/17 11:40	1
delta-BHC	ND	1.9	0.35	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
Dieldrin	ND	1.9	0.45	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
Endosulfan I	ND	1.9	0.36	ug/Kg	₽	04/06/17 07:39	04/07/17 11:40	1
Endosulfan II	ND	1.9	0.34	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
Endosulfan sulfate	ND	1.9	0.35	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
Endrin	ND	1.9	0.37	ug/Kg		04/06/17 07:39	04/07/17 11:40	1
Endrin aldehyde	ND	1.9	0.48	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
Endrin ketone	ND	1.9	0.46	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	1
gamma-BHC (Lindane)	ND	1.9	0.35	ug/Kg		04/06/17 07:39	04/07/17 11:40	1

TestAmerica Buffalo

<u>.</u> 5

7

9

11

13

14

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-7

Date Collected: 04/04/17 12:45

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-7

Matrix: Solid

Percent Solids: 86.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
gamma-Chlordane	ND		1.9	0.60	ug/Kg	₩	04/06/17 07:39	04/07/17 11:40	
Heptachlor	ND		1.9	0.41	ug/Kg	☼	04/06/17 07:39	04/07/17 11:40	
Heptachlor epoxide	ND		1.9	0.49	ug/Kg	₽	04/06/17 07:39	04/07/17 11:40	
Methoxychlor	ND		1.9	0.38	ug/Kg	₩	04/06/17 07:39	04/07/17 11:40	
Toxaphene	ND		19	11	ug/Kg	₩	04/06/17 07:39	04/07/17 11:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	87		45 - 120				04/06/17 07:39	04/07/17 11:40	
Tetrachloro-m-xylene	56		30 - 124				04/06/17 07:39	04/07/17 11:40	
Method: 8151A - Herbicides (GC)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-D	ND		19	12	ug/Kg	<u> </u>	04/05/17 09:29	04/07/17 20:17	
Silvex (2,4,5-TP)	ND		19	6.7	ug/Kg	☼	04/05/17 09:29	04/07/17 20:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	87		28 - 129				04/05/17 09:29	04/07/17 20:17	
Mathadi COACC Matala (ICD)									
Method: 6010C - Metals (ICP) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Numinum	19200		11.2	4.9	mg/Kg	<u></u>	04/05/17 16:15	04/10/17 17:29	
Antimony	ND		16.8	0.45	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Arsenic	9.4		2.2	0.45	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Barium	119		0.56	0.12	mg/Kg	₽	04/05/17 16:15	04/10/17 17:29	
Beryllium	0.88		0.22	0.031	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Cadmium	0.10	J	0.22	0.034	mg/Kg	₩	04/05/17 16:15	04/10/17 17:29	
Calcium	1370		56.1	3.7	mg/Kg	₽	04/05/17 16:15	04/10/17 17:29	
Chromium	26.3	В	0.56	0.22	mg/Kg	₩	04/05/17 16:15	04/10/17 17:29	
Cobalt	10.8		0.56	0.056	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Copper	12.2		1.1	0.24	mg/Kg	₽	04/05/17 16:15	04/10/17 17:29	
ron	27200		11.2		mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
<u>-ead</u>	9.2		1.1	0.27	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Magnesium	3550		22.4	1.0	mg/Kg	₽	04/05/17 16:15	04/10/17 17:29	
Manganese	698	В	0.22	0.036	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
lickel	28.0		5.6		mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Potassium	1370	^	33.6		mg/Kg	₽		04/10/17 17:29	
Selenium	1.4	J	4.5	0.45	mg/Kg	☼	04/05/17 16:15	04/10/17 17:29	
Silver	ND		0.67		mg/Kg	₩	04/05/17 16:15	04/10/17 17:29	
Sodium	150	JB	157		mg/Kg	\$	04/05/17 16:15	04/10/17 17:29	
Thallium	ND		6.7		mg/Kg	₩		04/10/17 17:29	
/anadium	29.0		0.56	0.12	mg/Kg	₩	04/05/17 16:15	04/10/17 17:29	
Zinc	59.6		2.2	0.72	mg/Kg	₩	04/05/17 16:15	04/10/17 17:29	
Method: 7471B - Mercury (CV	/AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.037		0.023	0.0092	mg/Kg	\	04/05/17 09:15	04/05/17 12:22	

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Client Sample ID: SAMPLE-8 Lab Sample ID: 480-115585-8

Method: 8270D - Semivolati							_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND		200	54	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 18:49	
2,4,6-Trichlorophenol	ND		200		ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	•
2,4-Dichlorophenol	ND		200	21		, .	04/05/17 08:29	04/06/17 18:49	
2,4-Dimethylphenol	ND		200		ug/Kg	*	04/05/17 08:29	04/06/17 18:49	•
2,4-Dinitrophenol	ND		1900		ug/Kg	: \$	04/05/17 08:29	04/06/17 18:49	
2,4-Dinitrotoluene	ND		200		ug/Kg		04/05/17 08:29	04/06/17 18:49	
2,6-Dinitrotoluene	ND		200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	•
2-Chloronaphthalene	ND		200	33	ug/Kg	≎	04/05/17 08:29	04/06/17 18:49	
2-Chlorophenol	ND		200	36	ug/Kg	≎	04/05/17 08:29	04/06/17 18:49	
2-Methylnaphthalene	ND		200	40	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	
2-Methylphenol	ND		200	23	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	•
2-Nitroaniline	ND		390	29	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	
2-Nitrophenol	ND		200	56	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	
3,3'-Dichlorobenzidine	ND		390	230	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	•
3-Nitroaniline	ND		390	55	ug/Kg	☼	04/05/17 08:29	04/06/17 18:49	
4,6-Dinitro-2-methylphenol	ND		390	200	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	
4-Bromophenyl phenyl ether	ND		200	28	ug/Kg	≎	04/05/17 08:29	04/06/17 18:49	
4-Chloro-3-methylphenol	ND		200	49	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	
4-Chloroaniline	ND		200	49	ug/Kg		04/05/17 08:29	04/06/17 18:49	
4-Chlorophenyl phenyl ether	ND		200	25	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	
4-Methylphenol	ND		390	23	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	
4-Nitroaniline	ND		390	100	ug/Kg		04/05/17 08:29	04/06/17 18:49	
4-Nitrophenol	ND		390	140	ug/Kg	≎	04/05/17 08:29	04/06/17 18:49	
Acenaphthene	ND		200	29	ug/Kg	≎	04/05/17 08:29	04/06/17 18:49	
Acenaphthylene	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	
Acetophenone	ND		200	27		₽	04/05/17 08:29	04/06/17 18:49	
Anthracene	ND		200	49		₽	04/05/17 08:29	04/06/17 18:49	
Atrazine	ND		200	69	ug/Kg		04/05/17 08:29	04/06/17 18:49	
Benzaldehyde	ND		200	160		₩	04/05/17 08:29	04/06/17 18:49	
Benzo[a]anthracene	39	J	200	20	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	
Benzo[a]pyrene	ND		200		ug/Kg		04/05/17 08:29	04/06/17 18:49	
Benzo[b]fluoranthene	52	J	200		ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	
Benzo[g,h,i]perylene	22		200		ug/Kg	≎		04/06/17 18:49	
Benzo[k]fluoranthene	ND		200		ug/Kg			04/06/17 18:49	
Biphenyl	ND		200		ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	
bis (2-chloroisopropyl) ether	ND		200		ug/Kg	₽		04/06/17 18:49	
Bis(2-chloroethoxy)methane	ND		200		ug/Kg	 \$		04/06/17 18:49	
Bis(2-chloroethyl)ether	ND		200		ug/Kg	☆		04/06/17 18:49	
Bis(2-ethylhexyl) phthalate	ND		200		ug/Kg	☆		04/06/17 18:49	
Butyl benzyl phthalate	ND		200		ug/Kg			04/06/17 18:49	
Caprolactam	ND		200		ug/Kg	☆		04/06/17 18:49	
Carbazole	ND		200		ug/Kg	☆		04/06/17 18:49	
Chrysene	62		200		ug/Kg			04/06/17 18:49	
Dibenz(a,h)anthracene	ND	•	200		ug/Kg	₽		04/06/17 18:49	
Dibenzofuran	ND ND		200		ug/Kg ug/Kg	₽		04/06/17 18:49	
Diethyl phthalate	ND ND		200 200		ug/Kg	₩		04/06/17 18:49 04/06/17 18:49	
Dimethyl phthalate					ug/Kg	*			
Di-n-butyl phthalate Di-n-octyl phthalate	ND ND		200		ug/Kg ug/Kg	\		04/06/17 18:49 04/06/17 18:49	

TestAmerica Buffalo

4/13/2017

2

<u>ی</u>

6

8

10

12

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-8

Date Collected: 04/04/17 13:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-8

Matrix: Solid Percent Solids: 84.1

Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	69 J	200	21	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	1
Fluorene	ND	200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	1
Hexachlorobenzene	ND	200	27	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	1
Hexachlorobutadiene	ND	200	29	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	1
Hexachlorocyclopentadiene	ND	200	27	ug/Kg	₩	04/05/17 08:29	04/06/17 18:49	1
Hexachloroethane	ND	200	26	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Indeno[1,2,3-cd]pyrene	ND	200	25	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Isophorone	ND	200	42	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Naphthalene	ND	200	26	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Nitrobenzene	ND	200	22	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
N-Nitrosodi-n-propylamine	ND	200	34	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
N-Nitrosodiphenylamine	ND	200	160	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Pentachlorophenol	ND	390	200	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Phenanthrene	63 J	200	29	ug/Kg	☆	04/05/17 08:29	04/06/17 18:49	1
Phenol	ND	200	30	ug/Kg	₽	04/05/17 08:29	04/06/17 18:49	1
Pyrene	61 J	200	23	ug/Kg	☼	04/05/17 08:29	04/06/17 18:49	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	100		54 - 120	04/05/17 08:29	04/06/17 18:49	1
2-Fluorobiphenyl	85		60 - 120	04/05/17 08:29	04/06/17 18:49	1
2-Fluorophenol	69		52 - 120	04/05/17 08:29	04/06/17 18:49	1
Nitrobenzene-d5	77		53 - 120	04/05/17 08:29	04/06/17 18:49	1
Phenol-d5	70		54 - 120	04/05/17 08:29	04/06/17 18:49	1
p-Terphenyl-d14	95		65 - 121	04/05/17 08:29	04/06/17 18:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.9	0.38	ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1
4,4'-DDE	ND		1.9	0.41	ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1
4,4'-DDT	ND		1.9	0.45	ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1
Aldrin	ND		1.9	0.48	ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1
alpha-BHC	ND		1.9	0.35	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
alpha-Chlordane	ND		1.9	0.97	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
beta-BHC	ND		1.9	0.35	ug/Kg	₩.	04/06/17 07:39	04/07/17 12:00	1
delta-BHC	ND		1.9	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
Dieldrin	ND		1.9	0.47	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
Endosulfan I	ND		1.9	0.37	ug/Kg	₩.	04/06/17 07:39	04/07/17 12:00	1
Endosulfan II	ND		1.9	0.35	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
Endosulfan sulfate	ND		1.9	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
Endrin	ND		1.9	0.38	ug/Kg	₽	04/06/17 07:39	04/07/17 12:00	1
Endrin aldehyde	ND		1.9	0.50	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
Endrin ketone	ND		1.9	0.48	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
gamma-BHC (Lindane)	ND		1.9	0.36	ug/Kg	₽	04/06/17 07:39	04/07/17 12:00	1
gamma-Chlordane	ND		1.9	0.62	ug/Kg	☼	04/06/17 07:39	04/07/17 12:00	1
Heptachlor	ND		1.9	0.42	ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1
Heptachlor epoxide	ND		1.9	0.50	ug/Kg		04/06/17 07:39	04/07/17 12:00	1
Methoxychlor	ND		1.9		ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1
Toxaphene	ND		19	11	ug/Kg	₩	04/06/17 07:39	04/07/17 12:00	1

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-8

Date Collected: 04/04/17 13:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-8

Matrix: Solid

Percent Solids: 84.1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	108	45 - 120	04/06/17 07:39	04/07/17 12:00	1
Tetrachloro-m-xylene	82	30 - 124	04/06/17 07:39	04/07/17 12:00	1
Method: 8151A - Herbicides ((3C)				

Method: 8151A - Herbicides Analyte	(GC) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND —	20	12	ug/Kg	<u></u>	04/05/17 09:29	04/07/17 20:47	1
Silvex (2,4,5-TP)	ND	20	7.1	ug/Kg	≎	04/05/17 09:29	04/07/17 20:47	1
Surrogate 2,4-Dichlorophenylacetic acid	%Recovery Qualifier 86	28 - 129				Prepared 04/05/17 09:29	Analyzed 04/07/17 20:47	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9790		12.2	5.4	mg/Kg	<u> </u>	04/05/17 16:15	04/10/17 17:32	1
Antimony	ND		18.3	0.49	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Arsenic	6.0		2.4	0.49	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Barium	28.7		0.61	0.13	mg/Kg	₩	04/05/17 16:15	04/10/17 17:32	1
Beryllium	0.36		0.24	0.034	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Cadmium	0.14	J	0.24	0.037	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Calcium	406		61.2	4.0	mg/Kg	₩	04/05/17 16:15	04/10/17 17:32	1
Chromium	12.5	В	0.61	0.24	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Cobalt	7.1		0.61	0.061	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Copper	17.1		1.2	0.26	mg/Kg	₩	04/05/17 16:15	04/10/17 17:32	1
Iron	18100		12.2	4.3	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Lead	22.6		1.2	0.29	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Magnesium	2840		24.5	1.1	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:32	1
Manganese	387	В	0.24	0.039	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Nickel	16.0		6.1	0.28	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Potassium	701		36.7	24.5	mg/Kg	₩	04/05/17 16:15	04/11/17 13:28	1
Selenium	0.79	J	4.9	0.49	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Silver	ND		0.73	0.24	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Sodium	29.3	JB	171	15.9	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Thallium	ND		7.3	0.37	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Vanadium	15.7		0.61	0.13	mg/Kg	☼	04/05/17 16:15	04/10/17 17:32	1
Zinc	49.3		2.4	0.78	mg/Kg		04/05/17 16:15	04/10/17 17:32	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.15		0.024	0.0099	mg/Kg		04/05/17 09:15	04/05/17 12:24	1

Client Sample ID: SAMPLE-9 Lab Sample ID: 480-115585-9 Date Collected: 04/04/17 13:25 **Matrix: Solid** Date Received: 04/05/17 01:00 Percent Solids: 81.4

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	1000	280	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 19:15	5
2,4,6-Trichlorophenol	ND	1000	200	ug/Kg	☼	04/05/17 08:29	04/06/17 19:15	5
2,4-Dichlorophenol	ND	1000	110	ug/Kg	☼	04/05/17 08:29	04/06/17 19:15	5
2,4-Dimethylphenol	ND	1000	250	ug/Kg	₽	04/05/17 08:29	04/06/17 19:15	5
2,4-Dinitrophenol	ND	10000	4700	ug/Kg	≎	04/05/17 08:29	04/06/17 19:15	5

TestAmerica Buffalo

Page 36 of 80

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-9

Date Collected: 04/04/17 13:25

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-9

Matrix: Solid Percent Solids: 81.4

Method: 8270D - Semivolatil Analyte	Result Qua		MDL	•	D	Prepared	Analyzed	Dil F
2,4-Dinitrotoluene	ND	1000	210	ug/Kg	<u></u>	04/05/17 08:29	04/06/17 19:15	
2,6-Dinitrotoluene	ND	1000	120	ug/Kg		04/05/17 08:29	04/06/17 19:15	
2-Chloronaphthalene	ND	1000	170	ug/Kg	☆	04/05/17 08:29	04/06/17 19:15	
2-Chlorophenol	ND	1000	190	ug/Kg	☆	04/05/17 08:29	04/06/17 19:15	
2-Methylnaphthalene	ND	1000	200	ug/Kg		04/05/17 08:29	04/06/17 19:15	
2-Methylphenol	ND	1000	120	ug/Kg	≎	04/05/17 08:29	04/06/17 19:15	
2-Nitroaniline	ND	2000	150	ug/Kg	≎	04/05/17 08:29	04/06/17 19:15	
2-Nitrophenol	ND	1000	290	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 19:15	
3,3'-Dichlorobenzidine	ND	2000	1200	ug/Kg	≎	04/05/17 08:29	04/06/17 19:15	
3-Nitroaniline	ND	2000	280	ug/Kg	≎	04/05/17 08:29	04/06/17 19:15	
1,6-Dinitro-2-methylphenol	ND	2000	1000	ug/Kg		04/05/17 08:29	04/06/17 19:15	
1-Bromophenyl phenyl ether	ND	1000	140	ug/Kg	₩	04/05/17 08:29		
1-Chloro-3-methylphenol	ND	1000	250	ug/Kg	≎		04/06/17 19:15	
1-Chloroaniline	ND	1000	250	ug/Kg			04/06/17 19:15	
4-Chlorophenyl phenyl ether	ND	1000	130	ug/Kg	₩		04/06/17 19:15	
-Methylphenol	ND	2000	120	ug/Kg	₩		04/06/17 19:15	
-Nitroaniline	ND	2000	540	ug/Kg	· · · · · · · .		04/06/17 19:15	
-Nitrophenol	ND	2000	720	ug/Kg	₩		04/06/17 19:15	
Acenaphthene	ND	1000	150	ug/Kg	₩		04/06/17 19:15	
cenaphthylene	ND	1000		ug/Kg	 ☆		04/06/17 19:15	
cetophenone	ND	1000	140	ug/Kg	₽		04/06/17 19:15	
nthracene	ND	1000	250	ug/Kg ug/Kg	₽		04/06/17 19:15	
	ND	1000			· · · · · · ·		04/06/17 19:15	
trazine	ND ND	1000	810	ug/Kg ug/Kg	≎		04/06/17 19:15	
Benzaldehyde		1000			☆			
Benzo[a]anthracene	240 J		100	ug/Kg	 .		04/06/17 19:15	
Benzo[a]pyrene	210 J	1000	150	ug/Kg	☆		04/06/17 19:15	
Benzo[b]fluoranthene	320 J	1000	160	ug/Kg	☆		04/06/17 19:15	
Benzo[g,h,i]perylene	130 J	1000	110	ug/Kg	· · · · · · .		04/06/17 19:15	
Benzo[k]fluoranthene	190 J	1000	130	ug/Kg			04/06/17 19:15	
siphenyl	ND	1000	150	ug/Kg	₩		04/06/17 19:15	
is (2-chloroisopropyl) ether	ND	1000	200	ug/Kg	, , .		04/06/17 19:15	
sis(2-chloroethoxy)methane	ND	1000	220	ug/Kg	₩		04/06/17 19:15	
Bis(2-chloroethyl)ether	ND	1000	130	ug/Kg	₩		04/06/17 19:15	
Bis(2-ethylhexyl) phthalate	ND	1000		ug/Kg	<u>.</u> .		04/06/17 19:15	
Butyl benzyl phthalate	ND	1000		ug/Kg	Ţ.		04/06/17 19:15	
Caprolactam	ND	1000		ug/Kg	₩		04/06/17 19:15	
Carbazole	ND	1000		ug/Kg			04/06/17 19:15	
Chrysene	370 J	1000		ug/Kg	ψ.		04/06/17 19:15	
ibenz(a,h)anthracene	ND	1000		ug/Kg	₩.		04/06/17 19:15	
ibenzofuran	ND	1000	120	ug/Kg			04/06/17 19:15	
ethyl phthalate	ND	1000		ug/Kg	**		04/06/17 19:15	
Dimethyl phthalate	ND	1000	120	ug/Kg	*		04/06/17 19:15	
i-n-butyl phthalate	ND	1000		ug/Kg			04/06/17 19:15	
i-n-octyl phthalate	ND	1000		ug/Kg	☆		04/06/17 19:15	
luoranthene	530 J	1000	110	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	
luorene	ND	1000	120	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	
lexachlorobenzene	ND	1000	140	ug/Kg	₽	04/05/17 08:29	04/06/17 19:15	
lexachlorobutadiene	ND	1000	150	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	
Hexachlorocyclopentadiene	ND	1000	140	ug/Kg	☼	04/05/17 08:29	04/06/17 19:15	

TestAmerica Buffalo

2

7

0

10

12

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-9

Date Collected: 04/04/17 13:25

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Tetrachloro-m-xylene

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-9

Matrix: Solid

Percent Solids: 81.4

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachloroethane	ND		1000	130	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 19:15	5
Indeno[1,2,3-cd]pyrene	ND		1000	130	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
Isophorone	ND		1000	220	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
Naphthalene	ND		1000	130	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
Nitrobenzene	ND		1000	110	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
N-Nitrosodi-n-propylamine	ND		1000	170	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
N-Nitrosodiphenylamine	ND		1000	830	ug/Kg	φ.	04/05/17 08:29	04/06/17 19:15	5
Pentachlorophenol	ND		2000	1000	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
Phenanthrene	310	J	1000	150	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
Phenol	ND		1000	160	ug/Kg	₽	04/05/17 08:29	04/06/17 19:15	5
Pyrene	360	J	1000	120	ug/Kg	₩	04/05/17 08:29	04/06/17 19:15	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	105		54 - 120				04/05/17 08:29	04/06/17 19:15	5
2-Fluorobiphenyl	90		60 - 120				04/05/17 08:29	04/06/17 19:15	5
2-Fluorophenol	82		52 - 120				04/05/17 08:29	04/06/17 19:15	5
Nitrobenzene-d5	82		53 - 120				04/05/17 08:29	04/06/17 19:15	5
Phenol-d5	84		54 - 120				04/05/17 08:29	04/06/17 19:15	5
p-Terphenyl-d14	91		65 - 121				04/05/17 08:29	04/06/17 19:15	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND		2.0	0.39	ug/Kg	<u> </u>	04/06/17 07:39	04/07/17 12:20	1
4,4'-DDE	4.0		2.0	0.42	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
4,4'-DDT	4.4		2.0	0.47	ug/Kg	≎	04/06/17 07:39	04/07/17 12:20	1
Aldrin	ND		2.0	0.49	ug/Kg	₽	04/06/17 07:39	04/07/17 12:20	1
alpha-BHC	ND		2.0	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
alpha-Chlordane	ND		2.0	0.99	ug/Kg	≎	04/06/17 07:39	04/07/17 12:20	1
beta-BHC	ND		2.0		ug/Kg		04/06/17 07:39	04/07/17 12:20	1
delta-BHC	ND		2.0	0.37	ug/Kg	≎	04/06/17 07:39	04/07/17 12:20	1
Dieldrin	ND		2.0	0.48	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
Endosulfan I	ND		2.0	0.38	ug/Kg	φ.	04/06/17 07:39	04/07/17 12:20	1
Endosulfan II	ND		2.0	0.36	ug/Kg	≎	04/06/17 07:39	04/07/17 12:20	1
Endosulfan sulfate	ND		2.0	0.37	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
Endrin	ND		2.0	0.39	ug/Kg	₽	04/06/17 07:39	04/07/17 12:20	1
Endrin aldehyde	ND		2.0	0.51	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
Endrin ketone	ND		2.0	0.49	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
gamma-BHC (Lindane)	ND		2.0	0.37	ug/Kg	₽	04/06/17 07:39	04/07/17 12:20	1
gamma-Chlordane	ND		2.0	0.63	ug/Kg	≎	04/06/17 07:39	04/07/17 12:20	1
Heptachlor	ND		2.0	0.43	ug/Kg	≎	04/06/17 07:39	04/07/17 12:20	1
Heptachlor epoxide	ND		2.0	0.51	ug/Kg	ф	04/06/17 07:39	04/07/17 12:20	1
Methoxychlor	ND		2.0	0.41	ug/Kg	☼	04/06/17 07:39	04/07/17 12:20	1
Toxaphene	ND		20	12	ug/Kg	₩	04/06/17 07:39	04/07/17 12:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	158	X	45 - 120				04/06/17 07:39	04/07/17 12:20	1

TestAmerica Buffalo

04/06/17 07:39 04/07/17 12:20

30 - 124

60

3

5

7

9

10

12

4

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-9

Date Collected: 04/04/17 13:25

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-9

Matrix: Solid

Percent Solids: 81.4

Method: 8151A - Herbicides Analyte	(GC) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		13	ug/Kg	<u></u>	04/05/17 09:29	04/07/17 21:17	1
Silvex (2,4,5-TP)	ND	20	7.3	ug/Kg	₩	04/05/17 09:29	04/07/17 21:17	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	86	28 - 129				04/05/17 09:29	04/07/17 21:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9760		12.8	5.6	mg/Kg	<u></u>	04/05/17 16:15	04/10/17 17:46	1
Antimony	ND		19.3	0.51	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Arsenic	10.7		2.6	0.51	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Barium	55.3		0.64	0.14	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Beryllium	0.44		0.26	0.036	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Cadmium	0.19	J	0.26	0.039	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Calcium	583		64.2	4.2	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Chromium	15.0	В	0.64	0.26	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Cobalt	7.9		0.64	0.064	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Copper	25.9		1.3	0.27	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Iron	26600		12.8	4.5	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Lead	55.9		1.3	0.31	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Magnesium	2620		25.7	1.2	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:46	1
Manganese	607	В	0.26	0.041	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Nickel	17.7		6.4	0.30	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Potassium	1070		38.5	25.7	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Selenium	0.76	J	5.1	0.51	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Silver	ND		0.77	0.26	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Sodium	47.8	JB	180	16.7	mg/Kg	₽	04/05/17 16:15	04/10/17 17:46	1
Thallium	ND		7.7	0.39	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Vanadium	18.1		0.64	0.14	mg/Kg	☼	04/05/17 16:15	04/10/17 17:46	1
Zinc	80.3		2.6	0.82	mg/Kg		04/05/17 16:15	04/10/17 17:46	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.076		0.024	0.0099	mg/Kg	₩	04/05/17 09:15	04/05/17 12:25	1

Client Sample ID: B-6

Date Collected: 04/04/17 16:00

Matrix: Solid

Date Received: 04/05/17 01:00

Lab Sample ID: 480-115585-10

Matrix: Solid

Percent Solids: 85.2

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	200	53	ug/Kg	<u> </u>	04/05/17 08:29	04/06/17 19:41	1
2,4,6-Trichlorophenol	ND	200	39	ug/Kg	≎	04/05/17 08:29	04/06/17 19:41	1
2,4-Dichlorophenol	ND	200	21	ug/Kg	☆	04/05/17 08:29	04/06/17 19:41	1
2,4-Dimethylphenol	ND	200	48	ug/Kg	₿	04/05/17 08:29	04/06/17 19:41	1
2,4-Dinitrophenol	ND	1900	910	ug/Kg	☆	04/05/17 08:29	04/06/17 19:41	1
2,4-Dinitrotoluene	ND	200	41	ug/Kg	☆	04/05/17 08:29	04/06/17 19:41	1
2,6-Dinitrotoluene	ND	200	23	ug/Kg	\$	04/05/17 08:29	04/06/17 19:41	1
2-Chloronaphthalene	ND	200	33	ug/Kg	☼	04/05/17 08:29	04/06/17 19:41	1
2-Chlorophenol	ND	200	36	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1

TestAmerica Buffalo

Page 39 of 80

2

Ē

8

10

12

1 1

Client: Barton & Loguidice, D.P.C.

Date Collected: 04/04/17 16:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Client Sample ID: B-6

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-10

Matrix: Solid

Percent Solids: 85.2

Method: 8270D - Semivolatil Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		200	39	ug/Kg	<u></u>	04/05/17 08:29	04/06/17 19:41	1
2-Methylphenol	ND		200	23	ug/Kg		04/05/17 08:29	04/06/17 19:41	1
2-Nitroaniline	ND		380	29	ug/Kg	₽	04/05/17 08:29	04/06/17 19:41	1
2-Nitrophenol	ND		200	56	ug/Kg	ф.	04/05/17 08:29	04/06/17 19:41	1
3,3'-Dichlorobenzidine	ND		380	230	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
3-Nitroaniline	ND		380	55	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
4,6-Dinitro-2-methylphenol	ND		380	200	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 19:41	1
4-Bromophenyl phenyl ether	ND		200	28	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
4-Chloro-3-methylphenol	ND		200	49	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
4-Chloroaniline	ND		200	49			04/05/17 08:29	04/06/17 19:41	1
4-Chlorophenyl phenyl ether	ND		200	24	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
4-Methylphenol	ND		380	23	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
4-Nitroaniline	ND		380	100	ug/Kg		04/05/17 08:29	04/06/17 19:41	1
4-Nitrophenol	ND		380	140	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Acenaphthene	ND		200	29	ug/Kg	₽	04/05/17 08:29	04/06/17 19:41	1
Acenaphthylene	ND		200		ug/Kg	φ.	04/05/17 08:29	04/06/17 19:41	1
Acetophenone	ND		200	27		☆	04/05/17 08:29	04/06/17 19:41	1
Anthracene	ND		200	49		☆	04/05/17 08:29	04/06/17 19:41	1
Atrazine	ND		200		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/05/17 08:29	04/06/17 19:41	
Benzaldehyde	ND		200		ug/Kg ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
•	90	J	200		ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 19:41	1
Benzo[a]anthracene	82		200		ug/Kg	φ.	04/05/17 08:29	04/06/17 19:41	
Benzo[a]pyrene	150		200	31	ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 19:41	1
Benzo[b]fluoranthene	61	J	200		ug/Kg ug/Kg	₽	04/05/17 08:29	04/06/17 19:41	1
Benzo[g,h,i]perylene			200				04/05/17 08:29	04/06/17 19:41	1
Benzo[k]fluoranthene	64 ND	J	200		ug/Kg ug/Kg	≎			1
Biphenyl	ND ND		200	29 39	ug/Kg ug/Kg	≎	04/05/17 08:29 04/05/17 08:29	04/06/17 19:41 04/06/17 19:41	1
bis (2-chloroisopropyl) ether	ND								
Bis(2-chloroethoxy)methane	ND ND		200 200		ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Bis(2-chloroethyl)ether	ND ND			26	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Bis(2-ethylhexyl) phthalate			200	67			04/05/17 08:29	04/06/17 19:41	1
Butyl benzyl phthalate	ND		200		ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Caprolactam	ND		200	59	ug/Kg	*	04/05/17 08:29	04/06/17 19:41	1
Carbazole	ND	<u>.</u>	200		ug/Kg		04/05/17 08:29	04/06/17 19:41	1
Chrysene	130	J	200		ug/Kg	☆	04/05/17 08:29	04/06/17 19:41	1
Dibenz(a,h)anthracene	ND		200		ug/Kg	₩		04/06/17 19:41	1
Dibenzofuran	ND		200		ug/Kg		04/05/17 08:29	04/06/17 19:41	1
Diethyl phthalate	ND		200		ug/Kg	φ.	04/05/17 08:29	04/06/17 19:41	1
Dimethyl phthalate	ND		200		ug/Kg	φ.	04/05/17 08:29	04/06/17 19:41	1
Di-n-butyl phthalate	ND		200		ug/Kg	T.	04/05/17 08:29	04/06/17 19:41	
Di-n-octyl phthalate	ND		200		ug/Kg	.;;	04/05/17 08:29	04/06/17 19:41	1
Fluoranthene	240		200	21		.;;	04/05/17 08:29	04/06/17 19:41	1
Fluorene	ND		200		ug/Kg		04/05/17 08:29	04/06/17 19:41	1
Hexachlorobenzene	ND		200		ug/Kg	\$	04/05/17 08:29	04/06/17 19:41	1
Hexachlorobutadiene	ND		200	29		☆ .	04/05/17 08:29	04/06/17 19:41	1
Hexachlorocyclopentadiene	ND		200		ug/Kg	#	04/05/17 08:29	04/06/17 19:41	1
Hexachloroethane	ND		200		ug/Kg	₩		04/06/17 19:41	1
Indeno[1,2,3-cd]pyrene	57	J	200		ug/Kg	☼		04/06/17 19:41	1
Isophorone	ND		200	42	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Naphthalene	ND		200	26	ug/Kg	☼	04/05/17 08:29	04/06/17 19:41	1

TestAmerica Buffalo

2

5

7

9

11

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Client Sample ID: B-6

Date Collected: 04/04/17 16:00

Date Received: 04/05/17 01:00

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-10

Matrix: Solid

Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrobenzene	ND		200	22	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
N-Nitrosodi-n-propylamine	ND		200	34	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
N-Nitrosodiphenylamine	ND		200	160	ug/Kg	☆	04/05/17 08:29	04/06/17 19:41	1
Pentachlorophenol	ND		380	200	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Phenanthrene	70	J	200	29	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Phenol	ND		200	30	ug/Kg	☆	04/05/17 08:29	04/06/17 19:41	1
Pyrene	170	J	200	23	ug/Kg	₩	04/05/17 08:29	04/06/17 19:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	97		54 - 120				04/05/17 08:29	04/06/17 19:41	1
2-Fluorobiphenyl	81		60 - 120				04/05/17 08:29	04/06/17 19:41	1
2-Fluorophenol	65		52 - 120				04/05/17 08:29	04/06/17 19:41	1
Nitrobenzene-d5	73		53 - 120				04/05/17 08:29	04/06/17 19:41	1
Phenol-d5	69		54 - 120				04/05/17 08:29	04/06/17 19:41	1
p-Terphenyl-d14	87		65 - 121				04/05/17 08:29	04/06/17 19:41	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND		2.0	0.38	ug/Kg	<u></u>	04/06/17 07:39	04/07/17 12:39	1
4,4'-DDE	ND		2.0	0.41	ug/Kg	☆	04/06/17 07:39	04/07/17 12:39	1
4,4'-DDT	ND		2.0	0.46	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Aldrin	ND		2.0	0.48	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
alpha-BHC	ND		2.0	0.35	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
alpha-Chlordane	ND		2.0	0.97	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
beta-BHC	ND		2.0	0.35	ug/Kg	☆	04/06/17 07:39	04/07/17 12:39	1
delta-BHC	ND		2.0	0.36	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Dieldrin	ND		2.0	0.47	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Endosulfan I	ND		2.0	0.37	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Endosulfan II	ND		2.0	0.35	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Endosulfan sulfate	ND		2.0	0.36	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Endrin	ND		2.0	0.39	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Endrin aldehyde	ND		2.0	0.50	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Endrin ketone	ND		2.0	0.48	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
gamma-BHC (Lindane)	ND		2.0	0.36	ug/Kg	\$	04/06/17 07:39	04/07/17 12:39	1
gamma-Chlordane	ND		2.0	0.62	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Heptachlor	ND		2.0	0.42	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Heptachlor epoxide	ND		2.0	0.50	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Methoxychlor	ND		2.0	0.40	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Toxaphene	ND		20	11	ug/Kg	₩	04/06/17 07:39	04/07/17 12:39	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 8082A - Polye	Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
PCB-1016	ND ND	0.21	0.042	mg/Kg	<u> </u>	04/05/17 11:54	04/06/17 01:31	1		
PCB-1221	ND	0.21	0.042	mg/Kg	☼	04/05/17 11:54	04/06/17 01:31	1		
PCB-1232	ND	0.21	0.042	mg/Kg	☼	04/05/17 11:54	04/06/17 01:31	1		
PCB-1242	ND	0.21	0.042	mg/Kg	₽	04/05/17 11:54	04/06/17 01:31	1		

45 - 120

30 - 124

114

61

TestAmerica Buffalo

04/06/17 07:39 04/07/17 12:39

Page 41 of 80

4/13/2017

Client: Barton & Loguidice, D.P.C.

Date Collected: 04/04/17 16:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Mercury

Client Sample ID: B-6

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-10

Matrix: Solid

Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1248	ND		0.21	0.042	mg/Kg	<u>₩</u>	04/05/17 11:54	04/06/17 01:31	1
PCB-1254	ND		0.21	0.10	mg/Kg	≎	04/05/17 11:54	04/06/17 01:31	1
PCB-1260	ND		0.21	0.10	mg/Kg	₩	04/05/17 11:54	04/06/17 01:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	134		65 - 174				04/05/17 11:54	04/06/17 01:31	
Tetrachloro-m-xylene	116		60 - 154				04/05/17 11:54	04/06/17 01:31	1
Method: 8151A - Herbicides (G	C)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		20	12	ug/Kg	<u>∓</u>	04/05/17 09:29	04/07/17 22:17	1
Silvex (2,4,5-TP)	ND		20	7.0	ug/Kg	₩	04/05/17 09:29	04/07/17 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	88		28 - 129				04/05/17 09:29	04/07/17 22:17	1
Method: 6010C - Metals (ICP)	Danult	Overlities.	DI.	MDI	1114	_	Durananad	A a b a d	D:: F
Analyte		Qualifier	RL 12.3		Unit	— D ङ	Prepared 04/05/17 16:15	Analyzed 04/10/17 17:49	Dil Fac
Aluminum	9450				mg/Kg	*			1
Antimony	ND		18.5		mg/Kg	*		04/10/17 17:49	1
Arsenic 	6.8		2.5		mg/Kg			04/10/17 17:49	1
Barium 	43.2		0.62		mg/Kg	☆		04/10/17 17:49	1
Beryllium	0.39		0.25		mg/Kg	₩ ₩		04/10/17 17:49	1
Cadmium	0.084	. J	0.25		mg/Kg	_{J.} .		04/10/17 17:49	1
Calcium	913		61.7		mg/Kg	₩.		04/10/17 17:49	1
Chromium	15.0	В	0.62		mg/Kg	₩		04/10/17 17:49	1
Cobalt	9.0		0.62		mg/Kg	, .		04/10/17 17:49	1
Copper	14.9		1.2		mg/Kg	*		04/10/17 17:49	1
Iron	21000		12.3		mg/Kg	**		04/10/17 17:49	1
Lead	14.5		1.2		mg/Kg		04/05/17 16:15	04/10/17 17:49	1
Magnesium	3190		24.7		mg/Kg	₩	04/05/17 16:15	04/10/17 17:49	1
Manganese	481	В	0.25		mg/Kg	☆	04/05/17 16:15	04/10/17 17:49	1
Nickel	22.3		6.2	0.28	mg/Kg	≎	04/05/17 16:15	04/10/17 17:49	1
Potassium	911		37.0	24.7	mg/Kg	₽	04/05/17 16:15	04/10/17 17:49	1
Selenium	ND		4.9	0.49	mg/Kg	₩	04/05/17 16:15	04/10/17 17:49	1
Silver	ND		0.74	0.25	mg/Kg	☆	04/05/17 16:15	04/10/17 17:49	1
Sodium	89.8	JB	173	16.0	mg/Kg	₽	04/05/17 16:15	04/10/17 17:49	1
Thallium	ND		7.4	0.37	mg/Kg	☆	04/05/17 16:15	04/10/17 17:49	1
Vanadium	14.9		0.62	0.14	mg/Kg	☆	04/05/17 16:15	04/10/17 17:49	1
Zinc	48.5		2.5	0.79	mg/Kg		04/05/17 16:15	04/10/17 17:49	1
Method: 7471B - Mercury (CVA	A)								
Analyte	D 14	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac

0.022

0.0088 mg/Kg

0.054

3

_

6

8

9

11

Client: Barton & Loguidice, D.P.C.

Date Collected: 04/04/17 15:20

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Client Sample ID: B-7

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-11

Matrix: Solid

Percent Solids: 83.2

Method: 8270D - Semivolatile Analyte	e Organic Comp Result Qu		MDL	Unit	D	Prepared	Analyzed	Dil Fa
	ND Result Qu	200	54	ug/Kg	— ğ	04/05/17 08:29	04/06/17 20:08	DII Fa
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND	200		ug/Kg ug/Kg	т Ф	04/05/17 08:29		
2,4-Dichlorophenol	ND ND	200		ug/Kg ug/Kg		04/05/17 08:29	04/06/17 20:08	
	ND	200						
2,4-Dimethylphenol	ND ND	2000		ug/Kg	☆			
2,4-Dinitrophenol 2.4-Dinitrotoluene	ND ND	2000	920	ug/Kg	☆	04/05/17 08:29	04/06/17 20:08	
	ND ND	200	41	ug/Kg		04/05/17 08:29	04/06/17 20:08	
2,6-Dinitrotoluene			24	0 0	₩	04/05/17 08:29	04/06/17 20:08	
2-Chloronaphthalene	ND	200		0 0		04/05/17 08:29	04/06/17 20:08	
2-Chlorophenol	ND	200		ug/Kg		04/05/17 08:29		
2-Methylnaphthalene	ND	200		ug/Kg	*		04/06/17 20:08	
2-Methylphenol	ND	200		0 0	☆			
2-Nitroaniline	ND	390	29	ug/Kg		04/05/17 08:29	04/06/17 20:08	
2-Nitrophenol	ND	200		ug/Kg	ψ.	04/05/17 08:29		
3,3'-Dichlorobenzidine	ND	390	240	• •	☆		04/06/17 20:08	
3-Nitroaniline	ND	390		ug/Kg		04/05/17 08:29	04/06/17 20:08	
4,6-Dinitro-2-methylphenol	ND	390		ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
4-Bromophenyl phenyl ether	ND	200	28	ug/Kg	₽.	04/05/17 08:29		
4-Chloro-3-methylphenol	ND	200	49	ug/Kg	₽	04/05/17 08:29		
4-Chloroaniline	ND	200	49	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
4-Chlorophenyl phenyl ether	ND	200	25	ug/Kg	≎	04/05/17 08:29	04/06/17 20:08	
4-Methylphenol	ND	390	24	ug/Kg	≎	04/05/17 08:29	04/06/17 20:08	
4-Nitroaniline	ND	390	100	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
4-Nitrophenol	ND	390	140	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
Acenaphthene	ND	200	29	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
Acenaphthylene	ND	200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
Acetophenone	ND	200	27	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
Anthracene	ND	200	49	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
Atrazine	ND	200	69	ug/Kg	≎	04/05/17 08:29	04/06/17 20:08	
Benzaldehyde	ND	200	160	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
Benzo[a]anthracene	ND	200	20	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
Benzo[a]pyrene	ND	200	29	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
Benzo[b]fluoranthene	ND	200	32	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
Benzo[g,h,i]perylene	ND	200	21	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	
Benzo[k]fluoranthene	ND	200	26	ug/Kg		04/05/17 08:29	04/06/17 20:08	
Biphenyl	ND	200	29	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
bis (2-chloroisopropyl) ether	ND	200		ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	
Bis(2-chloroethoxy)methane	ND	200		ug/Kg			04/06/17 20:08	
Bis(2-chloroethyl)ether	ND	200		ug/Kg	₩		04/06/17 20:08	
Bis(2-ethylhexyl) phthalate	ND	200		ug/Kg	₩		04/06/17 20:08	
Butyl benzyl phthalate	ND	200		ug/Kg	ф.		04/06/17 20:08	
Caprolactam	ND	200		ug/Kg	₽		04/06/17 20:08	
Carbazole	ND	200		ug/Kg	₽		04/06/17 20:08	
Chrysene	ND	200		ug/Kg			04/06/17 20:08	
Dibenz(a,h)anthracene	ND	200		ug/Kg			04/06/17 20:08	
Dibenzofuran	ND	200		ug/Kg	₩		04/06/17 20:08	
Diethyl phthalate	ND	200		ug/Kg ug/Kg			04/06/17 20:08	
Dietriyi primalate Dimethyl phthalate	ND ND	200		ug/Kg ug/Kg	₩		04/06/17 20:08	
• •					₩			
Di-n-butyl phthalate Di-n-octyl phthalate	ND ND	200		ug/Kg ug/Kg			04/06/17 20:08 04/06/17 20:08	

TestAmerica Buffalo

4

6

8

10

12

14

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: B-7

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-11

Matrix: Solid

Date Collected: 04/04/17 15:20 Date Received: 04/05/17 01:00 Percent Solids: 83.2

Method: 8270D - Semivolat Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		200	21	ug/Kg	₩	04/05/17 08:29	04/06/17 20:08	1
Fluorene	ND		200	24	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	1
Hexachlorobenzene	ND		200	27	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	1
Hexachlorobutadiene	ND		200	29	ug/Kg	≎	04/05/17 08:29	04/06/17 20:08	1
Hexachlorocyclopentadiene	ND		200	27	ug/Kg	≎	04/05/17 08:29	04/06/17 20:08	1
Hexachloroethane	ND		200	26	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	1
Indeno[1,2,3-cd]pyrene	ND		200	25	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	1
Isophorone	ND		200	42	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	1
Naphthalene	ND		200	26	ug/Kg	φ.	04/05/17 08:29	04/06/17 20:08	1
Nitrobenzene	ND		200	22	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	1
N-Nitrosodi-n-propylamine	ND		200	34	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	1
N-Nitrosodiphenylamine	ND		200	160	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	1
Pentachlorophenol	ND		390	200	ug/Kg	☼	04/05/17 08:29	04/06/17 20:08	1
Phenanthrene	ND		200	29	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	1
Phenol	ND		200	31	ug/Kg	₽	04/05/17 08:29	04/06/17 20:08	1
Pyrene	ND		200	24	ug/Kg	☆	04/05/17 08:29	04/06/17 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	98		54 - 120				04/05/17 08:29	04/06/17 20:08	1
2-Fluorobiphenyl	83		60 - 120				04/05/17 08:29	04/06/17 20:08	1
2-Fluorophenol	72		52 - 120				04/05/17 08:29	04/06/17 20:08	1
Nitrobenzene-d5	79		53 - 120				04/05/17 08:29	04/06/17 20:08	1
Phenol-d5	73		54 ₋ 120				04/05/17 08:29	04/06/17 20:08	1
p-Terphenyl-d14	94		65 - 121				04/05/17 08:29	04/06/17 20:08	1

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	2.0	0.38	ug/Kg	<u> </u>	04/06/17 07:39	04/07/17 12:59	1
4,4'-DDE	ND	2.0	0.41	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
4,4'-DDT	ND	2.0	0.46	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Aldrin	ND	2.0	0.49	ug/Kg	₩	04/06/17 07:39	04/07/17 12:59	1
alpha-BHC	ND	2.0	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
alpha-Chlordane	ND	2.0	0.98	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
beta-BHC	ND	2.0	0.36	ug/Kg	φ.	04/06/17 07:39	04/07/17 12:59	1
delta-BHC	ND	2.0	0.37	ug/Kg	₩	04/06/17 07:39	04/07/17 12:59	1
Dieldrin	ND	2.0	0.47	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Endosulfan I	ND	2.0	0.38	ug/Kg		04/06/17 07:39	04/07/17 12:59	1
Endosulfan II	ND	2.0	0.36	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Endosulfan sulfate	ND	2.0	0.37	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Endrin	ND	2.0	0.39	ug/Kg	₽	04/06/17 07:39	04/07/17 12:59	1
Endrin aldehyde	ND	2.0	0.50	ug/Kg	₩	04/06/17 07:39	04/07/17 12:59	1
Endrin ketone	ND	2.0	0.49	ug/Kg	₩	04/06/17 07:39	04/07/17 12:59	1
gamma-BHC (Lindane)	ND	2.0	0.36	ug/Kg	₽	04/06/17 07:39	04/07/17 12:59	1
gamma-Chlordane	ND	2.0	0.63	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Heptachlor	ND	2.0	0.43	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Heptachlor epoxide	ND	2.0	0.51	ug/Kg		04/06/17 07:39	04/07/17 12:59	1
Methoxychlor	ND	2.0	0.40	ug/Kg	☼	04/06/17 07:39	04/07/17 12:59	1
Toxaphene	ND	20	11	ug/Kg	≎	04/06/17 07:39	04/07/17 12:59	1

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C.

Date Collected: 04/04/17 15:20

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Client Sample ID: B-7

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-11

Matrix: Solid

Percent Solids: 83.2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	89		45 - 120	04/06/17 07:39	04/07/17 12:59	1
Tetrachloro-m-xylene	62		30 - 124	04/06/17 07:39	04/07/17 12:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.044	mg/Kg	<u></u>	04/05/17 11:54	04/06/17 01:47	1
PCB-1221	ND		0.22	0.044	mg/Kg	☼	04/05/17 11:54	04/06/17 01:47	1
PCB-1232	ND		0.22	0.044	mg/Kg	₽	04/05/17 11:54	04/06/17 01:47	1
PCB-1242	ND		0.22	0.044	mg/Kg	₽	04/05/17 11:54	04/06/17 01:47	1
PCB-1248	ND		0.22	0.044	mg/Kg	☼	04/05/17 11:54	04/06/17 01:47	1
PCB-1254	ND		0.22	0.10	mg/Kg	☼	04/05/17 11:54	04/06/17 01:47	1
PCB-1260	ND		0.22	0.10	mg/Kg	\$	04/05/17 11:54	04/06/17 01:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	123		65 - 174				04/05/17 11:54	04/06/17 01:47	1
Tetrachloro-m-xylene	112		60 - 154				04/05/17 11:54	04/06/17 01:47	1

Method: 8151A - Herbicide Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D					ug/Kg		04/05/17 09:29		1
Silvex (2,4,5-TP)	ND		20	7.0	ug/Kg	₩	04/05/17 09:29	04/07/17 22:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	88		28 - 129				04/05/17 09:29	04/07/17 22:47	1

	•						0 0 0 0 0 2 0	• •	•
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13700	-	11.8	5.2	mg/Kg	<u> </u>	04/05/17 16:15	04/10/17 17:53	1
Antimony	ND		17.7	0.47	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Arsenic	8.4		2.4	0.47	mg/Kg	₽	04/05/17 16:15	04/10/17 17:53	1
Barium	59.4		0.59	0.13	mg/Kg	₽	04/05/17 16:15	04/10/17 17:53	1
Beryllium	0.57		0.24	0.033	mg/Kg	₽	04/05/17 16:15	04/10/17 17:53	1
Cadmium	0.12	J	0.24	0.035	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Calcium	1110		59.0	3.9	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Chromium	20.5	В	0.59	0.24	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Cobalt	10.3		0.59	0.059	mg/Kg	₩	04/05/17 16:15	04/10/17 17:53	1
Copper	22.7		1.2	0.25	mg/Kg		04/05/17 16:15	04/10/17 17:53	1
Iron	23000		11.8	4.1	mg/Kg	₽	04/05/17 16:15	04/10/17 17:53	1
Lead	27.4		1.2	0.28	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Magnesium	2800		23.6	1.1	mg/Kg	φ.	04/05/17 16:15	04/10/17 17:53	1
Manganese	985	В	0.24	0.038	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Nickel	24.6		5.9	0.27	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Potassium	1190		35.4	23.6	mg/Kg		04/05/17 16:15	04/10/17 17:53	1
Selenium	1.3	J	4.7	0.47	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Silver	ND		0.71	0.24	mg/Kg	≎	04/05/17 16:15	04/10/17 17:53	1
Sodium	183	В	165	15.4	mg/Kg		04/05/17 16:15	04/10/17 17:53	1
Thallium	ND		7.1	0.35	mg/Kg	₽	04/05/17 16:15	04/10/17 17:53	1
Vanadium	21.8		0.59	0.13	mg/Kg	₩	04/05/17 16:15	04/10/17 17:53	1
Zinc	62.8		2.4	0.76	mg/Kg		04/05/17 16:15	04/10/17 17:53	1

3

4

6

R

9

11

12

14

Client: Barton & Loguidice, D.P.C.

Date Received: 04/05/17 01:00

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Client Sample ID: B-7 Lab Sample ID: 480-115585-11

Date Collected: 04/04/17 15:20 **Matrix: Solid**

Percent Solids: 83.2

Method: 7471B - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared

Analyzed Dil Fac ☼ 04/05/17 09:15 04/05/17 12:28 Mercury 0.022 0.0091 mg/Kg 0.060

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(60-140)	(71-125)
480-115585-2	SAMPLE-2	101	84	101	96
480-115585-3	SAMPLE-3	103	91	100	92
480-115585-4	SAMPLE-4	103	91	102	93
LCS 480-350348/1-A	Lab Control Sample	97	99	103	93
LCSD 480-350348/2-A	Lab Control Sample Dup	97	99	103	94
MB 480-350348/3-A	Method Blank	98	94	100	92

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

-							1 Tep 1
			Pe	ercent Surre	ogate Reco	very (Acce	otance Limits)
		TBP	FBP	2FP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(54-120)	(60-120)	(52-120)	(53-120)	(54-120)	(65-121)
480-115585-1	SAMPLE-1	98	72	63	65	66	87
480-115585-2	SAMPLE-2	98	72	60	65	63	83
480-115585-3	SAMPLE-3	94	75	65	72	69	85
480-115585-4	SAMPLE-4	100	78	69	76	72	87
480-115585-5	SAMPLE-5	135 X	86	75	79	77	82
480-115585-6	SAMPLE-6	97	81	72	73	72	76
480-115585-7	SAMPLE-7	87	70	64	68	67	77
480-115585-8	SAMPLE-8	100	85	69	77	70	95
480-115585-9	SAMPLE-9	105	90	82	82	84	91
480-115585-10	B-6	97	81	65	73	69	87
480-115585-11	B-7	98	83	72	79	73	94
LCS 480-350312/2-A	Lab Control Sample	104	78	67	76	68	86
MB 480-350312/1-A	Method Blank	98	81	68	73	72	85

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

_			Pe	ercent Surrogate Recovery (Acceptance Limits)
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(45-120)	(30-124)	
480-115585-1	SAMPLE-1	97	59	
480-115585-5	SAMPLE-5	121 X	60	
480-115585-6	SAMPLE-6	98	55	

TestAmerica Buffalo

Page 47 of 80

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

		DCB2	TCX2	urrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(45-120)	(30-124)	
480-115585-7	SAMPLE-7	87	56	
480-115585-8	SAMPLE-8	108	82	
480-115585-8 MS	SAMPLE-8	99	81	
480-115585-8 MSD	SAMPLE-8	88	78	
480-115585-9	SAMPLE-9	158 X	60	
480-115585-10	B-6	114	61	
480-115585-11	B-7	89	62	
LCS 480-350519/2-A	Lab Control Sample	100	59	
MB 480-350519/1-A	Method Blank	88	55	

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		DCB1	TCX1				
Lab Sample ID	Client Sample ID	(65-174)	(60-154)				
480-115585-5	SAMPLE-5	104	102				
480-115585-6	SAMPLE-6	119	107				
480-115585-10	B-6	134	116				
480-115585-11	B-7	123	112				
LCS 480-350405/2-A	Lab Control Sample	144	123				
MB 480-350405/1-A	Method Blank	131	109				

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPA1	
Lab Sample ID	Client Sample ID	(28-129)	
480-115585-1	SAMPLE-1	90	
480-115585-1 MS	SAMPLE-1	91	
480-115585-1 MSD	SAMPLE-1	94	
480-115585-5	SAMPLE-5	92	
480-115585-6	SAMPLE-6	82	
480-115585-7	SAMPLE-7	87	
480-115585-8	SAMPLE-8	86	
480-115585-9	SAMPLE-9	86	
480-115585-10	B-6	88	
480-115585-11	B-7	88	
LCS 480-350340/2-A	Lab Control Sample	99	
MB 480-350340/1-A	Method Blank	98	

Page 48 of 80

Surrogate Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Surrogate Legend

DCPA = 2,4-Dichlorophenylacetic acid

3

6

0

10

13

14

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-350348/3-A

Matrix: Solid

Xylenes, Total

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 350348

Analysis Batch: 350309								Prep Batch:	350348
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/Kg		-	04/05/17 12:52	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg			04/05/17 12:52	
1,1,2-Trichloroethane	ND		5.0		ug/Kg			04/05/17 12:52	
1,1-Dichloroethane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,1-Dichloroethane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,2,4-Trichlorobenzene	ND		5.0		ug/Kg			04/05/17 12:52	' 1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,2-Dibromoethane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,2-Dishorhoethane	ND		5.0		ug/Kg			04/05/17 12:52	
1,2-Dichloroethane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,2-Dichloropernane	ND		5.0		ug/Kg			04/05/17 12:52	1
1,3-Dichlorobenzene	ND		5.0		ug/Kg			04/05/17 12:52	
1,4-Dichlorobenzene	ND ND		5.0		ug/Kg ug/Kg			04/05/17 12:52	1
	ND ND		25					04/05/17 12:52	1
2-Butanone (MEK) 2-Hexanone	ND		25		ug/Kg			04/05/17 12:52	ا 1
4-Methyl-2-pentanone (MIBK)	ND ND		25 25		ug/Kg ug/Kg			04/05/17 12:52	1
, , ,	ND ND		25 25					04/05/17 12:52	1
Acetone	ND		5.0		ug/Kg			04/05/17 12:52	ا 1
Bronzeliahlaramathana	ND ND				ug/Kg				
Bromodichloromethane	ND ND		5.0		ug/Kg			04/05/17 12:52 04/05/17 12:52	1
Bromoform			5.0		ug/Kg				1
Bromomethane	ND		5.0		ug/Kg			04/05/17 12:52	1
Carbon disulfide	ND ND		5.0		ug/Kg			04/05/17 12:52	1
Carbon tetrachloride			5.0		ug/Kg			04/05/17 12:52	1
Chlorobenzene	ND		5.0		ug/Kg			04/05/17 12:52	1
Chloroethane	ND ND		5.0	1.1	ug/Kg			04/05/17 12:52	1
Chloroform			5.0		ug/Kg			04/05/17 12:52	1
Chloromethane	ND		5.0		ug/Kg			04/05/17 12:52	1
cis-1,2-Dichloroethene	ND		5.0		ug/Kg			04/05/17 12:52	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			04/05/17 12:52	1
Cyclohexane	ND		5.0		ug/Kg			04/05/17 12:52	1
Dibromochloromethane	ND		5.0		ug/Kg			04/05/17 12:52	1
Dichlorodifluoromethane	ND		5.0		ug/Kg			04/05/17 12:52	1
Ethylbenzene	ND		5.0		ug/Kg			04/05/17 12:52	1
Isopropylbenzene	ND		5.0		ug/Kg			04/05/17 12:52	1
Methyl acetate	ND		25		ug/Kg			04/05/17 12:52	1
Methyl tert-butyl ether	ND		5.0		ug/Kg			04/05/17 12:52	1
Methylcyclohexane	ND		5.0		ug/Kg			04/05/17 12:52	1
Methylene Chloride	ND		5.0		ug/Kg			04/05/17 12:52	
Styrene	ND		5.0		ug/Kg			04/05/17 12:52	1
Tetrachloroethene	ND		5.0		ug/Kg			04/05/17 12:52	1
Toluene	ND		5.0		ug/Kg			04/05/17 12:52	
trans-1,2-Dichloroethene	ND		5.0		ug/Kg			04/05/17 12:52	1
trans-1,3-Dichloropropene	ND		5.0		ug/Kg			04/05/17 12:52	1
Trichloroethene	ND		5.0		ug/Kg			04/05/17 12:52	
Trichlorofluoromethane	ND		5.0		ug/Kg			04/05/17 12:52	1
Vinyl chloride	ND		5.0	0.61	ug/Kg		04/05/17 09:57	04/05/17 12:52	1

TestAmerica Buffalo

04/05/17 09:57 04/05/17 12:52

10

0.84 ug/Kg

ND

_

J

5

0

8

10

12

1 /

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		64 - 126	04/05/17 09:57	04/05/17 12:52	1
4-Bromofluorobenzene (Surr)	94		72 - 126	04/05/17 09:57	04/05/17 12:52	1
Dibromofluoromethane (Surr)	100		60 - 140	04/05/17 09:57	04/05/17 12:52	1
Toluene-d8 (Surr)	92		71 - 125	04/05/17 09:57	04/05/17 12:52	1
_						

Lab Sample ID: LCS 480-350348/1-A

Matrix: Solid

Analysis Batch: 350309

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 350348

Analysis Batch: 350309	Spike	LCS	LCS				Prep Batch: 35034 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	48.3		ug/Kg		97	77 - 121
1,1,2,2-Tetrachloroethane	50.0	44.8		ug/Kg		90	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.7		ug/Kg		97	60 - 140
ne							
1,1,2-Trichloroethane	50.0	46.0		ug/Kg		92	78 - 122
1,1-Dichloroethane	50.0	50.2		ug/Kg		100	73 - 126
1,1-Dichloroethene	50.0	50.2		ug/Kg		100	59 ₋ 125
1,2,4-Trichlorobenzene	50.0	40.1		ug/Kg		80	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	41.8		ug/Kg		84	63 - 124
1,2-Dibromoethane	50.0	45.7		ug/Kg		91	78 - 120
1,2-Dichlorobenzene	50.0	42.9		ug/Kg		86	75 - 120
1,2-Dichloroethane	50.0	49.0		ug/Kg		98	77 - 122
1,2-Dichloropropane	50.0	49.3		ug/Kg		99	75 - 124
1,3-Dichlorobenzene	50.0	43.8		ug/Kg		88	74 - 120
1,4-Dichlorobenzene	50.0	43.6		ug/Kg		87	73 - 120
2-Butanone (MEK)	250	271		ug/Kg		108	70 - 134
2-Hexanone	250	237		ug/Kg		95	59 - 130
4-Methyl-2-pentanone (MIBK)	250	228		ug/Kg		91	65 - 133
Acetone	250	281		ug/Kg		112	61 - 137
Benzene	50.0	51.2		ug/Kg		102	79 - 127
Bromodichloromethane	50.0	50.8		ug/Kg		102	80 - 122
Bromoform	50.0	48.1		ug/Kg		96	68 - 126
Bromomethane	50.0	40.5		ug/Kg		81	37 - 149
Carbon disulfide	50.0	46.5		ug/Kg		93	64 - 131
Carbon tetrachloride	50.0	46.8		ug/Kg		94	75 - 135
Chlorobenzene	50.0	44.8		ug/Kg		90	76 - 124
Chloroethane	50.0	44.2		ug/Kg		88	69 - 135
Chloroform	50.0	50.7		ug/Kg		101	80 - 120
Chloromethane	50.0	44.4		ug/Kg		89	63 - 127
cis-1,2-Dichloroethene	50.0	50.1		ug/Kg		100	81 - 120
cis-1,3-Dichloropropene	50.0	49.7		ug/Kg		99	80 - 120
Cyclohexane	50.0	47.7		ug/Kg		95	65 - 120
Dibromochloromethane	50.0	47.1		ug/Kg		94	76 ₋ 125
Dichlorodifluoromethane	50.0	40.2		ug/Kg		80	57 ₋ 142
Ethylbenzene	50.0	45.4		ug/Kg		91	80 - 120
Isopropylbenzene	50.0	41.9		ug/Kg		84	72 ₋ 120
Methyl acetate	250	261		ug/Kg		104	55 - 136
Methyl tert-butyl ether	50.0	48.8		ug/Kg		98	63 - 125
Methylcyclohexane	50.0	46.8		ug/Kg		94	60 - 140
Methylene Chloride	50.0	51.2		ug/Kg		102	61 - 127
Styrene	50.0	44.4		ug/Kg		89	80 - 120
Tetrachloroethene	50.0	43.1		ug/Kg		86	74 - 122
Toluene	50.0	44.4		ug/Kg		89	74 - 128
trans-1,2-Dichloroethene	50.0	50.9		ug/Kg		102	78 - 126

TestAmerica Buffalo

Spike

Added

50.0

50.0

50.0

50.0

Spike

LCS LCS

45.6

48.9

47.3

43.6

LCSD LCSD

Result Qualifier

Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

D

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-350348/1-A

Matrix: Solid

Trichloroethene

Vinyl chloride

Analyte

Analysis Batch: 350309

trans-1,3-Dichloropropene

Trichlorofluoromethane

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 350348**

%Rec. %Rec Limits 91 73 - 123 98 77 - 12995 65 - 146

61 - 133

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		64 - 126
4-Bromofluorobenzene (Surr)	99		72 - 126
Dibromofluoromethane (Surr)	103		60 - 140
Toluene-d8 (Surr)	93		71 - 125

Lab Sample ID: LCSD 480-350348/2-A

Matrix: Solid

Carbon disulfide

Chlorobenzene

Chloromethane

Cyclohexane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Chloroethane

Chloroform

Carbon tetrachloride

Analysis Batch: 350309

Client Sample ID: Lab Control Sample Dup

87

Prep Type: Total/NA Prep Batch: 350348 %Rec. **RPD**

Added Result Qualifier %Rec Limits **RPD** Analyte Unit D Limit 50.0 92 77 - 121 5 1,1,1-Trichloroethane 46.1 ug/Kg 20 1,1,2,2-Tetrachloroethane 50.0 45.3 ug/Kg 91 80 - 1201 20 50.0 46.1 ug/Kg 92 60 - 14020 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 50.0 46.7 ug/Kg 93 78 - 12220 1.1-Dichloroethane 50.0 48.2 96 73 - 12620 ug/Kg 1,1-Dichloroethene 50.0 46.6 ug/Kg 93 59 - 125 8 20 1,2,4-Trichlorobenzene 50.0 38.7 77 64 - 120 20 ug/Kg 1,2-Dibromo-3-Chloropropane 50.0 43.4 ug/Kg 87 63 - 12420 91 20

1,2-Dibromoethane 50.0 45.7 ug/Kg 78 - 120 84 75 - 120 1,2-Dichlorobenzene 50.0 41.9 ug/Kg 77 - 122 1,2-Dichloroethane 50.0 48.1 ug/Kg 96 50.0 48 4 97 1,2-Dichloropropane ug/Kg 75 - 1241,3-Dichlorobenzene 50.0 42.8 ug/Kg 86 74 - 120 1,4-Dichlorobenzene 50.0 42.5 85 73 - 120 ug/Kg 2-Butanone (MEK) 250 271 ug/Kg 108 70 - 134 2-Hexanone 250 244 ug/Kg 98 59 - 130 4-Methyl-2-pentanone (MIBK) 250 231 ug/Kg 93 65 - 133250 283 113 61 - 137 Acetone ug/Kg 50.0 Benzene 49.1 ug/Kg 98 79 - 127 Bromodichloromethane 50.0 50.5 ug/Kg 101 80 - 12250.0 Bromoform 48.1 ug/Kg 96 68 - 126 50.0 81 Bromomethane 40.5 ug/Kg 37 - 149 90

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

44.8

44.5

43 8

42.4

49.0

42.2

48.5

48.9

45.0

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

TestAmerica Buffalo

64 - 131

75 - 135

76 - 124

69 - 135

80 - 120

63 - 127

81 - 120

80 - 120

65 - 120

89

88

85

98

84

97

98

90

20

20 20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

2

2

O

3

2

5

3

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-350348/2-A

Matrix: Solid

Analysis Batch: 350309

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 350348

Analysis Baton. 00000	Spike LCSD		LCSD				%Rec.	1011. 00	RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Dibromochloromethane	50.0	48.4		ug/Kg		97	76 - 125	3	20	
Dichlorodifluoromethane	50.0	38.9		ug/Kg		78	57 - 142	3	20	
Ethylbenzene	50.0	44.1		ug/Kg		88	80 - 120	3	20	
Isopropylbenzene	50.0	41.0		ug/Kg		82	72 - 120	2	20	
Methyl acetate	250	261		ug/Kg		104	55 ₋ 136	0	20	
Methyl tert-butyl ether	50.0	49.0		ug/Kg		98	63 - 125	0	20	
Methylcyclohexane	50.0	44.2		ug/Kg		88	60 - 140	6	20	
Methylene Chloride	50.0	49.6		ug/Kg		99	61 - 127	3	20	
Styrene	50.0	43.5		ug/Kg		87	80 - 120	2	20	
Tetrachloroethene	50.0	41.8		ug/Kg		84	74 - 122	3	20	
Toluene	50.0	43.0		ug/Kg		86	74 - 128	3	20	
trans-1,2-Dichloroethene	50.0	48.0		ug/Kg		96	78 - 126	6	20	
trans-1,3-Dichloropropene	50.0	45.6		ug/Kg		91	73 - 123	0	20	
Trichloroethene	50.0	46.6		ug/Kg		93	77 - 129	5	20	
Trichlorofluoromethane	50.0	45.3		ug/Kg		91	65 - 146	4	20	
Vinyl chloride	50.0	41.5		ug/Kg		83	61 - 133	5	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		64 - 126
4-Bromofluorobenzene (Surr)	99		72 - 126
Dibromofluoromethane (Surr)	103		60 - 140
Toluene-d8 (Surr)	94		71 - 125

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-350312/1-A

Matrix: Solid

Analysis Batch: 350542

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 350312**

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	45	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2,4,6-Trichlorophenol	ND		170	33	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2,4-Dimethylphenol	ND		170	40	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2,4-Dinitrophenol	ND		1600	760	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2,4-Dinitrotoluene	ND		170	34	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2,6-Dinitrotoluene	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2-Chloronaphthalene	ND		170	27	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2-Chlorophenol	ND		170	30	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2-Methylnaphthalene	ND		170	33	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2-Methylphenol	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2-Nitroaniline	ND		320	24	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
2-Nitrophenol	ND		170	47	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
3,3'-Dichlorobenzidine	ND		320	190	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
3-Nitroaniline	ND		320	46	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
4,6-Dinitro-2-methylphenol	ND		320	170	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
4-Bromophenyl phenyl ether	ND		170	23	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
4-Chloro-3-methylphenol	ND		170	41	ug/Kg		04/05/17 08:29	04/06/17 12:38	1

TestAmerica Buffalo

Page 53 of 80

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-350312/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 350542								Prep Batch:	
		MB				_	_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	ND		170	41	ug/Kg		04/05/17 08:29		1
4-Chlorophenyl phenyl ether	ND		170		ug/Kg		04/05/17 08:29		1
4-Methylphenol	ND		320	19			04/05/17 08:29		1
4-Nitroaniline	ND		320		ug/Kg		04/05/17 08:29		1
4-Nitrophenol	ND		320	120	ug/Kg		04/05/17 08:29		1
Acenaphthene	ND		170	24			04/05/17 08:29		1
Acenaphthylene	ND		170	21	0 0		04/05/17 08:29		1
Acetophenone	ND		170		ug/Kg		04/05/17 08:29		1
Anthracene	ND		170	41			04/05/17 08:29		1
Atrazine	ND		170		ug/Kg		04/05/17 08:29		1
Benzaldehyde	ND		170		ug/Kg		04/05/17 08:29		1
Benzo[a]anthracene	ND		170		ug/Kg		04/05/17 08:29		1
Benzo[a]pyrene	ND		170		ug/Kg		04/05/17 08:29		1
Benzo[b]fluoranthene	ND		170		ug/Kg		04/05/17 08:29		1
Benzo[g,h,i]perylene	ND		170		ug/Kg		04/05/17 08:29		1
Benzo[k]fluoranthene	ND		170		ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Biphenyl	ND		170		ug/Kg		04/05/17 08:29		1
bis (2-chloroisopropyl) ether	ND		170	33	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Bis(2-chloroethoxy)methane	ND		170	35	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Bis(2-chloroethyl)ether	ND		170	21	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Bis(2-ethylhexyl) phthalate	ND		170	56	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Butyl benzyl phthalate	ND		170	27	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Caprolactam	ND		170	50	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Carbazole	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Chrysene	ND		170	37	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Dibenz(a,h)anthracene	ND		170	29	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Dibenzofuran	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Diethyl phthalate	ND		170	21	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Dimethyl phthalate	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Di-n-butyl phthalate	ND		170	28	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Di-n-octyl phthalate	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Fluoranthene	ND		170	18	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Fluorene	ND		170	19	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Hexachlorobenzene	ND		170	22	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Hexachlorobutadiene	ND		170	24	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Hexachlorocyclopentadiene	ND		170	22	ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Hexachloroethane	ND		170		ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Indeno[1,2,3-cd]pyrene	ND		170		ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Isophorone	ND		170		ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Naphthalene	ND		170		ug/Kg		04/05/17 08:29	04/06/17 12:38	1
Nitrobenzene	ND		170		ug/Kg		04/05/17 08:29		1
N-Nitrosodi-n-propylamine	ND		170		ug/Kg		04/05/17 08:29		1
N-Nitrosodiphenylamine	ND		170		ug/Kg		04/05/17 08:29		1
Pentachlorophenol	ND		320		ug/Kg		04/05/17 08:29		1
Phenanthrene	ND		170		ug/Kg		04/05/17 08:29		1
Phenol	ND		170		ug/Kg		04/05/17 08:29		
Pyrene	ND		170		ug/Kg		04/05/17 08:29		1
1 310110	ואט		170	19	49/119		5 4700/11 00.29	5-7750717 1Z.50	

TestAmerica Buffalo

Page 54 of 80

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 480-350312/1-A

Matrix: Solid

Analysis Batch: 350542

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 350312

	1110	1110				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	98		54 - 120	04/05/17 08:29	04/06/17 12:38	1
2-Fluorobiphenyl	81		60 - 120	04/05/17 08:29	04/06/17 12:38	1
2-Fluorophenol	68		52 - 120	04/05/17 08:29	04/06/17 12:38	1
Nitrobenzene-d5	73		53 - 120	04/05/17 08:29	04/06/17 12:38	1
Phenol-d5	72		54 - 120	04/05/17 08:29	04/06/17 12:38	1
p-Terphenyl-d14	85		65 - 121	04/05/17 08:29	04/06/17 12:38	1
<u></u>						

Spike

Added

1620

LCS LCS

1400

Result Qualifier

Unit

ug/Kg

81

66

86

87

82

89

80

71

60 - 127

10 - 150

65 - 120

64 - 120

64 - 120

45 - 145

65 - 120

59 - 120

44 - 120

Lab Sample ID: LCS 480-350312/2-A

Matrix: Solid

2,4,5-Trichlorophenol

Analyte

Atrazine

Biphenyl

Benzaldehyde

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

bis (2-chloroisopropyl) ether

Analysis Batch: 350542

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

Prep Batch: 350312

%Rec Limits 86 59 - 126

2,4,6-Trichlorophenol	1620	1430	ug/Kg	88	59 - 123	
2,4-Dichlorophenol	1620	1410	ug/Kg	87	61 - 120	
2,4-Dimethylphenol	1620	1350	ug/Kg	83	59 - 120	
2,4-Dinitrophenol	3250	2890	ug/Kg	89	41 - 146	
2,4-Dinitrotoluene	1620	1420	ug/Kg	87	63 - 120	
2,6-Dinitrotoluene	1620	1410	ug/Kg	87	66 - 120	
2-Chloronaphthalene	1620	1310	ug/Kg	81	57 - 120	
2-Chlorophenol	1620	1150	ug/Kg	71	53 - 120	
2-Methylnaphthalene	1620	1270	ug/Kg	78	59 - 120	
2-Methylphenol	1620	1120	ug/Kg	69	54 - 120	
2-Nitroaniline	1620	1390	ug/Kg	86	61 - 120	
2-Nitrophenol	1620	1460	ug/Kg	90	56 - 120	
3,3'-Dichlorobenzidine	3250	2320	ug/Kg	71	54 - 120	
3-Nitroaniline	1620	1130	ug/Kg	70	48 - 120	
4,6-Dinitro-2-methylphenol	3250	3160	ug/Kg	97	49 - 122	
4-Bromophenyl phenyl ether	1620	1550	ug/Kg	96	58 - 120	
4-Chloro-3-methylphenol	1620	1380	ug/Kg	85	61 - 120	
4-Chloroaniline	1620	1070	ug/Kg	66	38 - 120	
4-Chlorophenyl phenyl ether	1620	1350	ug/Kg	83	63 - 124	
4-Methylphenol	1620	1140	ug/Kg	70	55 - 120	
4-Nitroaniline	1620	1190	ug/Kg	73	56 - 120	
4-Nitrophenol	3250	3060	ug/Kg	94	43 - 147	
Acenaphthene	1620	1280	ug/Kg	79	62 - 120	
Acenaphthylene	1620	1300	ug/Kg	80	58 - 121	
Acetophenone	1620	1120	ug/Kg	69	54 - 120	
Anthracene	1620	1390	ug/Kg	85	62 - 120	

3250

3250

1620

1620

1620

1620

1620

1620

1620

2630

2130

1390

1410

1410

1330

1440

1300

1150

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-350312/2-A

Matrix: Solid

Analysis Batch: 350542

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 350312

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bis(2-chloroethoxy)methane	1620	1180		ug/Kg		73	55 - 120	
Bis(2-chloroethyl)ether	1620	1050		ug/Kg		65	45 - 120	
Bis(2-ethylhexyl) phthalate	1620	1440		ug/Kg		89	61 - 133	
Butyl benzyl phthalate	1620	1410		ug/Kg		87	61 - 129	
Caprolactam	3250	2330		ug/Kg		72	47 - 120	
Carbazole	1620	1350		ug/Kg		83	65 - 120	
Chrysene	1620	1340		ug/Kg		83	64 - 120	
Dibenz(a,h)anthracene	1620	1330		ug/Kg		82	54 - 132	
Dibenzofuran	1620	1330		ug/Kg		82	63 - 120	
Diethyl phthalate	1620	1360		ug/Kg		84	66 - 120	
Dimethyl phthalate	1620	1370		ug/Kg		84	65 - 124	
Di-n-butyl phthalate	1620	1390		ug/Kg		85	58 - 130	
Di-n-octyl phthalate	1620	1360		ug/Kg		84	57 ₋ 133	
Fluoranthene	1620	1390		ug/Kg		86	62 - 120	
Fluorene	1620	1310		ug/Kg		81	63 - 120	
Hexachlorobenzene	1620	1570		ug/Kg		97	60 - 120	
Hexachlorobutadiene	1620	1470		ug/Kg		91	45 - 120	
Hexachlorocyclopentadiene	1620	1430		ug/Kg		88	47 - 120	
Hexachloroethane	1620	1090		ug/Kg		67	41 - 120	
Indeno[1,2,3-cd]pyrene	1620	1340		ug/Kg		83	56 - 134	
Isophorone	1620	1310		ug/Kg		80	56 - 120	
Naphthalene	1620	1250		ug/Kg		77	55 - 120	
Nitrobenzene	1620	1310		ug/Kg		81	54 - 120	
N-Nitrosodi-n-propylamine	1620	1080		ug/Kg		67	52 - 120	
Pentachlorophenol	3250	2700		ug/Kg		83	51 - 120	
Phenanthrene	1620	1380		ug/Kg		85	60 - 120	
Phenol	1620	1110		ug/Kg		69	53 - 120	
Pyrene	1620	1470		ug/Kg		90	61 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	104		54 - 120
2-Fluorobiphenyl	78		60 - 120
2-Fluorophenol	67		52 - 120
Nitrobenzene-d5	76		53 - 120
Phenol-d5	68		54 - 120
p-Terphenyl-d14	86		65 - 121

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-350519/1-A

Matrix: Solid

Analysis Batch: 350720

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 350519

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.7	0.32	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
4,4'-DDE	ND		1.7	0.35	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
4,4'-DDT	ND		1.7	0.39	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Aldrin	ND		1.7	0.41	ug/Kg		04/06/17 07:39	04/07/17 09:22	1

TestAmerica Buffalo

4/13/2017

Page 56 of 80

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-350519/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Prep Batch: 350519 Analysis Batch: 350720**

7 maryolo Batom 000120								. Top Batom	0000.0
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	ND		1.7	0.30	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
alpha-Chlordane	ND		1.7	0.83	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
beta-BHC	ND		1.7	0.30	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
delta-BHC	ND		1.7	0.31	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Dieldrin	ND		1.7	0.40	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Endosulfan I	ND		1.7	0.32	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Endosulfan II	ND		1.7	0.30	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Endosulfan sulfate	ND		1.7	0.31	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Endrin	ND		1.7	0.33	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Endrin aldehyde	ND		1.7	0.43	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Endrin ketone	ND		1.7	0.41	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
gamma-BHC (Lindane)	ND		1.7	0.31	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
gamma-Chlordane	ND		1.7	0.53	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Heptachlor	ND		1.7	0.36	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Heptachlor epoxide	ND		1.7	0.43	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Methoxychlor	ND		1.7	0.34	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
Toxaphene	ND		17	9.7	ug/Kg		04/06/17 07:39	04/07/17 09:22	1
	МВ	МВ							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl 88 45 - 120 04/06/17 07:39 04/07/17 09:22 Tetrachloro-m-xylene 55 30 - 124 04/06/17 07:39 04/07/17 09:22

Lab Sample ID: LCS 480-350519/2-A Matrix: Solid Analysis Batch: 350720				Clie	nt Saı	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 350519
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	16.4	15.2		ug/Kg		92	56 - 120
4,4'-DDE	16.4	13.4		ug/Kg		82	44 - 120
4,4'-DDT	16.4	14.1		ug/Kg		86	38 - 120
Aldrin	16.4	9.35		ug/Kg		57	38 - 120
alpha-BHC	16.4	10.7		ug/Kg		65	39 - 120
alpha-Chlordane	16.4	13.2		ug/Kg		80	47 - 120
beta-BHC	16.4	11.8		ug/Kg		72	40 - 120
delta-BHC	16.4	12.8		ug/Kg		78	45 - 120
Dieldrin	16.4	14.2		ug/Kg		86	58 - 120
Endosulfan I	16.4	12.6		ug/Kg		77	49 - 120
Endosulfan II	16.4	13.2		ug/Kg		81	55 - 120
Endosulfan sulfate	16.4	14.1		ug/Kg		86	49 - 124
Endrin	16.4	13.4		ug/Kg		82	58 - 120
Endrin aldehyde	16.4	14.2		ug/Kg		87	37 - 121
Endrin ketone	16.4	14.4		ug/Kg		88	46 - 123
gamma-BHC (Lindane)	16.4	11.8		ug/Kg		72	50 - 120
gamma-Chlordane	16.4	13.1		ug/Kg		80	48 - 120
Heptachlor	16.4	12.6		ug/Kg		77	50 - 120
Heptachlor epoxide	16.4	13.3		ug/Kg		81	50 - 120
Methoxychlor	16.4	17.8		ug/Kg		109	58 - 133

TestAmerica Buffalo

Page 57 of 80

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 480-350519/2-A

Lab Sample ID: 480-115585-8 MS

Matrix: Solid

Matrix: Solid

Analyte

Analysis Batch: 350720

Analysis Batch: 350720

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 350519

LCS LCS

Sample Sample

Result Qualifier

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 45 - 120 100 Tetrachloro-m-xylene 59 30 - 124

Client Sample ID: SAMPLE-8

Prep Type: Total/NA Prep Batch: 350519

D %Rec

%Rec.

Limits

-								
4,4'-DDD	ND	19.3	15.1	ug/Kg	-	78	37 - 126	
4,4'-DDE	ND	19.3	14.7	ug/Kg	₩	76	34 - 120	
4,4'-DDT	ND	19.3	18.3	ug/Kg	₽	95	43 - 123	
Aldrin	ND	19.3	12.3	ug/Kg	₩	64	37 - 125	
alpha-BHC	ND	19.3	11.4	ug/Kg	₽	59	39 - 120	
alpha-Chlordane	ND	19.3	13.5	ug/Kg	₽	70	35 - 120	
beta-BHC	ND	19.3	12.0	ug/Kg	\$	62	36 - 120	

Spike

Added

MS MS

Result Qualifier Unit

· ····································					_	,		
4,4'-DDD	ND -	19.3	15.1	ug/Kg	<u>₩</u>	78	37 - 126	
4,4'-DDE	ND	19.3	14.7	ug/Kg	₩	76	34 - 120	
4,4'-DDT	ND	19.3	18.3	ug/Kg	₩	95	43 - 123	
Aldrin	ND	19.3	12.3	ug/Kg	₩.	64	37 - 125	
alpha-BHC	ND	19.3	11.4	ug/Kg	₩	59	39 - 120	
alpha-Chlordane	ND	19.3	13.5	ug/Kg	₩	70	35 - 120	
beta-BHC	ND	19.3	12.0	ug/Kg	₩.	62	36 - 120	
delta-BHC	ND	19.3	13.8	ug/Kg	₩	71	34 - 120	
Dieldrin	ND	19.3	15.5	ug/Kg	₩	80	45 - 120	
Endosulfan I	ND	19.3	12.9	ug/Kg	₩.	67	39 - 120	
Endosulfan II	ND	19.3	14.2	ug/Kg	₩	74	34 - 126	
Endosulfan sulfate	ND	19.3	14.0	ug/Kg	☼	72	27 - 130	
Endrin	ND	19.3	14.3	ug/Kg	₩.	74	47 - 121	
Endrin aldehyde	ND	19.3	13.3	ug/Kg	₩	69	33 - 123	
Endrin ketone	ND	19.3	15.3	ug/Kg	☼	79	43 - 126	
gamma-BHC (Lindane)	ND	19.3	12.6	ug/Kg	₩.	65	50 - 120	
gamma-Chlordane	ND	19.3	13.1	ug/Kg	₩	68	31 - 120	
Heptachlor	ND	19.3	13.3	ug/Kg	₩	69	42 - 120	
Heptachlor epoxide	ND	19.3	14.3	ug/Kg	₩.	74	40 - 120	
Methoxychlor	ND	19.3	23.0	ug/Kg	₩	119	44 - 150	

MS MS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	99	45 - 120
Tetrachloro-m-xylene	81	30 - 124

Lab Sample ID: 480-115585-8 MSD **Client Sample ID: SAMPLE-8 Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 350720									Prep Ba	tch: 3	50519
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	ND		19.7	14.8		ug/Kg	☼	75	37 - 126	2	21
4,4'-DDE	ND		19.7	14.2		ug/Kg	₩	72	34 - 120	3	18
4,4'-DDT	ND		19.7	18.1		ug/Kg	☼	92	43 - 123	1	25
Aldrin	ND		19.7	11.8		ug/Kg	₽	60	37 - 125	4	12
alpha-BHC	ND		19.7	10.8		ug/Kg	₩	55	39 - 120	5	15
alpha-Chlordane	ND		19.7	13.2		ug/Kg	☼	67	35 - 120	2	23
beta-BHC	ND		19.7	11.5		ug/Kg	⊅	58	36 - 120	4	19
delta-BHC	ND		19.7	13.2		ug/Kg	₩	67	34 - 120	4	14
Dieldrin	ND		19.7	15.1		ug/Kg	☼	76	45 - 120	3	12
Endosulfan I	ND		19.7	12.7		ug/Kg	\$	65	39 - 120	1	18

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 480-115585-8 MSD **Client Sample ID: SAMPLE-8 Matrix: Solid** Prep Type: Total/NA **Prep Batch: 350519 Analysis Batch: 350720**

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endosulfan II	ND		19.7	14.1		ug/Kg	<u></u>	72	34 - 126	1	26
Endosulfan sulfate	ND		19.7	13.9		ug/Kg	☼	71	27 - 130	1	35
Endrin	ND		19.7	13.8		ug/Kg	₩.	70	47 - 121	4	20
Endrin aldehyde	ND		19.7	13.1		ug/Kg	☼	67	33 - 123	1	47
Endrin ketone	ND		19.7	14.8		ug/Kg	₽	75	43 - 126	4	37
gamma-BHC (Lindane)	ND		19.7	12.0		ug/Kg	₽	61	50 - 120	5	12
gamma-Chlordane	ND		19.7	12.8		ug/Kg	☼	65	31 - 120	2	15
Heptachlor	ND		19.7	12.6		ug/Kg	₽	64	42 - 120	5	22
Heptachlor epoxide	ND		19.7	13.6		ug/Kg	₩.	69	40 - 120	5	15
Methoxychlor	ND		19.7	21.8		ug/Kg	₽	110	44 - 150	5	24
,						5 5					

MSD MSD Surrogate %Recovery Qualifier Limits 45 - 120 DCB Decachlorobiphenyl 88 30 - 124 Tetrachloro-m-xylene 78

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-350405/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 350446

Prep Batch: 350405 MB MB Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac PCB-1016 $\overline{\mathsf{ND}}$ 0.24 0.047 mg/Kg 04/05/17 11:54 04/05/17 22:52 ND PCB-1221 0.24 0.047 mg/Kg 04/05/17 11:54 04/05/17 22:52 PCB-1232 ND 0.24 0.047 mg/Kg 04/05/17 11:54 04/05/17 22:52 PCB-1242 ND 04/05/17 11:54 04/05/17 22:52 0.24 0.047 mg/Kg PCB-1248 ND 0.24 0.047 mg/Kg 04/05/17 11:54 04/05/17 22:52 PCB-1254 ND 0.24 0.11 mg/Kg 04/05/17 11:54 04/05/17 22:52 PCB-1260 ND 0.11 mg/Kg 04/05/17 11:54 04/05/17 22:52 0.24

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed DCB Decachlorobiphenyl 131 65 - 174 04/05/17 11:54 04/05/17 22:52 04/05/17 11:54 04/05/17 22:52 Tetrachloro-m-xylene 109 60 - 154

Lab Sample ID: LCS 480-350405/2-A

Matrix: Solid

Analysis Batch: 350446

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 350405

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	2.36	2.73		mg/Kg		116	51 - 185	
PCB-1260	2.36	3.13		mg/Kg		133	61 - 184	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	144		65 - 174
Tetrachloro-m-xvlene	123		60 - 154

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 480-350340/1-A

Matrix: Solid

Silvex (2,4,5-TP)

Analyte

2,4-D

Analysis Batch: 350883

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 350340

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 16 $\overline{\mathsf{ND}}$ 10 ug/Kg 04/05/17 09:29 04/07/17 16:47 ND 16 04/05/17 09:29 04/07/17 16:47 5.8 ug/Kg

MB MB

Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 28 - 129 2,4-Dichlorophenylacetic acid 98 04/05/17 09:29 04/07/17 16:47

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-350340/2-A

Analysis Batch: 350883

Matrix: Solid

Prep Type: Total/NA **Prep Batch: 350340** %Rec.

LCS LCS Spike Limits **Analyte** Added Result Qualifier Unit D %Rec 2,4-D 65.7 64.7 ug/Kg 98 40 - 120 Silvex (2,4,5-TP) 65.7 69.6 ug/Kg 106 39 - 125

LCS LCS

%Recovery Qualifier Limits Surrogate 2,4-Dichlorophenylacetic acid 99 28 - 129

Lab Sample ID: 480-115585-1 MS

Matrix: Solid

Analysis Batch: 350883

Client Sample ID: SAMPLE-1 Prep Type: Total/NA

Prep Batch: 350340

%Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 77 2,4-D ND 77.4 76.3 ug/Kg 99 32 - 115 ug/Kg 22 - 140 Silvex (2,4,5-TP) ND 77.4 72.1 93

MS MS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 91 28 - 129

Lab Sample ID: 480-115585-1 MSD

Matrix: Solid

Analysis Batch: 350883

Client Sample ID: SAMPLE-1

Prep Type: Total/NA

Prep Batch: 350340 %Rec. **RPD**

MSD MSD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit D ug/Ka ₩ 2.4-D ND 76.1 74.2 98 32 - 115 3 50 ά Silvex (2,4,5-TP) ND 76.1 68.3 ug/Kg 90 22 - 140 50

MSD MSD

MB MB

Limits Surrogate %Recovery Qualifier 2,4-Dichlorophenylacetic acid 94 28 - 129

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-350423/1-A

Matrix: Solid

Analysis Batch: 351308

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 350423

RL Analyte Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac 04/05/17 16:15 04/10/17 16:38 Aluminum $\overline{\mathsf{ND}}$ 10.9 4.8 mg/Kg

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-350423/1-A

Matrix: Solid

Analysis Batch: 351308

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 350423

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		16.4	0.44	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Arsenic	ND		2.2	0.44	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Barium	ND		0.55	0.12	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Beryllium	ND		0.22	0.031	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Cadmium	ND		0.22	0.033	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Calcium	ND		54.5	3.6	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Chromium	0.437	J	0.55	0.22	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Cobalt	ND		0.55	0.055	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Copper	ND		1.1	0.23	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Iron	ND		10.9	3.8	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Lead	ND		1.1	0.26	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Magnesium	ND		21.8	1.0	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Manganese	0.0785	J	0.22	0.035	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Nickel	ND		5.5	0.25	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Selenium	ND		4.4	0.44	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Silver	ND		0.65	0.22	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Sodium	24.43	J	153	14.2	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Thallium	ND		6.5	0.33	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Vanadium	ND		0.55	0.12	mg/Kg		04/05/17 16:15	04/10/17 16:38	1
Zinc	ND		2.2	0.70	mg/Kg		04/05/17 16:15	04/10/17 16:38	1

Lab Sample ID: MB 480-350423/1-A

Matrix: Solid

Analysis Batch: 351595

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 350423** MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Potassium	ND		32.7	21.8	mg/Kg			04/05/17 16:15	04/11/17 13:11	1

Lab Sample ID: LCSSRM 480-350423/2-A

Matrix: Solid

Analysis Batch: 351308

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 350423

Analyte Added Aluminum Result Aluminum Qualifier Minity Unit Diagram D MRec Mercia Limits Antimony 123 78.01 mg/Kg 63.4 19.9 - 252. 0 Arsenic 145 131.1 mg/Kg 90.4 70.3 - 136. 6 Barium 209 188.6 mg/Kg 90.2 73.7 - 126. 8 Beryllium 97.3 88.33 mg/Kg 90.8 74.5 - 125. 4 Cadmium 87.6 76.49 mg/Kg 87.3 73.3 - 126. 7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129. 4 Cobalt 154 160.7 mg/Kg 104.4 74.0 - 125. 10.7 10.4 74.0 - 125. 10.4 10.4 10.4 - 125. 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4	20111 000-120
Antimony 123 78.01 mg/Kg 63.4 19.9 - 252. Arsenic 145 131.1 mg/Kg 90.4 70.3 - 136. Barium 209 188.6 mg/Kg 90.2 73.7 - 126. 8 Beryllium 97.3 88.33 mg/Kg 90.8 74.5 - 125. 4 Cadmium 87.6 76.49 mg/Kg 87.3 73.3 - 126. 7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129.	
Antimony 123 78.01 mg/Kg 63.4 19.9 - 252. Arsenic 145 131.1 mg/Kg 90.4 70.3 - 136. Barium 209 188.6 mg/Kg 90.2 73.7 - 126. Beryllium 97.3 88.33 mg/Kg 90.8 74.5 - 125. Cadmium 87.6 76.49 mg/Kg 87.3 73.3 - 126. 7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129.	
Arsenic 145 131.1 mg/Kg 90.4 70.3 - 136. 6 Barium 209 188.6 mg/Kg 90.2 73.7 - 126. 8 Beryllium 97.3 88.33 mg/Kg 90.8 74.5 - 125. 4 Cadmium 87.6 76.49 mg/Kg 87.3 73.3 - 126. 7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129. 4	
Barium 209 188.6 mg/Kg 90.2 73.7 - 126. 8 Beryllium 97.3 88.33 mg/Kg 90.8 74.5 - 125. 4 Cadmium 87.6 76.49 mg/Kg 87.3 73.3 - 126. 7 7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129. 4	
Beryllium 97.3 88.33 mg/Kg 90.8 74.5 - 125. 4 Cadmium 87.6 76.49 mg/Kg 87.3 73.3 - 126. 7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129. 4	
7 Calcium 5690 5051 mg/Kg 88.8 73.5 - 126. 5 Chromium 143 130.9 mg/Kg 91.6 69.9 - 129.	
Chromium 143 130.9 mg/Kg 91.6 69.9 - 129.	
Chromium 143 130.9 mg/Kg 91.6 69.9 - 129.	
Cobalt 154 160.7 mg/Kg 104.4 74.0 - 125.	
3	

TestAmerica Buffalo

Page 61 of 80

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-350423/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA** Prep Batch: 350423 **Analysis Batch: 351308** Spike LCSSRM LCSSRM %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 75.1 - 124. Copper 173 160.5 92.8 mg/Kg 15000 17010 37.1 - 163. Iron mg/Kg 113.4 73.3 - 126. Lead 146 151.6 103.8 mg/Kg Magnesium 2640 2612 mg/Kg 98.9 64.4 - 136. 0 Manganese 309 288.8 74.8 - 125. mg/Kg 93.4 135.7 Nickel 129 mg/Kg 105.2 73.0 - 127. 2693 ^ 60.4 - 140. Potassium 2400 112.2 mg/Kg 0 68.0 - 131. Selenium 178 158.2 mg/Kg 88.9 5 Silver 31.3 27.17 mg/Kg 86.8 65.2 - 134. 5 Sodium 869 790.8 mg/Kg 91.0 58.6 - 141. Thallium 152.7 141 mg/Kg 108.3 68.4 - 121. Vanadium 115 114.0 mg/Kg 99.1 67.5 - 122. 6

194

176.0

mg/Kg

Lab Sample ID: 480-115585-1 MS

Zinc

Lab Sample ID. 400-115505)- I IVIO						,	Cilent	Sample ID. SAMPLE-1
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 351308	Sample	Sample	Spike	MS	MS				Prep Batch: 350423 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	13000		2550	24660	4	mg/Kg	<u> </u>	458	75 - 125
Antimony	ND	F1	50.9	35.74	F1	mg/Kg	₩	70	75 - 125
Arsenic	7.6		50.9	57.66		mg/Kg	☼	98	75 - 125
Barium	39.4	F1	50.9	140.8	F1	mg/Kg		199	75 - 125
Beryllium	0.54		50.9	53.38		mg/Kg	₩	104	75 - 125
Cadmium	0.11	J	50.9	52.02		mg/Kg	☼	102	75 - 125
Calcium	918		2550	3410		mg/Kg		98	75 - 125
Chromium	16.7	В	50.9	77.85		mg/Kg	₩	120	75 - 125
Cobalt	8.5		50.9	66.33		mg/Kg	₩	114	75 ₋ 125
Copper	19.4		50.9	75.36		mg/Kg	₩	110	75 - 125
Iron	19600		2550	23110	4	mg/Kg	₩	137	75 ₋ 125
Lead	16.1		50.9	74.11		mg/Kg	₩	114	75 ₋ 125
Magnesium	2680		2550	5798		mg/Kg	₩	123	75 - 125
Manganese	469	В	50.9	631.9	4	mg/Kg	₩	321	75 ₋ 125
Nickel	20.7		50.9	79.10		mg/Kg	₩	115	75 ₋ 125
Potassium	1300	F1 ^	2550	7152	^ F1	mg/Kg	₩.	230	75 - 125
Selenium	ND		50.9	51.06		mg/Kg	₩	100	75 ₋ 125
Silver	ND		12.7	12.56		mg/Kg	₩	99	75 - 125
Sodium	56.5	JB	2550	2776		mg/Kg	₩.	107	75 - 125
Thallium	ND		50.9	55.94		mg/Kg	☼	110	75 ₋ 125

TestAmerica Buffalo

Page 62 of 80

Client Sample ID: SAMPLE-1

69.6 - 118.

0

90.7

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-115585-1 MS Client Sample ID: SAMPLE-1 **Matrix: Solid Prep Type: Total/NA Analysis Batch: 351308** Prep Batch: 350423 MS MS Sample Sample Spike %Rec.

Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec 18.9 F1 87.09 F1 Vanadium 50.9 mg/Kg 134 75 - 125 Zinc 50.9 50.9 107.0 mg/Kg 110 75 - 125

Lab Sample ID: 480-115585-1 MSD **Client Sample ID: SAMPLE-1**

Matrix: Solid Analysis Batch: 351308									Prep Typ Prep Ba		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	13000		2470	23990	4	mg/Kg	₩	445	75 - 125	3	20
Antimony	ND	F1	49.3	33.52	F1	mg/Kg	₩	68	75 - 125	6	20
Arsenic	7.6		49.3	54.42		mg/Kg	☼	95	75 - 125	6	20
Barium	39.4	F1	49.3	135.9	F1	mg/Kg	₽	195	75 - 125	4	20
Beryllium	0.54		49.3	49.86		mg/Kg	☼	100	75 - 125	7	20
Cadmium	0.11	J	49.3	48.67		mg/Kg	☼	98	75 - 125	7	20
Calcium	918		2470	3269		mg/Kg		95	75 - 125	4	20
Chromium	16.7	В	49.3	73.27		mg/Kg	☼	115	75 - 125	6	20
Cobalt	8.5		49.3	63.95		mg/Kg	☼	112	75 - 125	4	20
Copper	19.4		49.3	73.38		mg/Kg		109	75 - 125	3	20
Iron	19600		2470	23210	4	mg/Kg	☼	146	75 - 125	0	20
Lead	16.1		49.3	68.58		mg/Kg	☼	106	75 - 125	8	20
Magnesium	2680		2470	5660		mg/Kg	₩.	121	75 - 125	2	20
Manganese	469	В	49.3	753.8	4	mg/Kg	☼	578	75 - 125	18	20
Nickel	20.7		49.3	76.66		mg/Kg	☼	113	75 - 125	3	20
Potassium	1300	F1 ^	2470	6648	^ F1	mg/Kg	₩.	217	75 - 125	7	20
Selenium	ND		49.3	48.13		mg/Kg	☼	98	75 - 125	6	20
Silver	ND		12.3	12.18		mg/Kg	☼	99	75 - 125	3	20
Sodium	56.5	JB	2470	2602		mg/Kg	₩.	103	75 - 125	6	20
Thallium	ND		49.3	52.37		mg/Kg	☼	106	75 - 125	7	20

Method: 7471B - Mercury (CVAA)

Vanadium

Zinc

Lab Sample ID: MB 480-350327/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Prep Batch: 350327**

82.08 F1

101.8

mg/Kg

mg/Kg

49.3

49.3

Analysis Batch: 350417

18.9 F1

50.9

	IVID	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.019	0.0076	ma/Ka		04/05/17 09:15	04/05/17 12:01	1	

Lab Sample ID: LCDSRM 480-350327/3-A ^10 **Matrix: Solid**

Analysis Batch: 350417							Prep Ba	tch: 3	50327
-	Spike	LCDSRM	LCDSRM				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	12.6	12.09		mg/Kg	_	96.0	44.4 - 128.	3	20
							6		

TestAmerica Buffalo

Prep Type: Total/NA

75 - 125

75 - 125

128

103

Client Sample ID: Lab Control Sample Dup

20

Client: Barton & Loguidice, D.P.C.

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: LCSSRM 480-350327/2-A ^10

Project/Site: Ashokan

Analysis Batch: 350417

Analysis Batch: 350417

Matrix: Solid

Matrix: Solid

Analyte

Mercury

Analyte

Mercury

Analyte

Mercury

TestAmerica Job ID: 480-115585-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 350327 %Rec.

Spike LCSSRM LCSSRM Added Result Qualifier Unit D %Rec Limits 93.2 44.4 - 128. 12.6 11.74 mg/Kg 6

Unit

mg/Kg

Client Sample ID: SAMPLE-1 Prep Type: Total/NA

%Rec.

Prep Batch: 350327

Prep Type: Total/NA

Limits

D %Rec

Client Sample ID: SAMPLE-1

93 80 - 120

Lab Sample ID: 480-115585-1 MSD

Lab Sample ID: 480-115585-1 MS

Matrix: Solid

Analysis Batch: 350417

Sample Sample Result Qualifier

0.036

Sample Sample

0.036

Result Qualifier

Spike Added 0.387

Spike

Added

0.366

MSD MSD Result Qualifier 0.368

MS MS

0.376

Result Qualifier

Unit %Rec D mg/Kg 86

Prep Batch: 350327 %Rec. Limits RPD Limit 80 - 120 2

RPD

QC Association Summary

Client: Barton & Loguidice, D.P.C.

TestAmerica Job ID: 480-115585-1

Project/Site: Ashokan

GC/MS VOA

Analysis Batch: 350309

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-2	SAMPLE-2	Total/NA	Solid	8260C	350348
480-115585-3	SAMPLE-3	Total/NA	Solid	8260C	350348
480-115585-4	SAMPLE-4	Total/NA	Solid	8260C	350348
MB 480-350348/3-A	Method Blank	Total/NA	Solid	8260C	350348
LCS 480-350348/1-A	Lab Control Sample	Total/NA	Solid	8260C	350348
LCSD 480-350348/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	350348

Prep Batch: 350348

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-2	SAMPLE-2	Total/NA	Solid	5035A	
480-115585-3	SAMPLE-3	Total/NA	Solid	5035A	
480-115585-4	SAMPLE-4	Total/NA	Solid	5035A	
MB 480-350348/3-A	Method Blank	Total/NA	Solid	5035A	
LCS 480-350348/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-350348/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	

GC/MS Semi VOA

Prep Batch: 350312

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	3550C	
480-115585-2	SAMPLE-2	Total/NA	Solid	3550C	
480-115585-3	SAMPLE-3	Total/NA	Solid	3550C	
480-115585-4	SAMPLE-4	Total/NA	Solid	3550C	
480-115585-5	SAMPLE-5	Total/NA	Solid	3550C	
480-115585-6	SAMPLE-6	Total/NA	Solid	3550C	
480-115585-7	SAMPLE-7	Total/NA	Solid	3550C	
480-115585-8	SAMPLE-8	Total/NA	Solid	3550C	
480-115585-9	SAMPLE-9	Total/NA	Solid	3550C	
480-115585-10	B-6	Total/NA	Solid	3550C	
480-115585-11	B-7	Total/NA	Solid	3550C	
MB 480-350312/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-350312/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 350542

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	8270D	350312
480-115585-2	SAMPLE-2	Total/NA	Solid	8270D	350312
480-115585-3	SAMPLE-3	Total/NA	Solid	8270D	350312
480-115585-4	SAMPLE-4	Total/NA	Solid	8270D	350312
480-115585-5	SAMPLE-5	Total/NA	Solid	8270D	350312
480-115585-6	SAMPLE-6	Total/NA	Solid	8270D	350312
480-115585-7	SAMPLE-7	Total/NA	Solid	8270D	350312
480-115585-8	SAMPLE-8	Total/NA	Solid	8270D	350312
480-115585-9	SAMPLE-9	Total/NA	Solid	8270D	350312
480-115585-10	B-6	Total/NA	Solid	8270D	350312
480-115585-11	B-7	Total/NA	Solid	8270D	350312
MB 480-350312/1-A	Method Blank	Total/NA	Solid	8270D	350312
LCS 480-350312/2-A	Lab Control Sample	Total/NA	Solid	8270D	350312

TestAmerica Buffalo

Page 65 of 80

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

GC Semi VOA

Prep	Batc	h: 3	503	40
-------------	-------------	------	-----	----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	8151A	
480-115585-5	SAMPLE-5	Total/NA	Solid	8151A	
480-115585-6	SAMPLE-6	Total/NA	Solid	8151A	
480-115585-7	SAMPLE-7	Total/NA	Solid	8151A	
480-115585-8	SAMPLE-8	Total/NA	Solid	8151A	
480-115585-9	SAMPLE-9	Total/NA	Solid	8151A	
480-115585-10	B-6	Total/NA	Solid	8151A	
480-115585-11	B-7	Total/NA	Solid	8151A	
MB 480-350340/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 480-350340/2-A	Lab Control Sample	Total/NA	Solid	8151A	
480-115585-1 MS	SAMPLE-1	Total/NA	Solid	8151A	
480-115585-1 MSD	SAMPLE-1	Total/NA	Solid	8151A	

Prep Batch: 350405

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-5	SAMPLE-5	Total/NA	Solid	3550C	
480-115585-6	SAMPLE-6	Total/NA	Solid	3550C	
480-115585-10	B-6	Total/NA	Solid	3550C	
480-115585-11	B-7	Total/NA	Solid	3550C	
MB 480-350405/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-350405/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 350446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-5	SAMPLE-5	Total/NA	Solid	8082A	350405
480-115585-6	SAMPLE-6	Total/NA	Solid	8082A	350405
480-115585-10	B-6	Total/NA	Solid	8082A	350405
480-115585-11	B-7	Total/NA	Solid	8082A	350405
MB 480-350405/1-A	Method Blank	Total/NA	Solid	8082A	350405
LCS 480-350405/2-A	Lab Control Sample	Total/NA	Solid	8082A	350405

Prep Batch: 350519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	3550C	_
480-115585-5	SAMPLE-5	Total/NA	Solid	3550C	
480-115585-6	SAMPLE-6	Total/NA	Solid	3550C	
480-115585-7	SAMPLE-7	Total/NA	Solid	3550C	
480-115585-8	SAMPLE-8	Total/NA	Solid	3550C	
480-115585-9	SAMPLE-9	Total/NA	Solid	3550C	
480-115585-10	B-6	Total/NA	Solid	3550C	
480-115585-11	B-7	Total/NA	Solid	3550C	
MB 480-350519/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-350519/2-A	Lab Control Sample	Total/NA	Solid	3550C	
480-115585-8 MS	SAMPLE-8	Total/NA	Solid	3550C	
480-115585-8 MSD	SAMPLE-8	Total/NA	Solid	3550C	

Analysis Batch: 350720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	8081B	350519
480-115585-5	SAMPLE-5	Total/NA	Solid	8081B	350519
480-115585-6	SAMPLE-6	Total/NA	Solid	8081B	350519

TestAmerica Buffalo

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

GC Semi VOA (Continued)

Analysis Batch: 350720 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-7	SAMPLE-7	Total/NA	Solid	8081B	350519
480-115585-8	SAMPLE-8	Total/NA	Solid	8081B	350519
480-115585-9	SAMPLE-9	Total/NA	Solid	8081B	350519
480-115585-10	B-6	Total/NA	Solid	8081B	350519
480-115585-11	B-7	Total/NA	Solid	8081B	350519
MB 480-350519/1-A	Method Blank	Total/NA	Solid	8081B	350519
LCS 480-350519/2-A	Lab Control Sample	Total/NA	Solid	8081B	350519
480-115585-8 MS	SAMPLE-8	Total/NA	Solid	8081B	350519
480-115585-8 MSD	SAMPLE-8	Total/NA	Solid	8081B	350519

Analysis Batch: 350883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	8151A	350340
480-115585-5	SAMPLE-5	Total/NA	Solid	8151A	350340
480-115585-6	SAMPLE-6	Total/NA	Solid	8151A	350340
480-115585-7	SAMPLE-7	Total/NA	Solid	8151A	350340
480-115585-8	SAMPLE-8	Total/NA	Solid	8151A	350340
480-115585-9	SAMPLE-9	Total/NA	Solid	8151A	350340
480-115585-10	B-6	Total/NA	Solid	8151A	350340
480-115585-11	B-7	Total/NA	Solid	8151A	350340
MB 480-350340/1-A	Method Blank	Total/NA	Solid	8151A	350340
LCS 480-350340/2-A	Lab Control Sample	Total/NA	Solid	8151A	350340
480-115585-1 MS	SAMPLE-1	Total/NA	Solid	8151A	350340
480-115585-1 MSD	SAMPLE-1	Total/NA	Solid	8151A	350340

Metals

Prep Batch: 350327

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	7471B	
480-115585-2	SAMPLE-2	Total/NA	Solid	7471B	
480-115585-3	SAMPLE-3	Total/NA	Solid	7471B	
480-115585-4	SAMPLE-4	Total/NA	Solid	7471B	
480-115585-5	SAMPLE-5	Total/NA	Solid	7471B	
480-115585-6	SAMPLE-6	Total/NA	Solid	7471B	
480-115585-7	SAMPLE-7	Total/NA	Solid	7471B	
480-115585-8	SAMPLE-8	Total/NA	Solid	7471B	
480-115585-9	SAMPLE-9	Total/NA	Solid	7471B	
480-115585-10	B-6	Total/NA	Solid	7471B	
480-115585-11	B-7	Total/NA	Solid	7471B	
MB 480-350327/1-A	Method Blank	Total/NA	Solid	7471B	
LCDSRM 480-350327/3-A ^1	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-350327/2-A ^1	Lab Control Sample	Total/NA	Solid	7471B	
480-115585-1 MS	SAMPLE-1	Total/NA	Solid	7471B	
480-115585-1 MSD	SAMPLE-1	Total/NA	Solid	7471B	

Analysis Batch: 350417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	7471B	350327
480-115585-2	SAMPLE-2	Total/NA	Solid	7471B	350327

TestAmerica Buffalo

Page 67 of 80

TestAmerica Job ID: 480-115585-1

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

Metals (Continued)

Analysis Batch: 350417 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-3	SAMPLE-3	Total/NA	Solid	7471B	350327
480-115585-4	SAMPLE-4	Total/NA	Solid	7471B	350327
480-115585-5	SAMPLE-5	Total/NA	Solid	7471B	350327
480-115585-6	SAMPLE-6	Total/NA	Solid	7471B	350327
480-115585-7	SAMPLE-7	Total/NA	Solid	7471B	350327
480-115585-8	SAMPLE-8	Total/NA	Solid	7471B	350327
480-115585-9	SAMPLE-9	Total/NA	Solid	7471B	350327
480-115585-10	B-6	Total/NA	Solid	7471B	350327
480-115585-11	B-7	Total/NA	Solid	7471B	350327
MB 480-350327/1-A	Method Blank	Total/NA	Solid	7471B	350327
LCDSRM 480-350327/3-A	A ^1 Lab Control Sample Dup	Total/NA	Solid	7471B	350327
LCSSRM 480-350327/2-A	^1 Lab Control Sample	Total/NA	Solid	7471B	350327
480-115585-1 MS	SAMPLE-1	Total/NA	Solid	7471B	350327
480-115585-1 MSD	SAMPLE-1	Total/NA	Solid	7471B	350327

Prep Batch: 350423

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	3050B	
480-115585-2	SAMPLE-2	Total/NA	Solid	3050B	
480-115585-3	SAMPLE-3	Total/NA	Solid	3050B	
480-115585-4	SAMPLE-4	Total/NA	Solid	3050B	
480-115585-5	SAMPLE-5	Total/NA	Solid	3050B	
480-115585-6	SAMPLE-6	Total/NA	Solid	3050B	
480-115585-7	SAMPLE-7	Total/NA	Solid	3050B	
480-115585-8	SAMPLE-8	Total/NA	Solid	3050B	
480-115585-9	SAMPLE-9	Total/NA	Solid	3050B	
480-115585-10	B-6	Total/NA	Solid	3050B	
480-115585-11	B-7	Total/NA	Solid	3050B	
MB 480-350423/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-350423/2-A	Lab Control Sample	Total/NA	Solid	3050B	
480-115585-1 MS	SAMPLE-1	Total/NA	Solid	3050B	
480-115585-1 MSD	SAMPLE-1	Total/NA	Solid	3050B	

Analysis Batch: 351308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	6010C	350423
480-115585-2	SAMPLE-2	Total/NA	Solid	6010C	350423
480-115585-3	SAMPLE-3	Total/NA	Solid	6010C	350423
480-115585-4	SAMPLE-4	Total/NA	Solid	6010C	350423
480-115585-5	SAMPLE-5	Total/NA	Solid	6010C	350423
480-115585-6	SAMPLE-6	Total/NA	Solid	6010C	350423
480-115585-7	SAMPLE-7	Total/NA	Solid	6010C	350423
480-115585-8	SAMPLE-8	Total/NA	Solid	6010C	350423
480-115585-9	SAMPLE-9	Total/NA	Solid	6010C	350423
480-115585-10	B-6	Total/NA	Solid	6010C	350423
480-115585-11	B-7	Total/NA	Solid	6010C	350423
MB 480-350423/1-A	Method Blank	Total/NA	Solid	6010C	350423
LCSSRM 480-350423/2-A	Lab Control Sample	Total/NA	Solid	6010C	350423
480-115585-1 MS	SAMPLE-1	Total/NA	Solid	6010C	350423
480-115585-1 MSD	SAMPLE-1	Total/NA	Solid	6010C	350423

Page 68 of 80

QC Association Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Metals (Continued)

Analysis Batch: 351595

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-8	SAMPLE-8	Total/NA	Solid	6010C	350423
MB 480-350423/1-A	Method Blank	Total/NA	Solid	6010C	350423

General Chemistry

Analysis Batch: 350286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-115585-1	SAMPLE-1	Total/NA	Solid	Moisture	_
480-115585-2	SAMPLE-2	Total/NA	Solid	Moisture	
480-115585-3	SAMPLE-3	Total/NA	Solid	Moisture	
480-115585-4	SAMPLE-4	Total/NA	Solid	Moisture	
480-115585-5	SAMPLE-5	Total/NA	Solid	Moisture	
480-115585-6	SAMPLE-6	Total/NA	Solid	Moisture	
480-115585-7	SAMPLE-7	Total/NA	Solid	Moisture	
480-115585-8	SAMPLE-8	Total/NA	Solid	Moisture	
480-115585-9	SAMPLE-9	Total/NA	Solid	Moisture	
480-115585-10	B-6	Total/NA	Solid	Moisture	
480-115585-11	B-7	Total/NA	Solid	Moisture	

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-1

Matrix: Solid

Client Sample ID: SAMPLE-1 Date Collected: 04/04/17 09:00

Date Received: 04/05/17 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	350286	04/05/17 07:12	CSW	TAL BUF

Client Sample ID: SAMPLE-1 Lab Sample ID: 480-115585-1

Date Collected: 04/04/17 09:00 Date Received: 04/05/17 01:00

Matrix: Solid

Percent Solids: 85.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 15:43	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 10:41	JLS	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 18:47	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 16:45	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:06	JRK	TAL BUF

Client Sample ID: SAMPLE-2 Lab Sample ID: 480-115585-2

Date Collected: 04/04/17 09:25 Date Received: 04/05/17 01:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			350286	04/05/17 07:12	CSW	TAL BUF

Client Sample ID: SAMPLE-2 Lab Sample ID: 480-115585-2

Matrix: Solid

Date Collected: 04/04/17 09:25 Date Received: 04/05/17 01:00 Percent Solids: 86.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			350348	04/05/17 05:00	JAS	TAL BUF
Total/NA	Analysis	8260C		1	350309	04/05/17 16:14	JAS	TAL BUF
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 16:10	LMW	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:12	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:12	JRK	TAL BUF

5

TestAmerica Job ID: 480-115585-1

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

Client Sample ID: SAMPLE-3

Client Sample ID: SAMPLE-3

Date Collected: 04/04/17 09:35

Date Received: 04/05/17 01:00

Date Collected: 04/04/17 09:35 Date Received: 04/05/17 01:00 Lab Sample ID: 480-115585-3

Matrix: Solid

Batch Batch Dilution Batch **Prepared Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 350286 04/05/17 07:12 CSW TAL BUF

Lab Sample ID: 480-115585-3

Matrix: Solid

Percent Solids: 81.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			350348	04/05/17 05:00	JAS	TAL BUF
Total/NA	Analysis	8260C		1	350309	04/05/17 17:05	JAS	TAL BUF
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 16:36	LMW	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:15	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:14	JRK	TAL BUF

Client Sample ID: SAMPLE-4 Lab Sample ID: 480-115585-4

Matrice Oalid

Matrix: Solid

Date Collected: 04/04/17 09:45 Date Received: 04/05/17 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			350286	04/05/17 07:12	CSW	TAL BUF

Client Sample ID: SAMPLE-4 Lab Sample ID: 480-115585-4

Date Collected: 04/04/17 09:45 Date Received: 04/05/17 01:00 Matrix: Solid
Percent Solids: 83.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			350348	04/05/17 05:00	JAS	TAL BUF
Total/NA	Analysis	8260C		1	350309	04/05/17 16:39	JAS	TAL BUF
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 17:03	LMW	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:19	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:15	JRK	TAL BUF

Client Sample ID: SAMPLE-5 Lab Sample ID: 480-115585-5

Date Collected: 04/04/17 11:00 Matrix: Solid
Date Received: 04/05/17 01:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	350286	04/05/17 07:12	CSW	TAL BUF

TestAmerica Buffalo

3

6

7

11

13

14

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-5

Date Collected: 04/04/17 11:00

Date Received: 04/05/17 01:00

Project/Site: Ashokan

Lab Sample ID: 480-115585-5

Percent Solids: 83.8

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		10	350542	04/06/17 17:29	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		10	350720	04/07/17 11:01	JLS	TAL BUF
Total/NA	Prep	3550C			350405	04/05/17 11:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	350446	04/06/17 00:59	JMO	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 19:17	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:22	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:19	JRK	TAL BUF

Client Sample ID: SAMPLE-6 Lab Sample ID: 480-115585-6 Date Collected: 04/04/17 11:15

Matrix: Solid

Date Received: 04/05/17 01:00

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 350286 04/05/17 07:12 CSW TAL BUF

Client Sample ID: SAMPLE-6 Lab Sample ID: 480-115585-6 Date Collected: 04/04/17 11:15 **Matrix: Solid**

Date Received: 04/05/17 01:00 Percent Solids: 82.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		5	350542	04/06/17 17:56	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 11:21	JLS	TAL BUF
Total/NA	Prep	3550C			350405	04/05/17 11:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	350446	04/06/17 01:15	JMO	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 19:47	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:25	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:21	JRK	TAL BUF

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-7

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-7

Matrix: Solid

Date Collected: 04/04/17 12:45 Date Received: 04/05/17 01:00

Date Collected: 04/04/17 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	350286	04/05/17 07:12	CSW	TAL BUF

Client Sample ID: SAMPLE-7 Lab Sample ID: 480-115585-7

 Date Collected: 04/04/17 12:45
 Matrix: Solid

 Date Received: 04/05/17 01:00
 Percent Solids: 86.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 18:22	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 11:40	JLS	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 20:17	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:29	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:22	JRK	TAL BUF

Client Sample ID: SAMPLE-8 Lab Sample ID: 480-115585-8

Date Received: 04/05/17 01:00

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab 350286 04/05/17 07:12 CSW TAL BUF Total/NA Analysis Moisture

Client Sample ID: SAMPLE-8 Lab Sample ID: 480-115585-8

 Date Collected: 04/04/17 13:00
 Matrix: Solid

 Date Received: 04/05/17 01:00
 Percent Solids: 84.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 18:49	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 12:00	JLS	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 20:47	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:32	TRB	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351595	04/11/17 13:28	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:24	JRK	TAL BUF

TestAmerica Buffalo

Page 73 of 80

3

5

6

8

4.0

11

13

11

15

Matrix: Solid

Client: Barton & Loguidice, D.P.C.

Client Sample ID: SAMPLE-9

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-9

Matrix: Solid

Date Collected: 04/04/17 13:25 Date Received: 04/05/17 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	350286	04/05/17 07:12	CSW	TAL BUF

Client Sample ID: SAMPLE-9 Lab Sample ID: 480-115585-9

Date Collected: 04/04/17 13:25 **Matrix: Solid** Date Received: 04/05/17 01:00 Percent Solids: 81.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		5	350542	04/06/17 19:15	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 12:20	JLS	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 21:17	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:46	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:25	JRK	TAL BUF

Client Sample ID: B-6 Lab Sample ID: 480-115585-10

Date Collected: 04/04/17 16:00 **Matrix: Solid**

Date Received: 04/05/17 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	350286	04/05/17 07:12	CSW	TAL BUF

Client Sample ID: B-6 Lab Sample ID: 480-115585-10

Date Collected: 04/04/17 16:00 **Matrix: Solid** Date Received: 04/05/17 01:00 Percent Solids: 85.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 19:41	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 12:39	JLS	TAL BUF
Total/NA	Prep	3550C			350405	04/05/17 11:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	350446	04/06/17 01:31	JMO	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 22:17	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:49	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:26	JRK	TAL BUF

Page 74 of 80

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID: 480-115585-11

Matrix: Solid

Date Collected: 04/04/17 15:20 Date Received: 04/05/17 01:00

Client Sample ID: B-7

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 350286 04/05/17 07:12 CSW TAL BUF

Client Sample ID: B-7 Lab Sample ID: 480-115585-11

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			350312	04/05/17 08:29	RJS	TAL BUF
Total/NA	Analysis	8270D		1	350542	04/06/17 20:08	LMW	TAL BUF
Total/NA	Prep	3550C			350519	04/06/17 07:39	RJS	TAL BUF
Total/NA	Analysis	8081B		1	350720	04/07/17 12:59	JLS	TAL BUF
Total/NA	Prep	3550C			350405	04/05/17 11:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	350446	04/06/17 01:47	JMO	TAL BUF
Total/NA	Prep	8151A			350340	04/05/17 09:29	RJS	TAL BUF
Total/NA	Analysis	8151A		1	350883	04/07/17 22:47	TRG	TAL BUF
Total/NA	Prep	3050B			350423	04/05/17 16:15	MVZ	TAL BUF
Total/NA	Analysis	6010C		1	351308	04/10/17 17:53	TRB	TAL BUF
Total/NA	Prep	7471B			350327	04/05/17 09:15	JRK	TAL BUF
Total/NA	Analysis	7471B		1	350417	04/05/17 12:28	JRK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

4

5

7

0

10

11

13

14

Accreditation/Certification Summary

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
New York	NELAP		2	10026	03-31-18
The following analytes	are included in this repor	t, but accreditation/c	ertification is not offe	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt	e	-
Analysis Method Moisture	Prep Method	Matrix Solid		e nt Moisture	

8

10

11

13

14

Method Summary

Client: Barton & Loguidice, D.P.C.

Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
8151A	Herbicides (GC)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-

3

4

5

7

8

9

10

40

13

Sample Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Ashokan

TestAmerica Job ID: 480-115585-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-115585-1	SAMPLE-1	Solid	04/04/17 09:00	04/05/17 01:00
480-115585-2	SAMPLE-2	Solid	04/04/17 09:25	04/05/17 01:00
480-115585-3	SAMPLE-3	Solid	04/04/17 09:35	04/05/17 01:00
480-115585-4	SAMPLE-4	Solid	04/04/17 09:45	04/05/17 01:00
480-115585-5	SAMPLE-5	Solid	04/04/17 11:00	04/05/17 01:00
480-115585-6	SAMPLE-6	Solid	04/04/17 11:15	04/05/17 01:00
480-115585-7	SAMPLE-7	Solid	04/04/17 12:45	04/05/17 01:00
480-115585-8	SAMPLE-8	Solid	04/04/17 13:00	04/05/17 01:00
480-115585-9	SAMPLE-9	Solid	04/04/17 13:25	04/05/17 01:00
480-115585-10	B-6	Solid	04/04/17 16:00	04/05/17 01:00
480-115585-11	B-7	Solid	04/04/17 15:20	04/05/17 01:00

TestAmerical Transition of the Lebber in Education of the Lebber in Educati	COC No: 480-93904-22545.1	Page:	480-115585 COC	Job# 369.607.001	ပို	B - NaOH N - None C C - Zn Acetate O - Askado	D - Nitric Acid P - Na2O4\$ E - NaHSO4 Q - Na2SO3	E-MeOH5 R-Na2S203 G-Anchlor S-H2S04 H-Ascorbil Acid T-TSD Drohamburic	J-loe J-DI Water	K - EDTA W - pH 4-5 L - EDA Z - other (specify)	Other.	Jegwn	ج ق ق Special Instructions/Note:	化城里鄉			3					3				Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client		Method of Shipment:	Date/Time: 4-4-17 (80)	PASTINE: O/UU	Date/Time: Company	
y Record	Lab PM: Carrie Deyo, Melissa L	E-Mail:	melissa.deyo@testamericainc.com	Analysis Requesta				Qi.		10/50	soce SOCe SOCe	MS/W MS/W TCL VO B1747	# Feldir F Feldir F Feldir F F F F F F F F F F F F F F F F F F F	2 2 2 2 2	lid N N X X X X X	× × ×	×	d	d	₩ X X X X X X X X X X X X X X X X X X X				N X X X X X X X X X X X X X X X X X X X	Id Tank A A A A A A A A A A A A A A A A A A A	Sample Disposal (A fee may be assess	Special Instructions/QC Requirements:	Time:	Received by:	Received by.		
Chain of Custod	Sampler. OFFINALY MYCQINICY		(578) 218-1801		Due Date Requested:	TAT Requested (days):	Standard	PO# Purchase Order not required	WO术	Project # 48015584	SSOW#:	Sample Matrix	Sample (C=comp, c=wasteoli, C=masteoli, C=	TY Preserva	414117 9:00 G Solid	52.6	:35	9:45 G Solid		11:15 G Solid	bilos 6 245/	00	152) 09		l Information		Date:	Date/Time: Company	10	Date/Time: Company	
TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Client Information			Company: Barton & Loguidice, D.P.C.	Address: 10 Airline Drive Suite 200	City; Albanv	State, Zio: NY, 12205	Phone: 518-218-1801(Tel)	Emait: Imccormick@bartonandloguidice.com	Project Name: Soil and Groundwater Project	she. Asho kan		Sample Identification	無限のは、	SAMPLE-1	SHMPLE - 2	SAMPLE -3	1 - 27 WPZ	SAMPLE - 5	SAMPLE - 6	SAMPLE-7	SAMPLE -8	SAMPLE -9	е. Д	5-7	Possible Hazard Identification	Deliverable Requested: [(II)III, IV, Other (specify)	Empty Kit Relinquished by:	Relinquished by, \mathcal{A} , \mathcal{A}	Reinquished by:		

Client: Barton & Loguidice, D.P.C.

Job Number: 480-115585-1

Login Number: 115585 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

oroator. Williamo, ormotophor o		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	FREEZER ON 05APRIL2017 @ 0500
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	B AND L
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

Resolution No. 480 December 15, 2015

Establishing Capital Project No. 459 To Provide for Design and Engineering Work for the Ulster County Rail Trail Project along the Ashokan Reservoir ("Ashokan Rail Trail")

Referred to: The Economic Development, Tourism, Housing, Planning and Transit Committee (Chairman Briggs and Legislators Allen, Archer, Bartels, Litts, Maio and Maloney), The Public Works and Capital Projects Committee (Chairman Fabiano and Legislators Archer, Greene, Loughran and Roberts), and The Ways and Means Committee (Chairman Gerentine and Legislators Allen, Belfiglio, Briggs, Gregorius, Maio, Maloney and R. Parete)

Chairman of the Ways and Means Committee, Richard A. Gerentine, and Deputy Chairman Donald Gregorius offer the following:

WHEREAS, this resolution has been submitted by the County Executive on behalf of the Department of Planning; and

WHEREAS, the County of Ulster (hereinafter the "County") is the owner of 38.6 miles of the Ulster & Delaware (hereinafter "U&D") Railroad corridor running from the City of Kingston to Highmount in the Town of Shandaken, including approximately 11.5 miles of easement through lands adjacent to the Ashokan Reservoir owned by the City of New York (hereinafter the "Watershed Property") and managed by the New York City Department of Environmental Protection (hereinafter "NYCDEP"); and

WHEREAS, in December 2013, the Ulster County Executive and the then NYCDEP Commissioner announced an historic Agreement in Principle to facilitate and provide significant funding support for the conversion of 11.5 miles of the U&D corridor along the Watershed Property into a public, multi-use recreational trail (hereinafter the "Ashokan Rail Trail") in order to provide a major economic development boost to Ulster County and Route 28 businesses, expand recreational opportunities for local residents and visitors, improve public health and quality of life, and further develop Ulster County's rail trail network into a world-class tourism destination; and

WHEREAS, the Ashokan Rail Trail will open the northern shore of the Ashokan Reservoir to the public, without permit or fee, for the first time in more than a century and will ensure year-round public access for walking, running, bicycling, cross country skiing, snowshoeing and other non-motorized uses between Basin Road in West Hurley and Boiceville in the Town of Olive; and

WHEREAS, in August 2014, the Ulster County Legislature adopted Resolution No. 275, which established a policy to convert sections of the U&D corridor into rail trail only, including the 11.5 miles along the Watershed Property identified in the Agreement in Principle; and

Resolution No. 480 December 15, 2015

Establishing Capital Project No. 459 To Provide for Design and Engineering Work for the Ulster County Rail Trail Project along the Ashokan Reservoir ("Ashokan Rail Trail")

WHEREAS, in May 2015, the Ulster County Legislature adopted Resolution No. 187 authorizing the County Executive and Chairman of the Ulster County Legislature to execute a final agreement based on the Agreement in Principle with the City of New York to facilitate and provide significant funding and other support for a public rail trail along the Ashokan Reservoir (the "Agreement"); and

WHEREAS, the Agreement was fully executed on June 16, 2015 and included \$2,500,000.00 million in direct grant assistance from NYCDEP for trail planning and construction; and

WHEREAS, on October 1, 2015 the first \$1,000,000.00 in funding was released to the County in accordance with the Agreement; and

WHEREAS, the County is interested in moving forward design and engineering work for the Ashokan Rail Trail using a portion of the NYCDEP funding, which will be transferred into the Ashokan Rail Trail Capital Project for planning purposes only; and

WHEREAS, the proposed project being considered includes the construction of the Ashokan Reservoir Rail Trail and associated access facilities constitutes an action as defined under NYCRR Part 617.4(b)(6) [SEQRA]; and

WHEREAS, the County is desirous of establishing itself as a lead agency and conducting a coordinated review as provided for in NYCRR Part 617.6; now, therefore, be it

RESOLVED, this resolution authorizes expenditures exclusively for design and engineering work necessary to effectuate the design of the Ashokan Rail Trail; and, be it further

RESOLVED, that pursuant to 6 NYCRR Part 617.6(b) (3) of the Regulations pertaining to Article 8 of the Environmental Conservation Law of New York State (SEQRA), the Ulster County Legislature hereby declares its intent to serve as Lead Agency for the above recited project; and, be it further

RESOLVED, that the Ulster County Legislature has determined, after review of the criteria contained in 6 NYCRR Parts 617.4 (b)(6), that the project is a Type I Action; and, be it further

Resolution No. 480 December 15, 2015

Establishing Capital Project No. 459 To Provide for Design and Engineering Work for the Ulster County Rail Trail Project along the Ashokan Reservoir ("Ashokan Rail Trail")

RESOLVED, that the Ulster County Legislature will conduct a coordinated review and circulate its Notice of Intent to serve as Lead Agency, together with the EAF and accompanying documentation to all interested and involved agencies pursuant to 6 NYCRR Part 617.6(b) (2) (i) and 6 NYCRR Part 617.6(b) (3); and, be it further

RESOLVED, that pursuant to 6 NYCRR Part 617.6(b) (3), at the conclusion of an otherwise unchallenged thirty (30) day period following the date of transmittal of the Notice of Intent, the EAF and documentation aforesaid to the interested agencies, the Legislature shall become the Lead Agency under SEQRA for this project; and, be it further

RESOLVED, that Capital Project No. 459 Ashokan Rail Trail is hereby established as follows:

CREATE

Capital Project No. 459

Ashokan Rail Trail

\$1,000,000.00

and, be it further

RESOLVED, that Capital Project No. 459- "Ashokan Rail Trail" is hereby established and that the 2015-2020 Capital Fund Budget is amended as follows:

	INCREASE	AMOUNT
HH 7197-0459-4300-4355 (App #)	Engineering Services	\$550,000.00
HH 7197-0459-3200-2397 (Rev #)	Intergovernmental Charges Capital Projects, Other Gov't (NYC DEP Grant)	\$550,000.00
and move its adoption.		

ADOPTED BY THE FOLLOWING VOTE:

AYES: 23 NOES: 0

- Page 4 -

Resolution No. 480 December 15, 2015

Establishing Capital Project No. 459 To Provide for Design and Engineering Work for the Ulster County Rail Trail Project along the Ashokan Reservoir ("Ashokan Rail Trail")

Passed Committee: Economic Development, Tourism, Housing, Planning, and Transit on December 1, 2015

Passed Committee: Public Works and Capital Projects on December 3, 2015

Passed Committee: Ways and Means on December 15, 2015

FINANCIAL IMPACT: NONE

STATE OF NEW YORK

COUNTY OF ULSTER

I, the undersigned Clerk of the Legislature of the County of Ulster, hereby certify that the foregoing resolution is the original resolution adopted by the Ulster County Legislature on the 15th Day of December in the year Two Thousand and Fifteen, and said resolution shall remain on file in the office of said clerk.

IN WITNESS WHEREOF, I have hereunto set my hand and seal of the County of Ulster this 16th Day of December in the year Two Thousand and Fifteen.

Victoria A. Fabella, Clerk Ulster County Legislature

Submitted to the County Executive this 16th Day of December, 2015.

Victoria A. Fabella, Clerk Ulster County Legislature Approved by the County Executive this 22 Day of December, 2015.

Michael P. Hein, County Executive

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE
Director

CHRISTOPHER WHITE
Deputy Director

August 31, 2016

Daniel Whitehead, Regional Permit Administrator New York State Department of Environmental Conservation 21 South Putt Corners Road New Paltz, NY 12561

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

Dear Mr. Whitehead:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White Deputy Director

clast what

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE
Director

CHRISTOPHER WHITE Deputy Director

August 31, 2016

Ruth Pierpont, Deputy Commissioner New York State Historic Preservation Office Peebles Island, PO Box 189 Waterford, NY 12188

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

Dear Deputy Commissioner Pierpont:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White Deputy Director

Cluft what

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE

CHRISTOPHER WHITE
Deputy Director

August 31, 2016

United States Fish and Wildlife Service New York Field Office 3817 Luker Road Cortland, NY 13045

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

To Whom It May Concern:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White

buth what

Deputy Director

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE
Director

CHRISTOPHER WHITE Deputy Director

August 31, 2016

Andrew C. Dangler United States Army Corps of Engineers 1 Buffington Street Build 10, 3rd Floor Watervliet, NY 12189

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

Dear Mr. Dangler:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White Deputy Director

Clauth what

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE
Director

CHRISTOPHER WHITE Deputy Director

August 31, 2016

New York City Department of Environmental Protection 71 Smith Avenue Kingston, NY 12401

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

To Whom It May Concern:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White Deputy Director

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE
Director

CHRISTOPHER WHITE Deputy Director

August 31, 2016

Hon. Sylvia B. Rozzelle Town of Olive 45 Watson Hollow Road West Shokan, NY 12494

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

Dear Supervisor Rozzelle:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White Deputy Director

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE Director

CHRISTOPHER WHITE Deputy Director

August 31, 2016

Hon. Gary S. Bellows Town of Hurley 10 Wamsley Place Hurley, NY 12443

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

Dear Supervisor Bellows:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,
Cluft what

Christopher White Deputy Director

PLANNING DEPARTMENT

244 Fair Street, PO Box 1800 Kingston, New York 12402 (845) 340-3340

DENNIS DOYLE
Director

CHRISTOPHER WHITE Deputy Director

August 31, 2016

Todd Westhuis, P.E., Regional Director New York State Dept. of Transportation, Region 8 4 Burnett Boulevard Poughkeepsie, NY 12603

Re:

Notice of Intent to Establish Lead Agency

Ashokan Rail Trail Project

Towns of Hurley and Olive, Ulster County

Dear Mr. Westhuis:

Pursuant to the State Environmental Quality Review Act ("SEQRA") and 6 NYCRR 617.6(b)(3)(i), please be advised that the Ulster County Legislature intends to establish itself as Lead Agency for the purposes of fulfilling the SEQRA requirements relative to the proposed Ashokan Rail Trail project (the "Project"), which is located in the Towns of Hurley and Olive in Ulster County. The County has classified the Project as a Type I action.

Ulster County is proposing construction of an 11.5-mile pedestrian and bicycle trail from Basin Road in the Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area map. The Project will establish a non-motorized recreational trail on the County-owned Ulster & Delaware Railroad corridor along the northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and tracks, construction of multiple trailheads, reconstruction of a failed major culvert, repair to existing drainage structures, and replacement of the bridge structure over the Esopus Creek near Boiceville, which was destroyed during Hurricane Irene in 2011. The Project goals are to improve recreational opportunities, enhance quality of life, and boost economic development and tourism in Ulster County while also protecting the quality of the Ashokan Reservoir water supply.

As required pursuant to 6 NYCRR 617.6(b)(3)(i), please find enclosed for your review Part 1 of a completed Full Environmental Assessment Form which describes the proposed Project and is complete with all information available at this time. In accordance with 6 NYCRR 617.6(b)(3)(i), all involved agencies must agree upon Lead Agency designation within thirty (30) calendar days of this letter. If you are in agreement with the proposed SEQRA Lead Agency Designation, then no response is required. In the event that you disagree with the proposed designation of the Ulster County Legislature as Lead Agency for this proposed project, please send written notice of said disagreement to my attention at the following address by September 30, 2016:

Sincerely,

Christopher White Deputy Director

Resolution No. 327 August 15, 2017

Authorizing The Chairman Of The Ulster County Legislature To Execute The Ashokan Trail Easement With The City Of New York

Referred to: The Economic Development, Tourism, Housing, Planning and Transit Committee (Chairman Maloney and Legislators Berky, Delaune, Lapp, Litts, Maio and Rodriguez)

Chairman of the Economic Development, Tourism, Housing, Planning, and Transit Committee, James F. Maloney, and Deputy Chairman Hector Rodriguez offer the following:

WHEREAS, this Resolution has been submitted by the County Executive on behalf of the Department of Planning; and

WHEREAS, the County of Ulster is the owner of 38.6 miles of the Ulster & Delaware Railroad Corridor ("U&D Corridor) running from the City of Kingston to Highmount in the Town of Shandaken, including approximately 11.6 miles of easement for railroad purposes ("Railroad Easement") through lands adjacent to the Ashokan Reservoir owned by the City of New York ("Watershed Property") and managed by the New York City Department of Environmental Protection ("DEP"); and

WHEREAS, in December 2013, the Ulster County Executive and DEP announced an historic Agreement in Principle to facilitate and provide significant funding support for the conversion of the Railroad Easement along the Watershed Property into a public, multi-use recreational trail ("Ashokan Rail Trail") in order to provide economic development to Ulster County and Route 28 businesses, expand recreational opportunities for local residents and visitors, improve public health and quality of life, and further develop Ulster County's rail trail network into a world-class tourism destination; and

WHEREAS, the Ashokan Rail Trail along Watershed Property will open the northern shore of the Ashokan Reservoir to the public, without permit or fee, for the first time in more than a century and will ensure year-round public access for walking, running, bicycling, cross country skiing, snowshoeing and other non-motorized uses between Basin Road in West Hurley and Route 28A in Boiceville on a recreational trail that is fully accessible for persons with disabilities and limited mobility; and

WHEREAS, in May 2015, the Ulster County Legislature authorized the County Executive and Chairman of the Legislature to execute an Agreement with the City of New York to accept \$2.5 million in grant fund for and facilitate the creation of the Ashokan Rail Trail ("MOA"); and

Resolution No. 327 August 15, 2017

Authorizing The Chairman Of The Ulster County Legislature To Execute The Ashokan Trail Easement With The City Of New York

WHEREAS, in December 2015, the Ulster County Legislature adopted a compromise rail and trail policy for the U&D Corridor that delineated the segment along the Watershed Lands for conversion into a public recreational trail and also established and funded Capital Project No. 459—the Ashokan Rail Trail—for engineering design; and

WHEREAS, under the MOA, the County would construct and operate the Ashokan Rail Trail under a Land-Use Permit and eventually, a Modified Ashokan Railroad Easement, but based on concerns expressed by the Ulster County Legislature and others about the protection of the County's perpetual Railroad Easement, the DEP and County have agreed instead to establish a new, separate permanent easement for trail ("Ashokan Trail Easement"), which ensures that the County can construct and operate a trail without modifying, altering, or extinguishing the County's Railroad Easement or its rights to reactivate railroad uses on the Railroad Easement, which cannot be revoked or cancelled by DEP, as it could with a Land-Use Permit; and

WHEREAS, the County has been awarded approximately \$6.3 million in grant funding for the Ashokan Rail Trail by DEP, the New York State Department of Conservation, and New York State Parks, Recreation and Historic Preservation and has requested an additional \$2.3 million from the Federal Emergency Management Agency for replacement of the Boiceville Bridge; and

WHEREAS, pursuant to Resolution No. 480 of December 15, 2015 Ulster County declared it intent to act as lead agency as provided for in 6NYCRR Part 617.6(b)(2)(i) of the Regulations pertaining to Article 8 of the Environmental Conservation Law of New York State (SEQRA); and

WHEREAS, Ulster County circulated the necessary notifications on August 31, 2016 and receiving no objections became lead agency 30 days after this date; and

WHEREAS, Ulster County has examined the proposed action consisting of the approval of Ashokan Trail Easement in consideration of this action being a lawful segmented review pursuant to the SEQRA Regulations at 6 NYCRR Part 617.3(g)(1); and

WHEREAS, the Ulster County Legislature has reviewed the Environmental Record prepared for this action and the Ashokan Trail Easement as now on file with the Clerk of the Legislature; now, therefore, be it

- Page 3 -

Resolution No. 327 August 15, 2017

Authorizing The Chairman Of The Ulster County Legislature To Execute The Ashokan Trail Easement With The City Of New York

RESOLVED, that the Ulster County Legislature based on the review of the Environmental Record, the Ashokan Trail Easement itself, and the requirements under 6 NYCRR Part 617 determines that approval of the Ashokan Trail Easement is a discrete action that can be considered separate and apart from any trail construction and that as such a segmented review is warranted and will be no less protective of the environment nor will it commit the Legislature to any future course of action; and, be it further

RESOLVED, that the Ulster County Legislature based on the review of the Environmental Record finds that the Ashokan Trail Easement constitutes an unlisted action and its approval will not have an adverse impact on the environment and hereby authorizes the issuance of a negative declaration as provided in 6NYCRR 617.7; and, be it further

RESOLVED, the Chairman of the Ulster County Legislature is hereby authorized to execute the Ashokan Trail Easement with the City of New York in the form as filed with the Clerk of the Ulster County Legislature; and, be it further

RESOLVED, all notices, requests and/or approvals required by the Ashokan Trail Easement that are sent by, or delivered to the Ulster County Executive and/or the Ulster County Attorney pursuant to Section 21 of the Easement shall be forwarded promptly to the Clerk of the Ulster County Legislature,

and moves its adoption.

ADOPTED BY THE FOLLOWING VOTE:

AYES: 23 NOES: 0

Passed Committee: Economic Development, Tourism, Housing, Planning and Transit with Paragraph 21 of the Deed of Easement amended to include notice to the Legislature on August 1, 2017

FINANCIAL IMPACT: NONE

- Page 4 -

Resolution No. 327 August 15, 2017

Authorizing The Chairman Of The Ulster County Legislature To Execute The Ashokan Trail Easement With The City Of New York

Legislator Greene motioned, seconded by Legislator Donaldson, to insert an additional WHEREAS (placed as 6th WHEREAS) and RESOLVED (placed as 3rd RESOLVED) to read as follows:

"WHEREAS, maximizing the public benefits of the Ulster County-owned U&D Railroad Corridor includes the highest and best combination of rail and trail; and

RESOLVED, that the final design of the Ashokan Rail Trail include leaving the existing railroad tracks operable within the U&D Corridor from MP 10 to MP 11.1, and be it further"

MOTION DEFEATED BY THE FOLLOWING VOTE:

AYES: 5 NOES: 18 (AYES: Legislators Donaldson, Greene, J. Parete, R. Parete, and Wawro)

STATE OF NEW YORK ss: COUNTY OF ULSTER

I, the undersigned Clerk of the Legislature of the County of Ulster, hereby certify that the foregoing resolution is the original resolution adopted by the Ulster County Legislature on the 15th Day of August in the year Two Thousand and Seventeen, and said resolution shall remain on file in the office of said clerk.

IN WITNESS WHEREOF, I have hereunto set my hand and seal of the County of Ulster this 17^{th} Day of August in the year Two Thousand and Seventeen.

|s| Victoria A. Fabella Victoria A. Fabella, Clerk Ulster County Legislature

Submitted to the County Executive this 17th Day of August, 2017.

Approved by the County Executive this 21st Day of August, 2017.

|s| Victoria A. Fabella Victoria A. Fabella, Clerk Ulster County Legislature <u>|s| Michael P. Hein</u> Michael P. Hein, County Executive Easement Only

Full Environmental Assessment Form Part 1 - Project and Setting

Instructions for Completing Part 1

Part 1 is to be completed by the applicant or project sponsor. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A & B. In Sections C, D & E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section G requires the name and signature of the project sponsor to verify that the information contained in Part 1 is accurate and complete.

A. Project and Sponsor Information.

Name of Action or Project:			
Ashokan Rail Trail - Easement Only - Segmented Review			
Project Location (describe, and attach a general location map):			
Towns of Hurley, Olive, and Woodstock Ulster County - See Attached Map			
Brief Description of Proposed Action (include purpose or need):			
This action is the execution of the Ashokan Trail Easement between Ulster County and New Easement is being considered as lawful segmentation under SEQRA and is part of a larger Town of Hurley to Route 28A in the Town of Olive, as shown on the enclosed Project area moroject and consists of approximate 230 acres that follows the boundaries of the existing eas lands. The Easement specifically provides the County with the necessary property rights to associated with the railroad easement. No construction is authorized by the Easement and environmental review for the ART itself as a Type I Action .	11.5-mile pedestrian and bicycle trail ap. The Easement covers the lands ement for railroad easement held by construct the ART while maintaining	I from Basin Road in the associated with this the County on these all of the underlying rights	
Name of Applicant/Sponsor:	Telephone: (845) 340-3800		
Ulster County, C/O Mr. Michael Hein, County Executive	E-Mail: exec@co.ulster.ny.us		
Address: ₂₄₄ Fair Street PO Box 1800			
City/PO: Kingston	State: NY	Zip Code: 12402	
Project Contact (if not same as sponsor; give name and title/role):	Telephone: (845) 340-3338		
Mr. Christopher White, Ulster County Planning Dept., Deputy Director/Project Manager	E-Mail: cwhi@co.ulster.ny.us		
Address: 244 Fair Street PO Box 1800			
City/PO:	State:	Zip Code:	
Kingston	NY	12402	
Property Owner (if not same as sponsor):	Telephone: (845) 340-7218		
New York City Department of Environmental Protection (County owns railroad easement)	E-Mail: cLaing@dep.nyc.gov		
Address: 71 Smith Avenue			
City/PO: Kingston	State: NY	Zip Code: 12401	

B. Government Approvals

B. Government Approvals, Funding, or Spons assistance.)	sorship. ("Funding" includes grants, loans, to	ax relief, and any other	r forms of financial
Government Entity	If Yes: Identify Agency and Approval(s) Required	Applicati (Actual or)	
a. City Council, Town Board, □Yes☑No or Village Board of Trustees			
b. City, Town or Village ☐Yes✔No Planning Board or Commission			
c. City Council, Town or ☐Yes☑No Village Zoning Board of Appeals			
d. Other local agencies ☐Yes☑No			
e. County agencies ✓Yes□No	Ulster County Legislature (Easement Approval)		
f. Regional agencies ✓Yes□No	NYCDEP (Approval of the Easement)	7/19/2017	
g. State agencies □Yes☑No			
h. Federal agencies □Yes ☑ No			
i. Coastal Resources.i. Is the project site within a Coastal Area, or	the waterfront area of a Designated Inland W	aterway?	□Yes ☑ No
ii. Is the project site located in a community viii. Is the project site within a Coastal Erosion		tion Program?	☐ Yes ☑ No ☐ Yes ☑ No
C. Planning and Zoning			
C.1. Planning and zoning actions.			
 Will administrative or legislative adoption, or an only approval(s) which must be granted to enable If Yes, complete sections C, F and G. If No, proceed to question C.2 and complete sections C.2. 			∐Yes ⊠ No
C.2. Adopted land use plans.			
a. Do any municipally- adopted (city, town, villa where the proposed action would be located?	age or county) comprehensive land use plan(s)) include the site	✓ Yes□No
If Yes, does the comprehensive plan include spect would be located?	cific recommendations for the site where the p	proposed action	∠ Yes□No
b. Is the site of the proposed action within any lo Brownfield Opportunity Area (BOA); designa or other?) If Yes, identify the plan(s): New York City Watershed Boundary - subject to N	ted State or Federal heritage area; watershed i		Z Yes□No
c. Is the proposed action located wholly or partia		pal open space plan,	✓ Yes No
or an adopted municipal farmland protection If Yes, identify the plan(s):			
Ulster County Open Space Plan			

C.3. Zoning	
a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. If Yes, what is the zoning classification(s) including any applicable overlay district? Conservation Residential and very low density residential	✓ Yes □ No
b. Is the use permitted or allowed by a special or conditional use permit?	∠ Yes No
c. Is a zoning change requested as part of the proposed action? If Yes, i. What is the proposed new zoning for the site?	☐ Yes Z No
C.4. Existing community services.	
a. In what school district is the project site located? Onteora Central School District, Kingston City Schools	
b. What police or other public protection forces serve the project site? Olive Police Department, Ulster County Sheriff, NYS Police, NYC DEP Police	
c. Which fire protection and emergency medical services serve the project site? Olive Fire Department, Olive First Aid, Inc., Hurley Fire Department	
d. What parks serve the project site? None	
D. Project Details	
D.1. Proposed and Potential Development	
a. What is the general nature of the proposed action (e.g., residential, industrial, commercial, recreational; if mixed components)? Legal - Recreational - allow trail use via easement	d, include all
b. a. Total acreage of the site of the proposed action? b. Total acreage to be physically disturbed? c. Total acreage (project site and any contiguous properties) owned or controlled by the applicant or project sponsor? 230 acres & existing easemetric easemetr	ng rail
c. Is the proposed action an expansion of an existing project or use? i. If Yes, what is the approximate percentage of the proposed expansion and identify the units (e.g., acres, miles square feet)? % Units:	☐ Yes No s, housing units,
d. Is the proposed action a subdivision, or does it include a subdivision? If Yes, i. Purpose or type of subdivision? (e.g., residential, industrial, commercial; if mixed, specify types)	□Yes ☑ No
ii. Is a cluster/conservation layout proposed?iii. Number of lots proposed?iv. Minimum and maximum proposed lot sizes? Minimum Maximum	□Yes□No
 e. Will proposed action be constructed in multiple phases? i. If No, anticipated period of construction: months ii. If Yes: Total number of phases anticipated Anticipated commencement date of phase 1 (including demolition) month year Anticipated completion date of final phase Generally describe connections or relationships among phases, including any contingencies where progred determine timing or duration of future phases: This action - approval of the easement is being considered as a lawful segmentation and only includes 1 phase Project 	
phases - easement approval, demolition, and construction	

	t include new resid				□Yes Z No
If Yes, show num	bers of units propo		771 E 11	Maria E. H. (C.	
	One Family	Two Family	Three Family	Multiple Family (four or more)	
Initial Phase					
At completion					
of all phases					
g. Does the propo	sed action include	new non-residentia	l construction (inclu	iding expansions)?	☐Yes Z No
If Yes,				,	
i. Total number	of structures				
ii. Dimensions (1	in feet) of largest p	roposed structure:	height;	width; andlength	
				l result in the impoundment of any	☐ Yes Z No
If Yes,	s creation of a water	er supply, reservoir,	pond, lake, waste la	agoon or other storage?	
	impoundment:				
<i>ii.</i> If a water impose	oundment, the prin	cipal source of the	water:	☐ Ground water ☐ Surface water strea	ms Other specify:
iii. If other than w	rater, identify the ty	ype of impounded/o	contained liquids and	d their source.	
in Approximate	giza of the propose	d impoundment	Volumo	million college; surface areas	0.000
v Dimensions of	size of the propose f the proposed dam	a impounding str	voiume	million gallons; surface area: _height;length	acres
vi. Construction 1	method/materials	for the proposed da	m or impounding st	ructure (e.g., earth fill, rock, wood, con	crete):
		1 1	ı		
D.2. Project Ope	erations				
				uring construction, operations, or both	? ☐Yes Z No
		ation, grading or in	stallation of utilities	or foundations where all excavated	
materials will re	emain onsite)				
If Yes:		-4: d d-:0			
i. What is the pu	terial (including ro	ation of dreaging?	e etc) is proposed t	o be removed from the site?	
Volume	(specify tons or cu	bic vards):	s, etc.) is proposed t	o be removed from the site:	
Over wh	at duration of time	?			
• Over what duration of time?					
: W:11 41. a.a. 1. a		or processing of ex	tdtt1-0		
If yes, describ	_				☐Yes☐No
ii yes, deserie					
v. What is the to	tal area to be dredg	ged or excavated?		acres	
			time?	acres	
vii. What would b	e the maximum de	epth of excavation of	or dredging?	feet	
	vation require blas				☐Yes ☐No
ix. Summarize site	e reclamation goals	s and plan:			
1 337 1141	1	1, 1, ,	C : 1		
				crease in size of, or encroachment	☐Yes No
into any existing wetland, waterbody, shoreline, beach or adjacent area? If Yes:					
i. Identify the wetland or waterbody which would be affected (by name, water index number, wetland map number or geographic					
				, ,	

<i>ii.</i> Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placem alteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in sq	
iii. Will proposed action cause or result in disturbance to bottom sediments? If Yes, describe:	☐ Yes ☑ No
iv. Will proposed action cause or result in the destruction or removal of aquatic vegetation?If Yes:	☐ Yes ✓ No
acres of aquatic vegetation proposed to be removed:	
expected acreage of aquatic vegetation remaining after project completion:	
• purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):	
proposed method of plant removal:	
if chemical/herbicide treatment will be used, specify product(s):	
v. Describe any proposed reclamation/mitigation following disturbance:	
c. Will the proposed action use, or create a new demand for water?	☐Yes Z No
If Yes:	— —
i. Total anticipated water usage/demand per day: gallons/day	
ii. Will the proposed action obtain water from an existing public water supply?	□Yes □No
If Yes:	
Name of district or service area:	
• Does the existing public water supply have capacity to serve the proposal?	□Yes□No
Is the project site in the existing district? In the project site in the existing district?	□Yes□No
Is expansion of the district needed?	☐ Yes ☐ No
Do existing lines serve the project site?	□Yes□No
<i>iii.</i> Will line extension within an existing district be necessary to supply the project? If Yes:	□Yes □No
Describe extensions or capacity expansions proposed to serve this project:	
Source(s) of supply for the district:	
<i>iv.</i> Is a new water supply district or service area proposed to be formed to serve the project site? If, Yes:	☐ Yes☐No
Applicant/sponsor for new district:	
Date application submitted or anticipated:	
Proposed source(s) of supply for new district:	
v. If a public water supply will not be used, describe plans to provide water supply for the project:	
vi. If water supply will be from wells (public or private), maximum pumping capacity: gallons/mi	inute.
d. Will the proposed action generate liquid wastes?	☐ Yes Z No
If Yes:	
i. Total anticipated liquid waste generation per day: gallons/day	
<i>ii.</i> Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe a approximate volumes or proportions of each):	*
iii. Will the proposed action use any existing public wastewater treatment facilities? If Yes:	□Yes Z No
Name of wastewater treatment plant to be used:	
Name of district:	
Does the existing wastewater treatment plant have capacity to serve the project?	□Yes□No
• Is the project site in the existing district?	□ Yes □ No
• Is expansion of the district needed?	□Yes □No

 Do existing sewer lines serve the project site? 	□Yes□No
• Will line extension within an existing district be necessary to serve the project?	□Yes□No
If Yes:	
 Describe extensions or capacity expansions proposed to serve this project: 	
Describe extensions of capacity expansions proposed to serve this project.	
iv. Will a new wastewater (sewage) treatment district be formed to serve the project site?	☐Yes Z No
If Yes:	
 Applicant/sponsor for new district: 	
 Applicant/sponsor for new district: Date application submitted or anticipated: 	
What is the receiving water for the wastewater discharge?	
v. If public facilities will not be used, describe plans to provide wastewater treatment for the project, including spec	rifying proposed
receiving water (name and classification if surface discharge, or describe subsurface disposal plans):	mg proposed
receiving water (mains and substitution in continue absentings)	
vi. Describe any plans or designs to capture, recycle or reuse liquid waste:	·
e. Will the proposed action disturb more than one acre and create stormwater runoff, either from new point	□Yes Z No
sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater) or non-point	
source (i.e. sheet flow) during construction or post construction?	
If Yes:	
<i>i.</i> How much impervious surface will the project create in relation to total size of project parcel?	
Square feet or acres (impervious surface)	
Square feet or acres (parcel size)	
ii. Describe types of new point sources.	
u. Describe types of new point sources.	
iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facility/structures, adjacent p	properties
groundwater, on-site surface water or off-site surface waters)?	roperties,
groundwater, on-site surface water of on-site surface waters).	
If to surface waters, identify receiving water bodies or wetlands:	
Will stormwater runoff flow to adjacent properties?	□Yes□No
<i>iv.</i> Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater?	□Yes□No
f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel	□Yes ☑ No
combustion, waste incineration, or other processes or operations?	
If Yes, identify:	
i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles)	
ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers)	
iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation)	
m. Stationary sources during operations (e.g., process chrissions, targe boners, electric generation)	
g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit,	☐Yes Z No
or Federal Clean Air Act Title IV or Title V Permit?	
If Yes:	
<i>i.</i> Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet	□Yes ☑ No
ambient air quality standards for all or some parts of the year) ii In addition to emissions as calculated in the application, the project will generate:	
ii. In addition to emissions as calculated in the application, the project will generate:	
•Tons/year (short tons) of Carbon Dioxide (CO ₂)	
•Tons/year (short tons) of Nitrous Oxide (N ₂ O)	
•Tons/year (short tons) of Perfluorocarbons (PFCs)	
•Tons/year (short tons) of Sulfur Hexafluoride (SF ₆)	
•Tons/year (short tons) of Carbon Dioxide equivalent of Hydroflourocarbons (HFCs)	
Tons/year (short tons) of Hazardous Air Pollutants (HAPs)	

h. Will the proposed action generate or emit methane (including, but not limited to, sewage treatment plants, landfills, composting facilities)? If Yes: i. Estimate methane generation in tons/year (metric): ii. Describe any methane capture, control or elimination measures included in project design (e.g., combustion to g electricity, flaring):	☐Yes ☑No
i. Will the proposed action result in the release of air pollutants from open-air operations or processes, such as quarry or landfill operations? If Yes: Describe operations and nature of emissions (e.g., diesel exhaust, rock particulates/dust):	□Yes No
j. Will the proposed action result in a substantial increase in traffic above present levels or generate substantial new demand for transportation facilities or services? If Yes: i. When is the peak traffic expected (Check all that apply):	☐Yes ☐No ☐Yes ☐No access, describe:
 vi. Are public/private transportation service(s) or facilities available within ½ mile of the proposed site? vii Will the proposed action include access to public transportation or accommodations for use of hybrid, electric or other alternative fueled vehicles? viii. Will the proposed action include plans for pedestrian or bicycle accommodations for connections to existing pedestrian or bicycle routes? 	☐Yes☐No ☐Yes☐No ☐Yes☐No
 k. Will the proposed action (for commercial or industrial projects only) generate new or additional demand for energy? If Yes: i. Estimate annual electricity demand during operation of the proposed action: ii. Anticipated sources/suppliers of electricity for the project (e.g., on-site combustion, on-site renewable, via grid/l other): iii. Will the proposed action require a new, or an upgrade to, an existing substation? 	
1. Hours of operation. Answer all items which apply. i. During Construction: ii. During Operations: • Monday - Friday: Not Applicable • Saturday: • Saturday: • Sunday: • Sunday: • Holidays: • Holidays:	

If yes: i. Provide details including sources, time of day and duration: ii. Will proposed action remove existing natural barriers that could act as a noise barrier or screen? Describe: Yes No	m. Will the proposed action produce noise that will exceed existing ambient noise levels during construction,	☐ Yes Z No
ii. Will the proposed action remove existing natural barriers that could act as a noise barrier or screen?	operation, or both? If yes:	
n. Will the proposed action have outdoor lighting? If yes: i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures: ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen? Describe: o. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? i. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation: Operation:	·	
n. Will the proposed action have outdoor lighting? If yes: i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures: ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen? Describe: o. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? i. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation: Operation:		
n. Will the proposed action have outdoor lighting? If yes: i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures: ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen? □ Yes ☑No □ Describe: □ O. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: □ Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? i. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal Yes ☑No of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation: Operation:	ii Will proposed action remove existing natural barriers that could act as a noise barrier or screen?	□ Yes 7 No
N. Will the proposed action have outdoor lighting?		— 103 — 110
If yes: i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures: ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen? □ yes ☑No □ Describe: □ Describe: □ Describe: □ Describe: □ Describe: □ Describe proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: □ Describe proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) □ Yes ☑No □ or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: □ Product(s) to be stored □ Volume(s) □ Per unit time □ (e.g., month, year) iii. Cenerally describe proposed storage facilities: □ Q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, large ☑No insecticides) during construction or operation? If Yes: □ Describe proposed action use Integrated Pest Management Practices? □ Yes ☑No of solid waste (excluding hazardous materials)? If Yes: □ Describe any solid waste(s) to be generated during construction or operation of the facility: □ Construction: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time) □ Operation: □ tons per □ (unit of time)		
i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures: ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen? Yes \(\frac{1}{2} \) No Describe: o. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) Yes \(\frac{1}{2} \) No or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? Yes \(\frac{1}{2} \) No insecticides) during construction or operation? Yes \(\frac{1}{2} \) No of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction:		☐ Yes Z No
ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen?	·	
O. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: • Construction: tons per (unit of time) • Operation: Operation: Operation: Operation: Operation: Operation: Operation:	i. Describe source(s), location(s), neight of fixture(s), direction/anni, and proximity to hearest occupied structures.	
O. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? ii. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: • Operation: tons per (unit of time) • Construction: • Operation: Operation: Operation: Operation: Operation:		
o. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored iii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:		☐ Yes ☑ No
If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: P. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: I. Product(s) to be stored	Describe:	
If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: P. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: I. Product(s) to be stored		
p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored iii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed treatment(s): iii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:		∐ Y es ∠ No
p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: Operation:		
or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal Yes \(\begin{align*} \text{No} \) of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: (unit of time) • Operation: (unit of time) iii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: (unit of time)		
or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal Yes \(\begin{align*} \text{No} \) of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: (unit of time) • Operation: (unit of time) iii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: (unit of time)		
If Yes: i. Product(s) to be stored ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed treatment(s): ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:	p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons)	☐ Yes Z No
ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities: q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed treatment(s): ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal Yes ✓ No of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: Operation: Operatio		
ii. Volume(s) per unit time (e.g., month, year) iii. Generally describe proposed storage facilities:		
q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Operation:	ii Volume(s) per unit time (e.g. month, year)	
q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed treatment(s): ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: Operation: • Operation: Operation:	iii. Generally describe proposed storage facilities:	
insecticides) during construction or operation? If Yes: i. Describe proposed treatment(s): ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal Yes No of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction:		
ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal		☐ Yes Z No
ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal Yes No of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation: • Operation:		
ii. Will the proposed action use Integrated Pest Management Practices? r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction:		
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:	Describe proposed dediment(s).	
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:		
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:		
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:	ii. Will the proposed action use Integrated Pest Management Practices?	☐ Yes ☑ No
If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: • Construction: • Operation:		
 i. Describe any solid waste(s) to be generated during construction or operation of the facility: Construction: tons per (unit of time) Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: Construction: Operation: 		
 Construction: tons per (unit of time) Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: Construction: Operation: 		
 ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: Construction: Operation: 		
 ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste: Construction: Operation: 	• Operation: tons per (unit of time)	
• Operation:	ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste	
• Operation:	• Construction:	
iii Proposed disposed methods/facilities for solid waste generated on site:	• Operation.	
	iii. Proposed disposal methods/facilities for solid waste generated on-site:	
• Construction:	• Construction:	
• Unergion:	• Operation:	
• Operation:		

s. Does the proposed action include construction or modification of a solid waste management facility? Yes No Yes				
i. Type of management or handling of waste proposed for the site (e.g., recycling or transfer station, composting, landfill, or				
other disposal activities):				
ii. Anticipated rate of disposal/processing:				
 Tons/month, if transfer or other non- Tons/hour, if combustion or thermal 		, or		
iii. If landfill, anticipated site life:				
t. Will proposed action at the site involve the commercia		e, or disposal of hazardous	☐Yes Z No	
waste?				
If Yes:		- 1 -4 C 114 ·		
i. Name(s) of all hazardous wastes or constituents to be	e generated, nandled or manag	ed at facility:		
<i>ii.</i> Generally describe processes or activities involving l		ta		
n. Generally describe processes or activities involving in	nazardous wastes or constituer	ns:		
	/			
<i>iii</i> . Specify amount to be handled or generated t <i>iv</i> . Describe any proposals for on-site minimization, rec		onstituents.		
v. Will any hazardous wastes be disposed at an existing	y offsita hazardaya wasta faail	ita)	☐Yes ☐ No	
If Yes: provide name and location of facility:				
If No: describe proposed management of any hazardous	wastes which will not be sent	to a hazardous waste facility	y:	
E Site and Setting of Duanaged Action				
E. Site and Setting of Proposed Action				
E.1. Land uses on and surrounding the project site				
a. Existing land uses.				
a. Existing land uses. i. Check all uses that occur on, adjoining and near the		(non-farm)		
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid	dential (suburban) Rural		unting	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe:	dential (suburban) Rural r (specify): Drinking Water Suppl	y; Recreational- Fishing and Hu	unting	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe	dential (suburban) Rural r (specify): Drinking Water Suppl	y; Recreational- Fishing and Hu	unting	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: _Open space/ forested area with linear railroad corridor adjoining	dential (suburban) Rural r (specify): Drinking Water Suppl	y; Recreational- Fishing and Hu	unting	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site.	dential (suburban) Rural Rural r (specify): Drinking Water Suppling a NYC DEP reservoir and running	y; Recreational- Fishing and Hung parallel to State Route 28		
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site. Land use or	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current	y; Recreational- Fishing and Hung parallel to State Route 28 Acreage After	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site.	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage	Acreage After Project Completion		
a. Existing land uses. i. Check all uses that occur on, adjoining and near the Urban Industrial Commercial Resider Forest Agriculture Aquatic Othe ii. If mix of uses, generally describe: Open space/ forested area with linear railroad corridor adjoining the composition of the project site. Land use or Covertype Roads, buildings, and other paved or impervious surfaces	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current	y; Recreational- Fishing and Hung parallel to State Route 28 Acreage After	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage	Acreage After Project Completion	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining ☐ b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested ■ Meadows, grasslands or brushlands (non-	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage	Acreage After Project Completion	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining ☐ b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested ■ Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural)	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage 0 161 0	Acreage After Project Completion 0 161	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site. Land use or Covertype • Roads, buildings, and other paved or impervious surfaces • Forested • Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural)	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage 0 161	Acreage After Project Completion 0 161	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining ☐ ☐ b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested ■ Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) ■ Agricultural ☐ (includes active orchards, field, greenhouse etc.) ■ Surface water features	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage 0 161 0	Acreage After Project Completion 0 161 0	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining ☐ b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested ■ Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) ■ Agricultural ☐ (includes active orchards, field, greenhouse etc.) ■ Surface water features ☐ (lakes, ponds, streams, rivers, etc.)	Current Acreage 0 161 0 14	Acreage After Project Completion 0 161 0 14	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested ■ Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) ■ Agricultural ☐ (includes active orchards, field, greenhouse etc.) ■ Surface water features ☐ (lakes, ponds, streams, rivers, etc.) ■ Wetlands (freshwater or tidal)	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage 0 161 0	Acreage After Project Completion 0 161 0	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site. Land use or Covertype • Roads, buildings, and other paved or impervious surfaces • Forested • Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) • Agricultural (includes active orchards, field, greenhouse etc.) • Surface water features (lakes, ponds, streams, rivers, etc.) • Wetlands (freshwater or tidal) • Non-vegetated (bare rock, earth or fill)	Current Acreage 0 161 0 14	Acreage After Project Completion 0 161 0 14	Change	
a. Existing land uses. i. Check all uses that occur on, adjoining and near the ☐ Urban ☐ Industrial ☑ Commercial ☑ Resid ☑ Forest ☐ Agriculture ☐ Aquatic ☑ Othe ii. If mix of uses, generally describe: ☐ Open space/ forested area with linear railroad corridor adjoining b. Land uses and covertypes on the project site. ☐ Land use or ☐ Covertype ■ Roads, buildings, and other paved or impervious surfaces ■ Forested ■ Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) ■ Agricultural ☐ (includes active orchards, field, greenhouse etc.) ■ Surface water features ☐ (lakes, ponds, streams, rivers, etc.) ■ Wetlands (freshwater or tidal)	dential (suburban) Rural r (specify): Drinking Water Suppl ng a NYC DEP reservoir and runnin Current Acreage 0 161 0 14 18	Acreage After Project Completion 0 161 0 14 18	Change	

c. Is the project site presently used by members of the community for public recreation? i. If Yes: explain: Hunting and Fishing - Requires NYCDEP Access Permit	∠ Yes No
d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site? If Yes,	✓ Yes No
i. Identify Facilities:	
DD's Daycare- 36 Bonnie Brae Lane, Shokan	
e. Does the project site contain an existing dam?	☐ Yes Z No
If Yes: i. Dimensions of the dam and impoundment:	
Dam height: feet	
• Dam length: feet	
• Surface area: acres	
Volume impounded: gallons OR acre-feet	
ii. Dam's existing hazard classification:	
iii. Provide date and summarize results of last inspection:	
f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility, or does the project site adjoin property which is now, or was at one time, used as a solid waste management facil If Yes:	☐Yes Z No ity?
i. Has the facility been formally closed?	☐Yes☐ No
If yes, cite sources/documentation:	
ii. Describe the location of the project site relative to the boundaries of the solid waste management facility:	
iii. Describe any development constraints due to the prior solid waste activities:	
g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste? If Yes:	☐ Yes Z No
i. Describe waste(s) handled and waste management activities, including approximate time when activities occurred	ed:
h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any	✓ Yes No
remedial actions been conducted at or adjacent to the proposed site?	10310
If Yes:	
<i>i.</i> Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply:	✓ Yes No
✓ Yes – Spills Incidents database Provide DEC ID number(s): Multiple, Hazardous Was	te Reports
Yes – Environmental Site Remediation database Provide DEC ID number(s):	<u>-</u>
Neither database	
ii. If site has been subject of RCRA corrective activities, describe control measures:	
iii. Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database?	□Yes ☑ No
If yes, provide DEC ID number(s):	
iv. If yes to (i), (ii) or (iii) above, describe current status of site(s):	

v. Is the project site subject to an institutional control			☐ Yes Z No
If yes, DEC site ID number:			
 Describe the type of institutional control (e.g. Describe any use limitations: 			
Describe any use limitations:Describe any engineering controls:			
Will the project affect the institutional or eng	ineering controls in place?		☐ Yes ☐ No
• Explain:			
E.2. Natural Resources On or Near Project Site			
a. What is the average depth to bedrock on the project	site? <u>6.</u>	<u>.5</u> feet	
b. Are there bedrock outcroppings on the project site?			✓ Yes No
If Yes, what proportion of the site is comprised of bed	rock outcroppings?		
c. Predominant soil type(s) present on project site:	Oquaga-Arnot-Rock outcrop		
	Tunkhannock gravelly loam	17 %	
	Lackawanna and Swartswood	6_%	
d. What is the average depth to the water table on the p	project site? Average:6.5 fe	eet	
e. Drainage status of project site soils: Well Drained			
	Well Drained: 10.4 % of site		
Poorly Drain			
f. Approximate proportion of proposed action site with		30 % of site	
	✓ 10-15%:✓ 15% or greater:	40 % of site 30 % of site	
g. Are there any unique geologic features on the project If Yes, describe:			☐ Yes Z No
ii i es, describe.			
h. Surface water features.i. Does any portion of the project site contain wetland	ls or other waterbodies (including str	eams, rivers.	✓ Yes No
ponds or lakes)?		,,	
ii. Do any wetlands or other waterbodies adjoin the pr	oject site?		✓ Yes No
If Yes to either <i>i</i> or <i>ii</i> , continue. If No, skip to E.2.i.			
iii. Are any of the wetlands or waterbodies within or a	djoining the project site regulated by	any federal,	✓ Yes □No
state or local agency? iv. For each identified regulated wetland and waterbook	dy on the project site provide the following	lowing information:	
• Streams: Name 862: 555, 549, 551, 5		Classification A(TS), A(T)	, AA(T), C(TS) +
• T. I. D. I. M.		Classification	,
Wetlands: Name Federal and State		Approximate Size 100+	
• Wetland No. (if regulated by DEC)	The CANAG	10.	
v. Are any of the above water bodies listed in the mos waterbodies?	t recent compilation of NYS water qu	iality-impaired	☐Yes ☐No
If yes, name of impaired water body/bodies and basis in	for listing as impaired:		
Ashokan Reservoir, Esopus Creek - Metals (silt/sediment),			
i. Is the project site in a designated Floodway?			□Yes ☑ No
j. Is the project site in the 100 year Floodplain?			Z Yes □No
k. Is the project site in the 500 year Floodplain?			Z Yes □No
1. Is the project site located over, or immediately adjoin	ning, a primary, principal or sole sour	rce aquifer?	✓ Yes □No
If Yes:			
i. Name of aquifer: Principal Aquifer - no known name			

m. Identify the predominant wildlife species			black bear	
white tailed deer	turkey eastern gray squirrel		coyote	
eastern chipmunk	eastern gray squirrei		coyote	
n. Does the project site contain a designated	significant natural comm	unity?		✓ Yes No
If Yes:	significant natural commi	unity.		105_110
<i>i.</i> Describe the habitat/community (composite the habitat/community)	sition, function, and basis	for designation):		
Vernal pool				
ii. Source(s) of description or evaluation: §	Site Investigations, NYC DEP)		
iii. Extent of community/habitat:				
Currently:		.75 acres		
 Following completion of project as 	proposed:	.75 acres		
• Gain or loss (indicate + or -):		0 acres		
o. Does project site contain any species of pleendangered or threatened, or does it contains any species of pleendangered or threatened, or does it contains a lindiana bat (endangered), Northern long-eared before the contains any species of pleendangered or threatened.	in any areas identified as l	habitat for an endanger	red or threatened speci	☑ Yes□No es?
p. Does the project site contain any species special concern?	of plant or animal that is l	listed by NYS as rare,	or as a species of	✓ Yes No
Sharp-shinned hawk, osprey, red-shouldered hawk	, American bittern, whip-poor	r-will, common nighthawk		
q. Is the project site or adjoining area curren If yes, give a brief description of how the pro-			shing?	Z Yes □No
_Access to designated fishing and hunting are	as will not be impacted by the	e approval of the easeme	nt	
E.3. Designated Public Resources On or I	Near Project Site			
a. Is the project site, or any portion of it, loca Agriculture and Markets Law, Article 25- If Yes, provide county plus district name/nu	-AA, Section 303 and 304		pursuant to	∐Yes Z No
b. Are agricultural lands consisting of highly	productive soils present?	?		□Yes Z No
i. If Yes: acreage(s) on project site?				
ii. Source(s) of soil rating(s):				
c. Does the project site contain all or part of Natural Landmark? If Yes: i. Nature of the natural landmark:	c, or is it substantially con Biological Community			∐Yes Z No
<i>ii.</i> Provide brief description of landmark, in				
ii. I lovide offer description of faildmark, is				
d. Is the project site located in or does it adjoint If Yes: i. CEA name:				□Yes ☑ No
ii. Basis for designation:				
iii. Designating agency and date:				

e. Does the project site contain, or is it substantially contiguous to, a bu which is listed on, or has been nominated by the NYS Board of Histo State or National Register of Historic Places? If Yes: i. Nature of historic/archaeological resource: Archaeological Site ii. Name: iii. Brief description of attributes on which listing is based:		☐ Yes No
f. Is the project site, or any portion of it, located in or adjacent to an are	a designated as sometime for	✓ Yes □No
archaeological sites on the NY State Historic Preservation Office (SH		W 1 CS1\0
g. Have additional archaeological or historic site(s) or resources been id If Yes:	1 0	□Yes √ No
i. Describe possible resource(s):ii. Basis for identification:		
 h. Is the project site within fives miles of any officially designated and pascenic or aesthetic resource? If Yes: i. Identify resource: NY State Rt 28 Scenic Byway, Ashokan Reservoir 	publicly accessible federal, state, or local	Z Yes □No
<i>ii.</i> Nature of, or basis for, designation (e.g., established highway overleetc.): NY State Designation Rt. 28 Scenic Byway Ashokan Reservoir overloop	oks and trial	scenic byway,
iii. Distance between project and resource: <0.5 mi. Is the project site located within a designated river corridor under the		☐ Yes Z No
Program 6 NYCRR 666? If Yes: i. Identify the name of the river and its designation: ii. Is the activity consistent with development restrictions contained in		□Yes□No
ii. Is the activity consistent with development restrictions contained in	ON TERR Tail 000:	
F. Additional Information Attach any additional information which may be needed to clarify you If you have identified any adverse impacts which could be associated measures which you propose to avoid or minimize them.		pacts plus any
G. Verification I certify that the information provided is true to the best of my knowled		
Applicant/Sponsor Name County Of Ulster	Date_July 25, 2017	
Signature Christopher White -Signature on File	Title Deputy Director of Planning Project Mana	iger

Easement Only

Full Environmental Assessment Form Part 2 - Identification of Potential Project Impacts

	Agency Use Only [If applicable]
Project:	
Date:	

Part 2 is to be completed by the lead agency. Part 2 is designed to help the lead agency inventory all potential resources that could be affected by a proposed project or action. We recognize that the lead agency's reviewer(s) will not necessarily be environmental professionals. So, the questions are designed to walk a reviewer through the assessment process by providing a series of questions that can be answered using the information found in Part 1. To further assist the lead agency in completing Part 2, the form identifies the most relevant questions in Part 1 that will provide the information needed to answer the Part 2 question. When Part 2 is completed, the lead agency will have identified the relevant environmental areas that may be impacted by the proposed activity.

If the lead agency is a state agency **and** the action is in any Coastal Area, complete the Coastal Assessment Form before proceeding with this assessment.

Tips for completing Part 2:

- Review all of the information provided in Part 1.
- Review any application, maps, supporting materials and the Full EAF Workbook.
- Answer each of the 18 questions in Part 2.
- If you answer "Yes" to a numbered question, please complete all the questions that follow in that section.
- If you answer "No" to a numbered question, move on to the next numbered question.
- Check appropriate column to indicate the anticipated size of the impact.
- Proposed projects that would exceed a numeric threshold contained in a question should result in the reviewing agency checking the box "Moderate to large impact may occur."
- The reviewer is not expected to be an expert in environmental analysis.
- If you are not sure or undecided about the size of an impact, it may help to review the sub-questions for the general question and consult the workbook.
- When answering a question consider all components of the proposed activity, that is, the "whole action".
- Consider the possibility for long-term and cumulative impacts as well as direct impacts.
- Answer the question in a reasonable manner considering the scale and context of the project.

1. Impact on Land Proposed action may involve construction on, or physical alteration of, the land surface of the proposed site. (See Part 1. D.1) If "Yes", answer questions a - j. If "No", move on to Section 2.	∠ NC		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may involve construction on land where depth to water table is less than 3 feet.	E2d		
b. The proposed action may involve construction on slopes of 15% or greater.	E2f		
c. The proposed action may involve construction on land where bedrock is exposed, or generally within 5 feet of existing ground surface.	E2a		
d. The proposed action may involve the excavation and removal of more than 1,000 tons of natural material.	D2a		
e. The proposed action may involve construction that continues for more than one year or in multiple phases.	D1e		
f. The proposed action may result in increased erosion, whether from physical disturbance or vegetation removal (including from treatment by herbicides).	D2e, D2q		
g. The proposed action is, or may be, located within a Coastal Erosion hazard area.	B1i		
h. Other impacts:			

2. Impact on Geological Features The proposed action may result in the modification or destruction of, or inhib access to, any unique or unusual land forms on the site (e.g., cliffs, dunes, minerals, fossils, caves). (See Part 1. E.2.g)	it ☑NO		YES
If "Yes", answer questions a - c. If "No", move on to Section 3.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Identify the specific land form(s) attached:	E2g		
b. The proposed action may affect or is adjacent to a geological feature listed as a registered National Natural Landmark. Specific feature:	E3c		
c. Other impacts:			
3. Impacts on Surface Water The proposed action may affect one or more wetlands or other surface water bodies (e.g., streams, rivers, ponds or lakes). (See Part 1. D.2, E.2.h) If "Yes", answer questions a - l. If "No", move on to Section 4.	₽NO) []	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may create a new water body.	D2b, D1h		
b. The proposed action may result in an increase or decrease of over 10% or more than a 10 acre increase or decrease in the surface area of any body of water.	D2b		
c. The proposed action may involve dredging more than 100 cubic yards of material from a wetland or water body.	D2a		
d. The proposed action may involve construction within or adjoining a freshwater or tidal wetland, or in the bed or banks of any other water body.	E2h		
e. The proposed action may create turbidity in a waterbody, either from upland erosion, runoff or by disturbing bottom sediments.	D2a, D2h		
$f. \ The \ proposed \ action \ may \ include \ construction \ of \ one \ or \ more \ intake(s) \ for \ withdrawal \ of \ water \ from \ surface \ water.$	D2c		
g. The proposed action may include construction of one or more outfall(s) for discharge of wastewater to surface water(s).	D2d		
h. The proposed action may cause soil erosion, or otherwise create a source of stormwater discharge that may lead to siltation or other degradation of receiving water bodies.	D2e		
i. The proposed action may affect the water quality of any water bodies within or downstream of the site of the proposed action.	E2h		
j. The proposed action may involve the application of pesticides or herbicides in or around any water body.	D2q, E2h		
k. The proposed action may require the construction of new, or expansion of existing,	D1a, D2d		

wastewater treatment facilities.

1. Other impacts:			
4. Impact on groundwater The proposed action may result in new or additional use of ground water, or may have the potential to introduce contaminants to ground water or an aquife (See Part 1. D.2.a, D.2.c, D.2.d, D.2.p, D.2.q, D.2.t) If "Yes", answer questions a - h. If "No", move on to Section 5.	☑ NCer.) [YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may require new water supply wells, or create additional demand on supplies from existing water supply wells.	D2c		
b. Water supply demand from the proposed action may exceed safe and sustainable withdrawal capacity rate of the local supply or aquifer. Cite Source:	D2c		
c. The proposed action may allow or result in residential uses in areas without water and sewer services.	D1a, D2c		
d. The proposed action may include or require wastewater discharged to groundwater.	D2d, E2l		
e. The proposed action may result in the construction of water supply wells in locations where groundwater is, or is suspected to be, contaminated.	D2c, E1f, E1g, E1h		
f. The proposed action may require the bulk storage of petroleum or chemical products over ground water or an aquifer.	D2p, E2l		
g. The proposed action may involve the commercial application of pesticides within 100 feet of potable drinking water or irrigation sources.	E2h, D2q, E2l, D2c		
h. Other impacts:			
5. Impact on Flooding			
The proposed action may result in development on lands subject to flooding. (See Part 1. E.2) If "Yes", answer questions a - g. If "No", move on to Section 6.	✓ NC)	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may result in development in a designated floodway.	E2i		
b. The proposed action may result in development within a 100 year floodplain.	E2j		
c. The proposed action may result in development within a 500 year floodplain.	E2k		
d. The proposed action may result in, or require, modification of existing drainage patterns.	D2b, D2e		
e. The proposed action may change flood water flows that contribute to flooding.	D2b, E2i, E2j, E2k		
f. If there is a dam located on the site of the proposed action, is the dam in need of repair, or upgrade?	Ele		

g. Other impacts:			
	1	l	I
6. Impacts on Air The proposed action may include a state regulated air emission source. (See Part 1. D.2.f., D,2,h, D.2.g) If "Yes", answer questions a - f. If "No", move on to Section 7.	✓NO		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
 a. If the proposed action requires federal or state air emission permits, the action may also emit one or more greenhouse gases at or above the following levels: i. More than 1000 tons/year of carbon dioxide (CO₂) ii. More than 3.5 tons/year of nitrous oxide (N₂O) iii. More than 1000 tons/year of carbon equivalent of perfluorocarbons (PFCs) iv. More than .045 tons/year of sulfur hexafluoride (SF₆) v. More than 1000 tons/year of carbon dioxide equivalent of hydrochloroflourocarbons (HFCs) emissions vi. 43 tons/year or more of methane 	D2g D2g D2g D2g D2g D2g		
b. The proposed action may generate 10 tons/year or more of any one designated hazardous air pollutant, or 25 tons/year or more of any combination of such hazardous air pollutants.	D2g		
c. The proposed action may require a state air registration, or may produce an emissions rate of total contaminants that may exceed 5 lbs. per hour, or may include a heat source capable of producing more than 10 million BTU's per hour.	D2f, D2g		
d. The proposed action may reach 50% of any of the thresholds in "a" through "c", above.	D2g		
e. The proposed action may result in the combustion or thermal treatment of more than 1 ton of refuse per hour.	D2s		
f. Other impacts:			
7. Impact on Plants and Animals The proposed action may result in a loss of flora or fauna. (See Part 1. E.2. r If "Yes", answer questions a - j. If "No", move on to Section 8.	mq.)	₽NO	□YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may cause reduction in population or loss of individuals of any threatened or endangered species, as listed by New York State or the Federal government, that use the site, or are found on, over, or near the site.	E2o		
b. The proposed action may result in a reduction or degradation of any habitat used by any rare, threatened or endangered species, as listed by New York State or the federal government.	E2o		
c. The proposed action may cause reduction in population, or loss of individuals, of any species of special concern or conservation need, as listed by New York State or the Federal government, that use the site, or are found on, over, or near the site.	E2p		
d. The proposed action may result in a reduction or degradation of any habitat used by any species of special concern and conservation need, as listed by New York State or the Federal government.	E2p		

e. The proposed action may diminish the capacity of a registered National Natural Landmark to support the biological community it was established to protect.	ЕЗс		
f. The proposed action may result in the removal of, or ground disturbance in, any portion of a designated significant natural community. Source:	E2n		
g. The proposed action may substantially interfere with nesting/breeding, foraging, or over-wintering habitat for the predominant species that occupy or use the project site.	E2m		
h. The proposed action requires the conversion of more than 10 acres of forest, grassland or any other regionally or locally important habitat. Habitat type & information source:	E1b		
i. Proposed action (commercial, industrial or recreational projects, only) involves use of herbicides or pesticides.	D2q		
j. Other impacts:			
8. Impact on Agricultural Resources The proposed action may impact agricultural resources. (See Part 1. E.3.a. a	nd b)	✓NO	☐YES
	na <i>0.)</i>	<u>L</u> INO	
If "Yes", answer questions a - h. If "No", move on to Section 9.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
	Relevant Part I	No, or small impact	Moderate to large impact may
If "Yes", answer questions a - h. If "No", move on to Section 9. a. The proposed action may impact soil classified within soil group 1 through 4 of the	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land 	Relevant Part I Question(s) E2c, E3b	No, or small impact may occur	Moderate to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of 	Relevant Part I Question(s) E2c, E3b E1a, Elb	No, or small impact may occur	Moderate to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land. d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 	Relevant Part I Question(s) E2c, E3b E1a, Elb E3b	No, or small impact may occur	Moderate to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land. d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 acres if not within an Agricultural District. e. The proposed action may disrupt or prevent installation of an agricultural land 	Relevant Part I Question(s) E2c, E3b E1a, Elb E3b E1b, E3a	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc). c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land. d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 acres if not within an Agricultural District. e. The proposed action may disrupt or prevent installation of an agricultural land management system. f. The proposed action may result, directly or indirectly, in increased development	Relevant Part I Question(s) E2c, E3b E1a, Elb E3b E1b, E3a El a, E1b C2c, C3,	No, or small impact may occur	Moderate to large impact may occur

9. Impact on Aesthetic Resources The land use of the proposed action are obviously different from, or are in sharp contrast to, current land use patterns between the proposed project and a scenic or aesthetic resource. (Part 1. E.1.a, E.1.b, E.3.h.) If "Yes", answer questions a - g. If "No", go to Section 10.	✓ NO YES]YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Proposed action may be visible from any officially designated federal, state, or local scenic or aesthetic resource.	E3h		
b. The proposed action may result in the obstruction, elimination or significant screening of one or more officially designated scenic views.	E3h, C2b		
c. The proposed action may be visible from publicly accessible vantage points: i. Seasonally (e.g., screened by summer foliage, but visible during other seasons) ii. Year round	E3h		
d. The situation or activity in which viewers are engaged while viewing the proposed	E3h		
action is:	E2q,		
i. Routine travel by residents, including travel to and from workii. Recreational or tourism based activities	E1c		
e. The proposed action may cause a diminishment of the public enjoyment and appreciation of the designated aesthetic resource.	E3h		
f. There are similar projects visible within the following distance of the proposed project: 0-1/2 mile ½ -3 mile 3-5 mile 5+ mile	D1a, E1a, D1f, D1g		
g. Other impacts:			
10. Impact on Historic and Archeological Resources The proposed action may occur in or adjacent to a historic or archaeological resource. (Part 1. E.3.e, f. and g.) If "Yes", answer questions a - e. If "No", go to Section 11.	✓ NO) [YES
J J J	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may occur wholly or partially within, or substantially contiguous to, any buildings, archaeological site or district which is listed on or has been nominated by the NYS Board of Historic Preservation for inclusion on the State or National Register of Historic Places.	E3e		
b. The proposed action may occur wholly or partially within, or substantially contiguous to, an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory.	E3f		
c. The proposed action may occur wholly or partially within, or substantially contiguous to, an archaeological site not included on the NY SHPO inventory.	E3g		

d. Other impacts:			
If any of the above (a-d) are answered "Moderate to large impact may e. occur", continue with the following questions to help support conclusions in Part 3:			
 The proposed action may result in the destruction or alteration of all or part of the site or property. 	E3e, E3g, E3f		
 The proposed action may result in the alteration of the property's setting or integrity. 	E3e, E3f, E3g, E1a, E1b		
iii. The proposed action may result in the introduction of visual elements which are out of character with the site or property, or may alter its setting.	E3e, E3f, E3g, E3h, C2, C3		
11. Impact on Open Space and Recreation The proposed action may result in a loss of recreational opportunities or a reduction of an open space resource as designated in any adopted municipal open space plan. (See Part 1. C.2.c, E.1.c., E.2.q.) If "Yes", answer questions a - e. If "No", go to Section 12.	✓ No) [YES
	Relevant	No, or	Moderate
	Part I Question(s)	small impact may occur	to large impact may occur
a. The proposed action may result in an impairment of natural functions, or "ecosystem services", provided by an undeveloped area, including but not limited to stormwater storage, nutrient cycling, wildlife habitat.	D2e, E1b E2h, E2m, E2o, E2n, E2p		
b. The proposed action may result in the loss of a current or future recreational resource.	C2a, E1c, C2c, E2q		
c. The proposed action may eliminate open space or recreational resource in an area with few such resources.	C2a, C2c E1c, E2q		
d. The proposed action may result in loss of an area now used informally by the community as an open space resource.	C2c, E1c		
e. Other impacts:			
12. Impact on Critical Environmental Areas The proposed action may be located within or adjacent to a critical environmental area (CEA). (See Part 1. E.3.d) If "Yes", answer questions a - c. If "No", go to Section 13.	✓ NO) <u> </u>	YES
ij ies , unswer questions a - c. ij ivo , go to section is.	Relevant	No, or	Moderate
	Part I Question(s)	small impact may occur	to large impact may occur
a. The proposed action may result in a reduction in the quantity of the resource or characteristic which was the basis for designation of the CEA.	E3d		
b. The proposed action may result in a reduction in the quality of the resource or characteristic which was the basis for designation of the CEA.	E3d		
c. Other impacts:			

13. Impact on Transportation The proposed action may result in a change to existing transportation systems (See Part 1. D.2.j)	s. VN	о 🗌	YES
If "Yes", answer questions a - f. If "No", go to Section 14.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Projected traffic increase may exceed capacity of existing road network.	D2j		
b. The proposed action may result in the construction of paved parking area for 500 or more vehicles.	D2j		
c. The proposed action will degrade existing transit access.	D2j		
d. The proposed action will degrade existing pedestrian or bicycle accommodations.	D2j		
e. The proposed action may alter the present pattern of movement of people or goods.	D2j		
f. Other impacts:			
14. Impact on Energy The proposed action may cause an increase in the use of any form of energy. (See Part 1. D.2.k) If "Yes", answer questions a - e. If "No", go to Section 15.	∠ N0	o 🗌	YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action will require a new, or an upgrade to an existing, substation.	D2k		
b. The proposed action will require the creation or extension of an energy transmission or supply system to serve more than 50 single or two-family residences or to serve a commercial or industrial use.	D1f, D1q, D2k		
c. The proposed action may utilize more than 2,500 MWhrs per year of electricity.	D2k		
d. The proposed action may involve heating and/or cooling of more than 100,000 square feet of building area when completed.	D1g		
e. Other Impacts:			
15. Impact on Noise, Odor, and Light The proposed action may result in an increase in noise, odors, or outdoor ligh (See Part 1. D.2.m., n., and o.) If "Yes", answer questions a - f. If "No", go to Section 16.	ting. VNC) <u> </u>	YES
	Relevant	No, or	Moderate
	Part I Question(s)	small impact may occur	to large impact may occur
a. The proposed action may produce sound above noise levels established by local regulation.	D2m		
b. The proposed action may result in blasting within 1,500 feet of any residence, hospital, school, licensed day care center, or nursing home.	D2m, E1d		
c. The proposed action may result in routine odors for more than one hour per day.	D2o		

c. The proposed action may result in routine odors for more than one hour per day.

d. The proposed action may result in light shining onto adjoining properties.	D2n		
e. The proposed action may result in lighting creating sky-glow brighter than existing area conditions.	D2n, E1a		
f. Other impacts:			
16. Impact on Human Health The proposed action may have an impact on human health from exposure to new or existing sources of contaminants. (See Part 1.D.2.q., E.1. d. f. g. ar	nd h.)	0 🔲	YES

The proposed action may have an impact on human health from exposure to new or existing sources of contaminants. (See Part 1.D.2.q., E.1. d. f. g. at If "Yes", answer questions a - m. If "No", go to Section 17.	Relevant Part I Question(s)	No,or small impact may cccur	Moderate to large impact may occur
a. The proposed action is located within 1500 feet of a school, hospital, licensed day care center, group home, nursing home or retirement community.	E1d		
b. The site of the proposed action is currently undergoing remediation.	E1g, E1h		
c. There is a completed emergency spill remediation, or a completed environmental site remediation on, or adjacent to, the site of the proposed action.	E1g, E1h		
d. The site of the action is subject to an institutional control limiting the use of the property (e.g., easement or deed restriction).	Elg, Elh		
e. The proposed action may affect institutional control measures that were put in place to ensure that the site remains protective of the environment and human health.	Elg, Elh		
f. The proposed action has adequate control measures in place to ensure that future generation, treatment and/or disposal of hazardous wastes will be protective of the environment and human health.	D2t		
g. The proposed action involves construction or modification of a solid waste management facility.	D2q, E1f		
h. The proposed action may result in the unearthing of solid or hazardous waste.	D2q, E1f		
i. The proposed action may result in an increase in the rate of disposal, or processing, of solid waste.	D2r, D2s		
j. The proposed action may result in excavation or other disturbance within 2000 feet of a site used for the disposal of solid or hazardous waste.	E1f, E1g E1h		
k. The proposed action may result in the migration of explosive gases from a landfill site to adjacent off site structures.	E1f, E1g		
1. The proposed action may result in the release of contaminated leachate from the project site.	D2s, E1f, D2r		
m. Other impacts:			

17. Consistency with Community Plans The proposed action is not consistent with adopted land use plans. (See Part 1. C.1, C.2. and C.3.)	NO		YES
If "Yes", answer questions a - h. If "No", go to Section 18.			
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action's land use components may be different from, or in sharp contrast to, current surrounding land use pattern(s).	C2, C3, D1a E1a, E1b		
b. The proposed action will cause the permanent population of the city, town or village in which the project is located to grow by more than 5%.	C2		
c. The proposed action is inconsistent with local land use plans or zoning regulations.	C2, C2, C3		
d. The proposed action is inconsistent with any County plans, or other regional land use plans.	C2, C2		
e. The proposed action may cause a change in the density of development that is not supported by existing infrastructure or is distant from existing infrastructure.	C3, D1c, D1d, D1f, D1d, Elb		
f. The proposed action is located in an area characterized by low density development that will require new or expanded public infrastructure.	C4, D2c, D2d D2j		
g. The proposed action may induce secondary development impacts (e.g., residential or commercial development not included in the proposed action)	C2a		
h. Other:			
	ļ		
18. Consistency with Community Character The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3.	✓NO		YES
zy zez , miane, questions a gr. zy zne , precedule z anver	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may replace or eliminate existing facilities, structures, or areas of historic importance to the community.	E3e, E3f, E3g		
b. The proposed action may create a demand for additional community services (e.g. schools, police and fire)	C4		
c. The proposed action may displace affordable or low-income housing in an area where there is a shortage of such housing.	C2, C3, D1f D1g, E1a		
d. The proposed action may interfere with the use or enjoyment of officially recognized or designated public resources.	C2, E3		
e. The proposed action is inconsistent with the predominant architectural scale and character.	C2, C3		
f. Proposed action is inconsistent with the character of the existing natural landscape.	C2, C3 E1a, E1b		
	E2g, E2h		

	Agency Use Only [IfApplicable]
Project:	
Date:	

Full Environmental Assessment Form Part 3 - Evaluation of the Magnitude and Importance of Project Impacts and Determination of Significance

Part 3 provides the reasons in support of the determination of significance. The lead agency must complete Part 3 for every question in Part 2 where the impact has been identified as potentially moderate to large or where there is a need to explain why a particular element of the proposed action will not, or may, result in a significant adverse environmental impact.

Based on the analysis in Part 3, the lead agency must decide whether to require an environmental impact statement to further assess the proposed action or whether available information is sufficient for the lead agency to conclude that the proposed action will not have a significant adverse environmental impact. By completing the certification on the next page, the lead agency can complete its determination of significance.

Reasons Supporting This Determination:

To complete this section:

- Identify the impact based on the Part 2 responses and describe its magnitude. Magnitude considers factors such as severity, size or extent of an impact.
- Assess the importance of the impact. Importance relates to the geographic scope, duration, probability of the impact
 occurring, number of people affected by the impact and any additional environmental consequences if the impact were to
 occur.
- The assessment should take into consideration any design element or project changes.
- Repeat this process for each Part 2 question where the impact has been identified as potentially moderate to large or where
 there is a need to explain why a particular element of the proposed action will not, or may, result in a significant adverse
 environmental impact.
- · Provide the reason(s) why the impact may, or will not, result in a significant adverse environmental impact
- For Conditional Negative Declarations identify the specific condition(s) imposed that will modify the proposed action so that
 no significant adverse environmental impacts will result.

 Attach additional sheets, as needed. 				
See Attached				
×				
5				o o
ε				
Determination of Significance - Type 1 and Unlisted Actions				
SEQR Status: Type 1	✓ Unlisted			
Identify portions of EAF completed for this Project:	Part 1	✓ Part 2	✓ Part 3	

Upon review of the information recorded on this EAF, as noted, plus this additional support information
and considering both the magnitude and importance of each identified potential impact, it is the conclusion of the Ulster County Legislature pursuant to Resolution No. 327 of August 15, 2017 as lead agency that:
A. This project will result in no significant adverse impacts on the environment, and, therefore, an environmental impact statement need not be prepared. Accordingly, this negative declaration is issued.
B. Although this project could have a significant adverse impact on the environment, that impact will be avoided or substantially mitigated because of the following conditions which will be required by the lead agency:
There will, therefore, be no significant adverse impacts from the project as conditioned, and, therefore, this conditioned negative declaration is issued. A conditioned negative declaration may be used only for UNLISTED actions (see 6 NYCRR 617.d).
C. This Project may result in one or more significant adverse impacts on the environment, and an environmental impact statement must be prepared to further assess the impact(s) and possible mitigation and to explore alternatives to avoid or reduce those impacts. Accordingly, this positive declaration is issued.
Name of Action: Ashokan Rail Trail Easement
Name of Lead Agency: Ulster County Legislature
Name of Responsible Officer in Lead Agency: Kenneth J. Ronk, Jr.
Title of Responsible Officer: Chairman
Signature of Responsible Officer in Lead Agency: Date: 8/18/2017
Signature of Preparer (if different from Responsible Officer) Date: 8/18/2017
For Further Information:
Contact Person: Dennis Doyle
Address: 244 Fair Street Box 1800 Kingston, NY 12402
Telephone Number: 845-340-3340
E-mail: ddoy@co.ulster.ny.us
For Type 1 Actions and Conditioned Negative Declarations, a copy of this Notice is sent to:
Chief Executive Officer of the political subdivision in which the action will be principally located (e.g., Town / City / Village of) Other involved agencies (if any) Applicant (if any) Environmental Notice Bulletin: http://www.dec.ny.gov/enb/enb.html

ULSTER COUNTY LEGISLATURE DETERMINATION SEQRA LAWFUL SEGEMENTATION AND NEGATIVE DECLARATION

In the Matter of Approving the Execution of the Ashokan Trail Easement by Ulster County: Ulster County Legislature

The Ulster County Legislature (the "County") is proposing construction of an 11.6 mile pedestrian and bicycle trail on lands owned by the City of New York (the "City") and managed by the New York City Department of Environment Protection ("DEP")in the Towns of Olive, Hurley, and Woodstock ("Project"). Project will establish a non-motorized recreational trail on the County's Ulster and Delaware Railroad corridor along northern shore of the Ashokan Reservoir. The Project includes repurposing of the existing railroad bed and ballast, removal of rail ties and track, repair and reconstruction of drainage structures and replacement of a bridge structure over the Esopus Creek near Boiceville which was destroyed during Hurricane Irene in 2011.

The County pursuant to Resolution No. 480 of December 15, 2015 declared its intent to act as Lead Agency as provided for in 6NYCRR Part 617.6(b)(2)(i) of the Regulations pertaining to Article 8 of the Environmental Conservation Law of New York State ("SEQRA") and categorized the Action as Type I. The County circulated the necessary notifications on August 31, 2016 and receiving no objections became Lead Agency 30 days after this date.

The County originally sought a land use permit from DEP that would allow it to construct the trail. Subsequent concerns by the County about the need for a more permanent property interest led to the negotiation and development of the Ashokan

Trail Easement (the "Trail Easement"). The Trail Easement is permanent property interest for the benefit of the County that allows construction, maintenance and operation of the Ashokan Rail Trail ("ART") while preserving the County's perpetual easement for railroad purposes ("Railroad Easement") and protects all of the rights associated with the existing Railroad Easement. The Ashokan Trail Easement is attached as Exhibit A. A summary map of the location of the Trail Easement is attached as Exhibit B.

Although the construction of the ART has been classified as a Type I Action under SEQRA, the County, as Lead Agency, has examined the execution of the Trail Easement in accordance with SEQRA and finds under 6 NYCRR 617.4, approval of the Trail Easement is an Unlisted Action. However, the County will examine the potential adverse environmental effects of executing the Trail Easement under procedures for a Type I Action.

In accordance with the above, the County will conduct a lawful segmentation of the SEQRA environmental review for the approval of the Trail Easement pursuant to 6 NYCRR Part 617.3(g(1))

In this manner, the approval of the Trail Easement would be permitted while the phase of the Project, consisting of the construction of the trail itself and other associated repairs and replacements associated with said construction, undergoes continuing SEQRA reviews and permitting.

Legal Address of Lawful Segmentation in the Instant Action

The SEQRA regulations generally disfavor what is called "segmentation," which is defined as "the division of the

environmental review of an action such that various activities or stages are addressed under SEQRA as though they were independent, unrelated activities, needing individual determinations of significance." [6 NYCRR Part 617.2 (ag)].

6 NYCRR Part 617.3(g) provides that actions commonly consist of a set of activities or steps and that the entire set of activities or steps must be considered the action, whether the agency decision-making relates to the action as a whole or to only a part of it.

In making a determination of environmental significance for any Unlisted Action or Type I Action, the Lead Agency must consider the action as the entire set of activities or steps involved [6 NYCRR Part 617.7(b)(1)] and, for the purpose of determining whether such action may cause a significant effect on the environment, the Lead Agency must consider reasonably related long-term, short-term, direct, indirect and cumulative impacts, including other simultaneous or subsequent actions which are:

- (1) included in any long-range plan of which the action under consideration is a part, or
 - (2) likely to be undertaken as a result thereof, or
 - (3) dependent thereon.

However, segmentation is not prohibited by the law and if a Lead Agency believes that circumstances warrant a segmented review, it may permit the same provided it clearly states in its determination of significance and any subsequent determination of significance the supporting reasons and demonstrates that such review is clearly no less protective of the environment.

There have been numerous cases dealing with the issue of segmentation since SEQRA went into effect and interpreting the above regulations. Most of the reported cases involve whether or not a particular action amounts to segmentation, and not

whether or not segmentation is or would be permissible under the circumstances.

In the controlling case of <u>In the Matter of Concerned Citizens for the Environment v. Zagata</u>, 243 AD2d 20 (3rd Dept. 1998), the Appellate Division for the Third Department permitted the segmentation of a proposed solid waste disposal facility when it reviewed the application to construct a solid waste transfer station separately from the application to construct an incinerator and materials recovery facility that were part of the same project.

The court held that segmented review is permissible where the Lead Agency believes that it is warranted under the circumstances, provided the agency clearly states its reasons for permitting segmentation and demonstrates that such review is no less protective of the environment, and that any related actions be identified and discussed to the fullest extent possible.

In its analysis of the issue of segmentation, the court stated that the reasons for disfavoring segmentation of environmental review are twofold.

The first reason given by the court is the danger that in considering related actions separately, a decision by the agency involving review of an earlier action may be "practically determinative" of a subsequent action. In other words, by approval of an earlier action an administrative board would, in effect, commit the board to a definite course of future conduct so that the board could not, as a practical matter, disapprove any subsequent action involving the combined action.

A common example of improper segmentation involves issuance of a Negative Declaration for the change in the zoning classification of a specific parcel of land for the express purpose of authorizing its subsequent development for an

identified and currently proposed project which may or will cause a significant adverse impact. See Matter of New York Canal Improvement Association v. Town of Kingsbury, 240 AD2d 930 (3rd Dept. 1997).

The second reason given by the court is that when a project that would have a significant adverse effect on the environment is broken up or divided into two or more component parts which, individually, would not have as significant an environmental impact as the entire project. Or, instances where one or more aspects of the project might fall below the threshold requiring any environmental review.

In other words, by not considering the entire project at one time, the environmental review of the project would be lessened, or perhaps eliminated, altogether.

Applying the above two-pronged test to the facts and circumstances of this particular action, the approval of the Trail Easement, the County finds that the issuance of a Negative Declaration does not constitute impermissible segmentation for the following reasons:

1. The Action Is Not Practically Determinative: An approval by the Ulster County Legislature of the Trail Easement does not commit the County to approve any subsequent action associated with the construction of the Ashokan Rail Trail.

This action is capable of standing by itself as a discrete approval and does not impair, compromise or prejudice the exercise of discretion vested in the County of Ulster Legislature to conduct a full environmental review of the Project, nor does the same commit said Legislature to a "definite course of future conduct" thereby forcing the approval of Project construction.

It is important to note that the language in the Trail Easement states:

"The grant of this Trail Easement is specifically conditioned upon the construction of the ART in accordance with the design of the trail approved by the City. Any modifications to the design shall be approved by the City, the same of which shall not be withheld unreasonably."

This language places the Easement subordinate to the approval of the construction of the Trail itself. The County remains free to decide whether or not to proceed with construction subsequent to the necessary environmental scrutiny.

2. The Action Is No Less Protective of the Environment: As to the second prong of the <u>Concerned Citizens v. Zagata</u> test, the identified environmental impacts or effects that are reasonably likely to result from this action are, by themselves, negligible and do not require the preparation of an Environmental Impact Statement ("EIS"). As noted above, the Trail Easement does not commit the County to any future course of action. In addition, approval of the Trail Easement does not authorize physical alteration or construction activities associated with the building of the ART, itself.

The future demolition and construction phases which comprise the Project will require, at a minimum, approval by the County for funding and construction authorization, final design and other approvals by DEP, and approvals from the Town of Hurley, the New York State Department of Environmental Conservation ("DEC"), and the New York State Department of Transportation ("NYSDOT"). These discretionary approvals are also actions under SEQRA and trigger a de novo environmental

review [6 NYCRR Part 617.2(a)(1)]. These activities are being progressed by the County as a Type I Action.

In this regard, the environmental impacts associated with the construction and operation of the ART will continue to be evaluated under a coordinated SEQRA review as a Type 1 Action by the County of Ulster and the other involved and interested agencies as noted above. Parts 1 and 2 of the SEQRA Full Environmental Assessment Form for the Project, as circulated with the request for lead agency, is attached as Exhibit C and describes the Project in its entirety. A list of the involved and interested agencies is provided as Appendix D.

Accordingly, this subsequent environmental review will analyze the proposed Project and appurtenances in light of a completed Detailed Design and Storm Water Pollution Prevention Plan ("SWPPP"), with the County Legislature and other involved agencies retaining extensive discretionary approval authority. As such, the comprehensive environmental review associated therewith is no less protective of the environment.

Conclusion: As a result, where all discretionary approvals from the Lead Agency and the involved agencies remain, it cannot be reasonably posited that the execution of the Ashokan Trail Easement will be "practicably determinative" of the Ashokan Rail Trail Project as a whole. In addition, where the Lead Agency is conducting a coordinated review of the Project as a Type I Action, the approval of the Trail Easement that does not include any physical alteration of lands, considered as a separate action will neither impair nor reduce the effectiveness of subsequent environmental review.

The Ulster County Legislature, having considered the factors associated with a segmented review under SEQRA and the environmental impacts associated with approval of the Ashokan Rail Trail Easement hereby determines that:

- 1. Approval of the Ashokan Trail Easement may be carried out as a lawful segmented review; and
- 2. A review of record supports the conclusion that no adverse environmental effects will occur from approval of the Ashokan Trail Easement, and that a Negative Declaration pursuant to 6 NYCRR Part 617.3(g)(1) is applicable and hereby issued; and
- 3. Such SEQRA segmentation and determination pertaining to the Trail Easement shall be noted and referenced in all future environmental actions and determinations for the Ashokan Rail Trail Project.

July 20, 2017

Mr. Chris White, Deputy Director Ulster County Planning Department P.O. Box 1800 244 Fair Street Kingston, NY 12402-1800

Re: Ulster & Delaware Railroad - Ashokan Reservoir Segment

Summary of Opinion Statement

Dear Mr. White:

HDR was engaged by the Ulster County Planning Department to develop a recommendation and Summary of Opinion Statement ("Summary") regarding the Ulster & Delaware Railroad Corridor between Milepost 10 at Basin Road in West Hurley and Milepost 21.6 at Route 28A in Boiceville, NY ("Corridor"). Specifically, HDR was asked to make a recommendation based on our railroad engineering experience and familiarity with the Corridor as to whether it is preferable from the perspective of restoring railroad uses in the future to remove the existing track infrastructure to construct a rail trail, or alternatively, bury the existing track infrastructure.

For background, I am currently the Association Vice President and Rail Section Manager for HDR with more than 35 years' experience in railroad engineering as well as a Licensed Professional Engineer in the State of New York with a Bachelor of Science Degree of Civil Engineering from the University of Pittsburgh, A Master of Science from New York Polytechnic and a Post Graduate Engineers Degree from Columbia University.

Summary Statement/ Recommendation:

As detailed below, it is our recommendation that the County remove the existing railroad infrastructure—including track, ties, and other track materials ("OTM")-- in developing the Ashokan Rail Trail ("ART") rather than bury the track and tie infrastructure for potential future use in building the ART. Based on cost, constructability, drainage considerations, current condition of the track and ties, and other factors, any future restoration of railroad uses on the Corridor is best served by removal of existing track and ties and stabilization of the underlying railroad infrastructure, including repairs to drainage structures, as proposed for the ART development. Burying and then uncovering the existing railroad infrastructure will make restoration of railroad uses on the Corridor more expensive and labor-intensive. It would also make trail construction and restoration of the drainage facilities much more difficult and expensive and make future maintenance of the trail problematic. Finally, leaving deteriorated ties in the corridor are likely to have environmental consequences that should be avoided.

My recommendation is based on familiarity with the Corridor from prior inspection reports and on my experience with all aspects of railroad construction and maintenance. As you know, HDR's Rail Engineer and staff visited and documented the condition of the U&D Corridor between Kingston and Phoenicia, including this segment, in 2015 and 2016 and provided an assessment of the rail infrastructure to the County in reports dated June 6, 2014 and September 21, 2015 ("Condition Reports"). I reviewed the Condition Reports at the time they were produced and certified them as the supervising engineer. For purposes of this Summary, I have conducted a detailed review of the Condition Reports, including the accompanying photographs to re-familiarize myself with the Corridor and the condition of its railroad infrastructure. I have also researched other rail trail corridors to determine whether others have any experience in building trails on top of existing rail infrastructure that would inform my recommendation.

Current Conditions of the U&D Corridor:

As detailed in HDR's Condition Reports from 2015 and 2016, the U&D Corridor along the Ashokan Reservoir does not meet FRA Class I safety standards, the minimum safety standard for any operation of passenger or freight service. We understand that the last freight service on this segment was in the late 1970's, and it appears that for the most part, little or no maintenance of the railroad infrastructure has occurred since that time. HDR's Rail Engineer found and documented that the Corridor was in an advanced state of disrepair from this lack of maintenance, and the railroad infrastructure—including as culverts, bridges, drainage ditches, embankment and right-of-way have numerous locations of complete failure with the majority of the infrastructure evidencing marginal function as to its intended design purpose. In support of these statements I note that during the 2015 and 2016 inspections, HDR's Rail Engineer was unable to record every track defect as the condition of the Corridor was so poor. Many defects were hidden under debris, and the main charge of the inspection was to provide sufficient data to show that the areas that did not meet Class 1 standards. The Rail Engineer sampling throughout the Corridor at regular intervals did document 297 FRA Class I defects (77 Class Specific defects, 120 Non Class Specific). Most importantly for the purpose of this Opinion Statement, the photos and written statements in the Condition Report reveals that approximately 95% of the railroad ties were in an advanced state of decay or missing.

The inspections also detailed a long list of other railroad infrastructure issues in the Corridor. The rail, itself, is misaligned and has surface irregularities in many areas. Tie conditions are very poor, and ballast is no longer even visible in many areas due to build-up of organic materials over a period of decades. Drainage systems have largely failed, with ditches plugged and overgrown with trees, ballast missing (which allows drainage), many culverts heavily deteriorated (including the complete failure of the major culvert at Butternut Creek), and ditch lines that over a period of years have now become wetlands and left the railroad

bed saturated. All of these issues are critical factors in weighing the advisability of burying this infrastructure for reuse in the future.

Issues with Burying Rail Infrastructure:

The choice of whether to remove or bury the existing track and ties requires consideration of the impacts both on the trail and future ability to restore the rail that was buried to operating condition. The existing railroad ties throughout the corridor are in an advanced state of decay, which will only accelerate once they are buried. Their continued decay will likely foul trail construction materials resulting in a "wash board" trail surface over a short timeframe causing challenging trail maintenance. Removing the ties and track before constructing the trail allows for removal of the built-up organic material and refreshment of the existing ballast to restore its drainage capabilities. This, along with repair and replacement of other drainage structures, will better preserve the integrity of the rail corridor, and stabilized trail material itself will serve as an improved sub-base for any future track restoration.

Burying track infrastructure is not a typical rail-to-trail conversion practice. We have found no instances of it being used in similar situation or for this length. Leaving the track structure will complicate the installation of the trail as construction equipment will have to avoid damage to the rail, which is nearly impossible in many sections of the narrow corridor. Additionally, burying track and tie makes the correction of drainage issues along the rail gage similarly more difficult as construction of swales, new culverts, and replacement of ballast where washed out will need to be done while maintaining the track in place. Stabilization of the underlying railroad embankment/ bed is best accomplished by removing the track, ties and OTM, excavating the built-up organic materials layers, and re-establishing a functioning drainage system, including new ballast. The rail and OTM can be sold as scrap offsetting trail construction costs and help to offset the cost of disposal for the existing deteriorated ties.

In addition to the issues highlighted above, the following considerations also cause us to discourage burying the existing track materials for future re-use for railroad operations:

- Restoration of existing track to future service after burial will require heavy tie renewal. It is likely that, even after a short time, nearly 100% of the ties will require replacement as few, if any will survive being uncovered and set to final geometry.
- Reestablishment of alignment using the current 100 LB DY rail (which is no longer produced) with 6 hole joints throughout is problematic as it should not be welded without cropping every end due to bolt hole fractures (i.e., not "weld friendly"). The exiting 100 LB rail may require over 3000 welds plus each end being cropped due to 6 hole joints as best practice does not support welding within 9.5" of a bolt hole.

In addition, the condition of the existing rail that already has pitting and flange issues also makes replacement of the rail a better choice from a safety perspective.

- Continuous welded rail (CWR) is today's preference for rail corridor restoration.
 AREMA rail sections sizes 115 and up are the rail sections now used in railroad reconstruction and repair. Railroad ties for this type of rail can be spaced at 24 inches on center versus 19.5 inches common with 100 LB rail sections. Approximately 7000 less railroad ties would be required on the 11.6 mile section of the Corridor using 115 size rail.
- Modern track construction methods have economic and constructability advantages over any restoration attempts of this Corridor that leave the track and ties buried in place. The use of CWR/wood tie track structure on a graded restored ballast system with drainage improvements is likely to be more cost effective from a purely rail standpoint given the amount of ties needed to be replaced, the condition of the ballast and drainage in the corridor, and the type and condition of the rail itself.
- It is not clear how major reconstruction of the Butternut Creek Culvert and Boiceville
 Bridge could be accomplished without removing the track and tie infrastructure and
 stabilizing the road bed for construction vehicles. Much of the Corridor is remotely
 located and narrow, and retention of the existing track would make construction
 access very difficult and expensive.
- Significant costs will be incurred for trail construction associated as additional fill will
 have to be brought in over a long narrow corridor. Adding fill to cover the tracks is
 also likely to cause problems in maintaining trail width as side slopes and shoulder
 issues will arise on the narrow embankments and drainage issues will occur in the
 narrow rock cuts.

Conclusion:

Based on our inspection and review of the existing conditions in the Corridor, the Ulster & Delaware Railroad Corridor segment from Milepost 10 at Basin Road to Milepost 21.6 at Route 28A we offer the following:

- The Corridor in its current condition cannot support rail service without major rehabilitation and repair, burying this rail infrastructure will only add to its deficiencies and efforts needed to uncover and re-establish geometry will further add to the problems with the existing track.
- Significant barriers exist to the constructability and maintenance of a trail over the rail that include: removal of organic material now present throughout the existing

ballast; restoration and improvements to drainage systems; avoiding damage to the existing rail infrastructure during construction, particularly during placement of fill; and maintaining the trail width and need shoulders on narrow embankments and rock cuts.

- Each of the above factors will significantly increase the costs of trail construction as will the need for additional fill to cover the tracks. Maintenance costs for the trail will rise in both the near and long term as the underlying rail infrastructure deteriorates and shifts with usage.
- Environmental issues will be heightened with the existing ties being left in place.

For all of the reasons discussed above, the County would be best served by removing all existing rail appliances (Rail/Ties/OTM) before the installation the trail based on the cost, constructability and usability of the trail and the feasibility of restoring railroad services at some future date using the existing rail infrastructure. Future restoration of the Corridor to a properly functioning condition will best be accomplished with total replacement of rail/ties/OTM with more currently available materials installed by modern means and methods.

If there are further questions, I can be contacted at (212)-542-6028 or via email: richard.semenick@hdrinc.com.

Sincerely,

Richard C. Semenick, PE Associate Vice President

Sand

October 31, 2017

Mr. Christopher White, Deputy Director Ulster County Planning Department 244 Fair Street, P.O. Box 1800 Kingston, New York 12402

Re: Alternatives Analysis- Burying Existing Track and Ties along Ashokan Rail Trail

Dear Mr. White:

As part of the engineering design for Ulster County's Ashokan Rail Trail Project, Barton & Loguidice (B&L) has explored and assessed the alternative of constructing the proposed recreational trail directly upon the existing railroad bed consisting of steel rails, wooden ties, and typical stone ballast along the former Ulster and Delaware Railroad corridor. B&L strongly recommends that Ulster County dismiss the alternative of burying of the existing track and ties based on engineering, cost, environmental, trail maintenance, and regulatory considerations. This recommendation also recognizes the fact that the New York City Department of Environmental Protection (DEP) has clearly and consistently indicated it would not approve such an alternative design due to concerns about wetland impacts, erosion, burying of creosote-treated ties, and other concerns.

In general, roadways, trails, sidewalks, and other surfaces require a stable base material, which is vital to the short and long term sustainability of the surface course. Properly designed projects include the removal of organic material and the placement with inorganic construction materials, also known as subgrade material. This material is typically granular and consists of either well graded low clay content soil, or a soil and stone mixture, or as proposed for the Ashokan Rail Trail, crushed stone. In any case, the material should have very low or no organic material.

The section of the U&D railroad track from approximately Basin Road in West Hurley to NY Route 28A in Boiceville is supported by a wooden tie and ballast system. The approximately 35,000+ wooden ties are in various stages of decay with approximately 90 to 95% requiring replacement. Organic (live, dead and decaying) materials have also accumulated on the surface of the ballast and rooted in the upper level of the ballast due to lack of clearing, maintenance and tie replacement for a period of many decades. In many areas, the stone ballast is not visible due to complete coverage by organic materials and vegetation and tree roots have developed into the railroad bed and adjacent drainage ditches.

If the organic materials and wooden ties were buried over, they would continue to deteriorate and undermine the integrity of the trail surface, which is proposed to be compacted crush stone. This process will compromise the supporting base or foundation for the improvements they support, specifically the trail surface. This inadequate foundation will become weaker and compromised, and cracks and depressions in the trail surface will develop. The cracks and depressions will form small drainage paths (called rills) and cause ponding, which will concentrate stormwater flow, induce erosion, and result in the uneven settlement of the trail surface, including potholes. Once this process is started, the erosion will accelerate, and the constructed trail surface will de-stabilize throughout the corridor over time. This process would not likely

Mr. Christopher White Ulster County Planning Department October 31, 2017

start in the very early stages (first year) of the trail being open, but would begin a long term maintenance issue that will continue unpredictably for many years along the entire trail length.

The organic material will also become saturated and hold moisture resulting in a cycle of frost heaving, melting and settling, followed by pothole formation. Once this process begins, a more rapid rate of surface degradation, and pothole development will occur and reconstruction of these areas will be required. In areas that are more prone to water collection and frost heave, sections of the rail may be pushed up and create ridges or bumps in the surface resulting in tripping hazards and rough riding and accelerated water damage.

Burying the steel rail and tie system would require a significant volume of new stone materials to be transported in to the project site, which would not otherwise be required under the proposed design plan, which minimizes transport of materials to reduce costs and environmental impacts. The proposed plan utilizes the stone ballast already present as a base for the trail, reducing the amount of stone that is needed to be brought in by approximately 60% or approximately 23,000 cubic yards (cy) when compared to the alternative of burying the track and ties. This reduction in materials alone will save the County \$1.3 Million when compared to leaving the tracks and ties in place.

Additionally, burying the existing tracks and ties will reduce the effective width of the trail and the buffer areas adjacent to the trail where it will be very difficult to stabilize and retain materials if the tracks are covered instead of removed. As you are aware, our firm has done a detailed assessment of the existing railroad bed and has proposed in some areas, including high-fill embankment sections, to lower the trail profile to increase the usable width for the trail and reduce the need for protective fencing on side slopes. Any reduction in trail width to accommodate burying the railroad infrastructure (essentially building upon and narrowing the trail prism) would increase the need for safety fencing and eliminate most of the flexibility of shifting and fine tuning the trail to minimize the environmental impacts, which were required by DEP during the design and environmental review process. Such a reduction of width from twelve feet to in some cases five or six would not be in accordance with recommended design standards for multi-use trail and would inevitably create conflicts between bicyclists and pedestrians, potentially creating safety issue for trail users.

The construction of the Ashokan Rail Trail, including the installation of proposed new bridges at Boiceville and Butternut Creek, would be nearly impossible if the existing track and ties were not removed prior to construction and the roadbed rough-graded and stabilized. Access to the project site along the narrow single-tracked railroad corridor, which in some areas is constrained to only 10-12 ft. is already difficult for construction vehicles. During recent pre-bid site visits with prospective construction vendors, many of the firms highlighted the increased costs for all phases of construction because of the remoteness and limited width of the railroad corridor. Leaving in place an already deteriorated and compromised track system would make access by heavy construction equipment much more difficult and/or result in the destruction of the track during transport of equipment and materials. Heavy construction equipment could not traverse the existing track without crushing many of the remaining ties and further damaging the rails and joints, themselves.

It is important to note that there are sections of the existing railroad corridor where it would be impossible to bury the track and ties, due to engineering constraints or regulatory issues. For example, the railroad segment west of the Runge Road Access point where the railroad embankment has sunken for hundreds of yards and the railroad ties have been cribbed or cross-piled to hold the track in place would be very difficult, if not impossible, to bury effectively so that the materials are stabilized without installation of retaining structures. Again, such engineered solutions would dramatically increase the cost of the project while

Mr. Christopher White Ulster County Planning Department October 31, 2017

substantially diminishing the safety and usability of the new trail. During our environmental investigations and subsequent negotiations on wetland delineations with the DEP, an eight-hundred (800) ft. segment of the former railroad bed was delineated as a wetland under federal jurisdiction. This railroad segment, which developed into wetland over a period of decades during which the drainage ditches and culverts were not maintained and cleared, must now be avoided entirely and new fill materials could not be placed over the existing tracks without obtaining additional permits and incurring expensive wetland mitigation requirements. I would also note that requiring tracks to be buried and retained for future use would be in direct contradiction to the bridge plans for Butternut Creek and especially, Boiceville, where the bridge will be raised by approximately 7 ft.

As the County is aware, B&L staff have done extensive field investigation, survey and mapping and worked diligently with the DEP staff to develop, revise and finalize plans that protect the drinking water supplies for the City of New York while also ensuring the recreational trail is designed to modern standards, including being fully accessible to persons with disabilities. As you know, the design has made accommodations to avoid and mitigate potential wetland impacts, including narrowing of shoulders and horizontal and vertical shifts to the trail to avoid wetlands and watercourses. Adding materials on top of the existing track infrastructure would in many cases undermine or negate the mitigative steps that we have taken to avoid wetland areas and reduce risk of erosion. For instance, in the State-delineated wetland area west of Shokan Station, we have narrowed the trail slightly and eliminated shoulder to avoid the adjacent wetland. Building up materials in this and other areas would unnecessarily require additional features, such as retaining walls to hold the materials in place on the sides so that they do not encroach upon the wetlands. These areas are also simply too narrow to appropriately slope materials without additional retention elements.

Both the County and DEP have made adjustments to the proposed design, and after nearly eighteen months of investigation, consultation, review and revisions, the trail plans accommodate the needs and interests of both parties. As you know, the DEP's approval of the final trail plans requires the removal of all track and ties, with the off-site disposal of the thousands of creosote treated ties to a licensed facility. Recognizing the importance of the County's project to the DEP's Ashokan Reservoir, it is understandable that such requirements were included by DEP. We believe that the currently proposed design has struck a reasonable and pragmatic balance between protecting water quality and developing a world-class recreational trail. Any proposals to bury the track and ties would undermine several years of detailed negotiations and work with DEP and more than likely result in the Ashokan Rail Trail not being approved by DEP or constructed.

With approximately 90 to 95% of the existing ties not suitable for reuse and the railroad track itself functionally obsolete for future uses, burying the track would serve no railroad viable purpose in the future while significantly detracting from the trail or frankly, precluding the construction of the trail entirely. In contrast, the proposed stone trail structure for the project is a viable and stable base course on which a rail system could be reinstalled if the County Legislature were to determine rail use should be restored at some point in the future. For this reason and the reasons discussed above, it is not recommended that the existing rail or tie system remain in place.

Sincerely,

Thomas C. Baird, P.E., Associate BARTON & LOGUIDICE, D.P.C.

Theo Charle