MEMORANDUM

ENGINEERS PLANNERS SURVEYORS

Date:	November 21, 2019
То:	Ulster County Transportation Council
From:	Mark Nadolny and Mark A. Sargent, P.E.
Project:	City of Kingston Traffic Signal Warrant Evaluation Ulster County, New York
Re:	Traffic Signal Removal Assessment

The Ulster County Transportation Council (UCTC) initiated this study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation. One of the key objectives stated in the City of Kingston's Comprehensive Plan is to provide safe, efficient, and reliable traffic mobility throughout the City in order to improve the quality of life for residents, business owners, and the traveling public – whether by vehicle, bicycle, transit, or by foot. Unwarranted traffic signals can create unnecessary intersection delay, increase the rerouting of traffic to less-appropriate roads, promote disrespect for traffic control devices, and result in higher crash rates. At the same time, operating and maintaining unjustified traffic signals is not an effective use of the City of Kingston's limited resources. The study evaluates traffic operations from 7:00 a.m. to 7:00 p.m. on a typical peak day, and during peak periods to determine if a traffic signal is justified and whether or not an alternative traffic control can be implemented to provide safe and efficient movement through the City of Kingston for all modes of traffic. The assessment indicates that none of the intersections meet any of the warrants and all eight traffic signals could be removed at the study area intersections without any adverse impact to traffic and pedestrian safety or operations. The purpose of this Memorandum is to summarize the assessment and recommendations developed for the following eight study area intersections located in the City of Kingston. The study area is shown on Figure 1 at the end of this memo.

- 1. Washington Avenue/Linderman Avenue (Pre-Timed Traffic Signal)
- 2. Washington Avenue/Pearl Street (Pre-Timed Traffic Signal)
- 3. Washington Avenue/Main Street (Traffic Signal set to Flash)
- 4. Wall Street/Pearl Street (Pre-Timed Traffic Signal)
- 5. Fair Street/Pearl Street (Pre-Timed Traffic Signal)
- 6. Clinton Avenue/St. James Street (Traffic Signal set to Flash)
- 7. Clinton Avenue/Franklin Street (Traffic Signal set to Flash)
- 8. Clinton Avenue/Henry Street (Traffic Signal set to Flash)

A detailed evaluation for each intersection is included under Attachments A through H. This assessment includes a review of existing conditions such as vehicle speeds, crashes, physical characteristics, and alternative forms of traffic control including:

- Traffic signal control (existing condition at four intersections)
- Two-Way stop control
- All-way stop control (existing condition at four intersections due to traffic signals set to flash)

1.0 Existing Conditions

Data Collection

Intersection turning movement counts were conducted at the eight study area intersections on Wednesday, May 8, 2019 from 7:00 a.m. to 7:00 p.m. The raw turning movement count data is included under Attachment I. The 2019 existing AM and PM peak hour traffic volumes summarized on Figure 2 and Figure 3 form the basis for the intersection level of service analysis. A review of the NYSDOT *Project Development Manual -Appendix 5* indicates that safety related projects on existing highways typically do not require future design year traffic volumes; therefore, the existing traffic volumes were used for the intersection evaluations.

Speed Data

The current regulatory speed limit for all roads in the City of Kingston is 30-mph. Speed data collected by NYSDOT on various roadways in the project area indicates that 85th percentile speeds range from 24-mph to 28-mph; therefore, the signal warrant assessment provided below are based on standard warrants (not based on the reduced volume warrants since operating speeds in the project area do not exceed 40-mph). The results of the speed data for applicable roadways are shown on Table 1.

Annroach	Posted Speed	Avera	age Speed	85 th Percentile Speed		
Арргоасн	Limit	NB/EB	SB/WB	NB/EB	SB/WB	
Clinton Avenue (N. Front Street to Henry Street)	30	23	16	28	24	
Fair Street (Henry Street to N. Front Street)	30		16		24	
Henry Street (Henry Street to NY Route 32	30	16	22	24	27	
St James Street (Green Street to Broadway)	30	22	22	27	26	
Wall Street (Henry Street to N. Front Street	30	20	21	24	24	

Table 1 – Speed Data

Accident Analysis Summary

An accident analysis was performed at the eight study area intersections in accordance with NYS Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersections. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at each intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant crash types for the intersections and also provides the intersection crash rates which can be compared to the State-wide average crash rates for similar intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to all eight study area intersections. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate signalized intersection.

	Co	llision	Seve	rity					C	ollisio	on Ty	pe					
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Right Turn	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Washington Ave/Linderman Ave	1	4	1	0	0	0	1	1	1	2	1	0	0	0	0	6	0.69
Washington Ave/Pearl St	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	2	0.17
Washington Ave/Main St	4	1	1	0	0	0	0	2	0	0	0	3	0	0	1	6	0.52
Wall St/Pearl St	2	0	6	0	0	0	1	6	0	1	0	0	0	0	0	8	1.00
Fair St/Pearl St	6	2	2	0	2	1	1	1	1	0	0	3	1	0	0	10	1.31
Clinton Ave/St. James St	2	2	1	0	0	0	1	1	0	2	0	0	0	1	0	5	0.83
Clinton Ave/Franklin St	3	1	1	0	0	0	0	1	1	0	0	1	0	2	0	5	0.80
Clinton Ave/Henry St	2	1	1	0	0	0	1	0	0	2	0	0	0	0	1	4	0.60

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

Specific accident summaries for the eight study area intersections are included under Attachments A through H and an overall accident summary (TE-213 equivalent) is included under Attachment K.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Evaluation

Description of Signal Warrants

The existing traffic conditions and physical characteristics of the intersections were compared to signal warrant criteria contained in the 2009 Manual of Uniform Traffic Control Devices (National MUTCD), published by the Federal Highway Administration (FHWA) to determine if existing traffic conditions would warrant the installation of a traffic signal. The National MUTCD specifies the minimum criteria that must be met in order for a traffic signal to be justified. The satisfaction of a signal warrant in itself is not necessarily justification for a traffic signal. Other engineering and operational factors must be considered. The National MUTCD contains nine warrants, eight of which were evaluated in detail (Intersection Near a Grade Crossing warrant excluded):

- <u>Warrant 1 Eight-Hour Vehicular Volume</u> This warrant is satisfied if for any eight hours of an average day the traffic volumes for Condition A or Condition B specified in Table 4C-1 of the National MUTCD are met for the main arterial and the higher volume side road approach to the intersection.
- <u>Warrant 2 Four-Hour Vehicular Volume</u> This warrant is met when for any four hours of an average day, points plotted on the graph presented on Figure 4C-1 of the National MUTCD fall above the appropriate curve.
- <u>Warrant 3 Peak Hour</u> This warrant is met when for any one hour of an average day, points plotted on the graph presented on Figure 4C-3 of the National MUTCD fall above the appropriate curve.

- <u>Warrant 4 Pedestrian Volume</u> The Pedestrian Volume warrant is intended for application where the traffic volume on a major street is so heavy that pedestrians experience excessive delay in crossing the major street. This warrant is used when for any four hours of an average day, points plotted on the graph presented on Figure 4C-7 of the National MUTCD fall above the appropriate curve.
- Warrant 5 School Crossing The School Crossing warrant is intended for application where the fact that school children cross the major street is the principal reason to consider installing a traffic control signal. For the purposes of this warrant, the word "school children" includes elementary through high school students. This warrant is used when the number and size of groups of school children at an established school crossing across the major street shows that the number of adequate gaps in the traffic stream during the period when the school children are using the crossing is less than the number of minutes in the same period and there are a minimum of 20 school children during the highest crossing hour.
- Warrant 6 Coordinated Signal System The Coordinated Signal System warrant is intended for application where progressive movement in a coordinated signal system sometimes necessitates installing traffic control signals at intersections where they would not otherwise be needed in order to maintain proper platooning of vehicles. The need for traffic control is considered when adjacent traffic control signals to an intersection are so far apart that they do not provide the necessary degree of vehicular platooning for a one-way street or a street that has traffic predominantly in one direction or where adjacent traffic control signals will collectively provide a progressive operation on a two-way street.
- Warrant 7 Crash Experience The Crash Experience warrant is intended for application where the severity and frequency of crashes are the principal reasons to consider installing a traffic control signal. This warrant is used when five or more reported crashes, of types susceptible to correction by a traffic control signal, have occurred within a 12-month period, each crash involving personal injury or property damage exceeding the applicable requirements for a reportable crash. In addition, for each of any eight hours of an average day, the vehicles per hour (vph) given in both of the 80 percent columns of Conditions A or B in Table 4C-1 of the National MUTCD exists on the major-street and the higher-volume minor-street approach, respectively, or the volume of pedestrian traffic is not less than 80 percent of the requirements specified in the Pedestrian Volume warrant.
- <u>Warrant 8 Rodway System</u> The Roadway System warrant is intended for application where installing a traffic control signal at some intersections might be justified to encourage concentration and organization of traffic flow on a roadway network. The need for a traffic control signal shall be considered if intersection of two or more major routes meets one or both of the following criteria:
 - A. The intersection has a total existing, or immediately projected, entering volume of at least 1,000 vph during the peak hour of a typical weekday and has 5-year projected traffic volumes, that meet one or more of Warrants 1, 2, and 3 during an average weekday; or
 - B. The intersection has a total existing or immediately projected entering volume of at least 1,000 vph for each of any 5 hours of a non-normal business day (Saturday or Sunday).

Table 3 summarizes the signal warrant assessment included under Attachments A through H for the eight study area intersections.

		At Least One							
Intersection	#1	#2	#3	#4	#5	#6	#7	#8	Warrant Met?
Washington Avenue/Linderman Avenue	No	No	No	No	No	No	No	No	No
Washington Avenue/Pearl Street	No	No	No	No	No	No	No	No	No
Washington Avenue/Main Street	No	No	No	No	No	No	No	No	No
Wall Street/Pearl Street	No	No	No	No	No	No	No	No	No
Fair Street/Pearl Street	No	No	No	No	No	No	No	No	No
Clinton Avenue/Henry Street	No	No	No	No	No	No	No	No	No
Clinton Avenue/Franklin Street	No	No	No	No	No	No	No	No	No
Clinton Avenue/St. James Street	No	No	No	No	No	No	No	No	No

Table 3 – Summary of Signal Warrant Analysis

The assessment indicates that none of the intersections meet any of the warrants and all eight traffic signals should be removed at the study area intersections.

3.0 Traffic Control Alternatives and Intersection Assessment Comparison

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided under Section 2.0.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if these intersections will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control A pre-timed traffic signal without vehicle detection is currently provided at all eight study area intersections (although, four operate on flash).
- Two-Way Stop Control Stop sign control on the minor street approaches.
- All-Way Stop Control Stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations for each alternative were made using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Detailed descriptions of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports are provided under each attachment developed for the eight study area intersections. Table 4 summarizes the traffic control assessment included under Attachments A through H for the eight study area intersections.

Interception	Does Traffic	Control Provide Adequate	Operations?
Intersection	Traffic Signal	Two-Way Stop Control	All Way Stop Control
Washington Ave/ Linderman Ave	Yes	Yes	Yes
Washington Ave/Pearl St	Yes	No	Yes
Washington Ave/Main St	Yes	Yes	Yes
Fair St/Pearl St	Yes	Yes	Yes
Wall St/Pearl St	Yes	Yes	Yes
Clinton Ave/Henry St	Yes	Yes	Yes
Clinton Ave/Franklin St	Yes	Yes	Yes
Clinton Ave/St. James St	Yes	Yes	Yes

Table 4 – Traffic Control Summary

The assessment indicates that all three traffic control alternatives will provide adequate operations at the eight study area intersections, except at the Washington Avenue/Pearl Street intersection where two-way stop control would provide LOS E conditions during the PM peak hour.

Traffic Operations with DRI Modifications

The *Kingston Downton Revitalization Initiative* (Kingston DRI) recommends accessibility and circulation improvements in the Uptown Stockade area. In general, the proposed improvements would reverse street directions along Wall Street and Fair Street in addition to some secondary streets such as John Street and Main Street. This change would have the most significant traffic pattern impact on the following study area intersections:

- Washington Avenue/Pearl Street
- Washington Avenue/Main Street
- Wall Street/Pearl Street
- Fair Street/Pearl Street

A sensitivity analysis was conducted to determine if the traffic control alternatives would change if the proposed *Kingston DRI* traffic circulation modification was implemented. The existing traffic volumes were redistributed based on a review of the proposed *Kingston DRI* plan and are shown on Figure 4 and Figure 5. Table 5 summarizes the traffic control assessment included under Attachments B through E.

Intersection	Does Traffic	Does Traffic Control Provide Adequate Operations?								
Intersection	Traffic Signal	Two-Way Stop Control	All Way Stop Control							
Washington Ave/Pearl St	Yes	No	Yes							
Washington Ave/Main St	Yes	Yes	Yes							
Fair St/Pearl St	Yes	No	Yes							
Wall St/Pearl St	Yes	Yes	Yes							

Table 5 – Kingston DRI Traffic Control Summary

The assessment indicates that a traffic signal and all-way stop control alternatives will provide adequate operations at the four study area intersections if the *Kingston DRI* recommendations are implemented. It is noted that two-way stop control will not provide adequate operations at the Fair Street/Pearl Street intersection and at the Washington Street/Pearl Street intersection.

3.1 Two-Way Stop Control – Sight Distance Evaluation

In order to maintain existing two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the study area intersections. Available *intersection* sight distance was measured from the perspective of a vehicle turning left or right from the side street onto the main street. In addition, the sight distance for vehicles traveling in either direction along the main street looking straight ahead to turn left on to the side street was measured. The available intersection sight distance on a roadway should provide drivers a sufficient view of the intersecting highway to allow

vehicles to enter or exit the intersection without excessively slowing vehicles traveling at or near the operating speed on the intersecting mainline.

Stopping sight distance was also measured at the study intersections. Stopping sight distance is the length of the roadway ahead that is visible to the driver. The available stopping sight distance on a roadway should be of sufficient length to enable a vehicle traveling at or near the operating speed to stop before reaching a stationary object in its path. The following diagram illustrates these sight distance measurements.

As noted above, travel speed data collected in the City of Kingston indicates that the 85th percentile speed on City streets is generally less than the 30-mph posted speed limit. The sight distances measured in the field were compared to the guidelines presented in the American Association of State Highway Transportation Officials (AASHTO) *A Policy on Geometric Design of Highways and Streets 2011* for a 30-mph operating speed at the applicable intersections. Table 6 summarizes the sight distance assessment included under Attachments A through H for the eight study area intersections.

			Adequ	uate Sight D	istance Prov	vided?							
		Intersection Sight Distance ¹											
Intersection	Right Turn	Crossing I from S	Maneuver Side St	Left Tu Sid	rn from e St	Left Turn		SSD _{WB, SB}					
	Side St	Looking Left	Looking Right	Looking Left	Looking Right	Major St	SSD _{EB} , NB						
Washington Ave/	Vec	Voc	No	Voc	No	Voc	Voc	Voc					
Linderman Ave	163	163	NO	163	NO	163	163	103					
Washington Ave/Pearl St	No	No	No	No	No	Yes	Yes	Yes					
Washington Ave/Main St	No	No	No	No	No	Yes	Yes	Yes					
Fair St/Pearl St	Yes	Yes	No	Yes	No	Yes	Yes	Yes					
Wall St/Pearl St	Yes	Yes	No	Yes	No	Yes	Yes	Yes					
Clinton Ave/Henry St	No	No No No		No	No No		Yes	Yes					
Clinton Ave/Franklin St	No	No	No No		No No		Yes	Yes					
Clinton Ave/St. James St	No	No	No	No	No	Yes	Yes	Yes					

Table 6 – Sight Distance Evaluation

3.2 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement in which the following guidance and options apply:

Section 2B.04.02

"Engineering judgment" should be used to establish intersection control. The following factors should be considered:

- A. Vehicular, bicycle, and pedestrian traffic volumes on all approaches;
- B. Number and angle of approaches;
- C. Approach speeds;
- D. Sight distance available on each approach; and
- E. Reported crash experience."

Section 2B.07.04

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. All-way stop control is used where the volume of traffic on the intersecting roads is approximately equal. All-way stop control should be considered when one or more of the following conditions exist:

- A. Where traffic control signals are justified, the all-way stop is an interim measure that can be installed quickly to control traffic while arrangements are being made for the installation of the traffic control signal.
- B. Five or more reported crashes in a 12-month period that are susceptible to correction by a all-way stop installation. Such crashes include right-turn and left-turn collisions as well as right-angle collisions.
- C. Minimum volumes:

1. The vehicular volume entering the intersection from the major street approaches (total of both approaches) averages at least 300 vehicles per hour for any 8 hours of an average day; and

2. The combined vehicular, pedestrian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) averages at least 200 units per hour for the same 8 hours, with an average delay to minor-street vehicular traffic of at least 30 seconds per vehicle during the highest hour; and/or

D. Where no single criterion is satisfied, but where Criteria B, C.1, and C.2 are all satisfied to 80 percent of the minimum values.

Section 2B.07.05

Other criteria that may be considered in an engineering study include:

- A. The need to control left-turn conflicts;
- B. The need to control vehicle/pedestrian conflicts near locations that generate high pedestrian volumes;
- C. Locations where a road user, after stopping, cannot see conflicting traffic and is not able to negotiate the intersection unless conflicting cross traffic is also required to stop;
- D. An intersection of two residential neighborhood collector (through) streets of similar design and operating characteristics where all-way stop control would improve traffic operational characteristics of the intersection.

Table 7 summarizes the all-way stop assessment included under Attachments A through H for the eight study area intersections.

	All-Way Stop Criteria Met?												
Intersection		Section	2B.07.04		Section 2B.07.05								
	Α	В	С	D	Α	В	С	D					
Washington Ave/ Linderman Ave	NA	No	No	No	NA	No	Yes	Yes					
Washington Ave/Pearl St	NA	No	No	No	NA	No	Yes	Yes					
Washington Ave/Main St	NA	No	No	No	NA	No	Yes	Yes					
Fair St/Pearl St	NA	No	No	No	NA	No	Yes	Yes					
Wall St/Pearl St	NA	No	No	No	NA	No	Yes	Yes					
Clinton Ave/Henry St	NA	No	No	No	NA	No	Yes	Yes					
Clinton Ave/Franklin St	NA	No	No	No	NA	No	Yes	Yes					
Clinton Ave/St. James St	NA	No	No	No	NA	No	Yes	Yes					

Table 7 – All-Way	Stop Control Criteria
-------------------	-----------------------

NA = Not Applicable

4.0 Conclusions

The existing traffic signals at all eight study area intersections should be removed and replaced with all-way stop control due to limited sight lines. It is recommended that stop signs with supplemental "All-Way" plaques be installed on all approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. The intersections will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

N:\Projects\2018\118-064 Kingston Signals\documents\118064_DRAFT signal memo_20191121.docx

Attachment A Washington Avenue/Linderman Avenue Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Washington Avenue/Linderman Avenue Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Washington Avenue/Linderman Avenue intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Washington Avenue is classified as an urban minor arterial and provides north-south travel from I-587 to Petit Avenue. Washington Avenue is a 28 foot wide roadway that allows two-way traffic and on-street parking on the west side of the road. The city speed limit is 30 mph and land uses along Washington Avenue near Linderman Avenue include the *George Washington Elementary School* and residential land uses.

Linderman Avenue is classified as an urban local road and provides east-west travel from Wall Street to County Club Lane. Linderman Avenue is a 24 to 28 foot wide roadway that allows two-way traffic and onstreet parking on both sides of the road. The city speed limit it is 30 mph and land uses along Linderman Avenue near Washington Avenue generally include residential land uses.

Study Area Intersection

The Washington Avenue/Linderman Avenue intersection is a four-leg intersection controlled by a pre-timed traffic signal control. Each approach provides a single lane for shared travel movements on all approaches.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Washington Avenue and Linderman Avenue. There are marked crosswalks on all approaches of the study area intersection. Bike Route 32 travels south on Linderman Avenue and continues east on Washington Avenue. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Table 1 – Pedestrian and Bicycle Activity Summary

Washington Avenue/ Linderman Avenue	Washing NB Ap	ton Ave. proach	Washington Ave SB Approach		Lindern EB Apj	nan Ave proach	Lindern WB Ap	nan Ave proach	Total		
Intersection	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	
7:00 to 8:00 a.m.	0	0	0	0	2	0	3	0	5	0	
8:00 to 9:00 a.m.	1	0	1	0	2	0	7	0	11	0	
9:00 to 10:00 a.m.	4	0	3	0	2	1	1	0	10	1	
10:00 to 11:00 a.m.	0	0	0	0	1	0	2	0	3	0	
11:00 a.m. to 12:00 p.m.	3	0	2	0	4	0	3	0	12	0	
12:00 to 1:00 p.m.	0	0	0	0	2	0	3	0	5	0	
1:00 to 2:00 p.m.	4	0	2	0	6	0	2	0	14	0	
2:00 to 3:00 p.m.	2	0	3	0	2	0	11	0	18	0	
3:00 to 4:00 p.m.	4	0	11	0	4	1	5	1	24	2	
4:00 to 5:00 p.m.	2	1	2	0	6	0	0	0	10	1	
5:00 to 6:00 p.m.	2	0	0	0	0	0	1	5	3	5	
6:00 to 7:00 p.m.	4	0	2	0	2	0	3	0	11	0	
Total	26	1	26	0	33	2	41	6	126	9	

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

	Со	llision S	Sever	ity					Colli	sion ⁻	Туре					
Intersection	Non-Reportable ^{1}	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Washington Avenue/Linderman Avenue	1	4	1	0	0	1	1	1	2	1	0	0	0	0	6	0.70

Table 2 – Accident	Type, Severity,	and Crash Rate
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were six total accidents at the Washington Avenue/Linderman Avenue intersection during the three year period, which results in an accident rate slightly higher than the average accident rate when compared to similar intersections. Of the six accidents, one resulted in an injury while the remaining five were either a property damage only accident or a non-reportable accident. Non reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. The two right-angle accidents reported at this intersection were attributed to driver inattention or a disregard to the traffic signal control. The left-turn and overtaking accidents were the result of vehicles failing to yield the right-of-way. The rear end accident occurred due to a westbound vehicle following too closely while the only fixed object accident occurred due to slippery pavement conditions. The predominant accident type at the study area intersection is right angle collisions (two total); however, they are associated with driver error and not the result of geometric or operational issues with the intersection. An accident summary (TE-213 equivalent) at the Washington Avenue/Linderman Avenue intersection is included under Attachment J.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

	Existing \	Existing Volumes ¹				Signal Warrants Met?			
(1 hour pariod)	Washington Ave	Lindern	nan Ave	#	‡ 1	#2	#2		
(1-nour period)	NB/SB	EB	WB	Cond. A	Cond. B	#2	#3		
7:00 AM	456	48	54	No	No	No	No		
8:00 AM	487	41	70	No	No	No	No		
9:00 AM	392	35	50	No	No	No	No		
10:00 AM	343	24	56	No	No	No	No		
11:00 AM	349	38	44	No	No	No	No		
12:00 PM	443	28	52	No	No	No	No		
1:00 PM	418	35	54	No	No	No	No		
2:00 PM	542	38	95	No	No	No	No		
3:00 PM	622	31	90	No	No	No	No		
4:00 PM	585	35	100	No	No	No	No		
5:00 PM	554	44	88	No	No	No	No		
6:00 PM	354	36	81	No	No	No	No		
Benuined Volumes	Two Lane N	lajor Stre	et	500	750	See Figure	See Figure		
Required volumes	Two Lane N	linor Stre	et	150	75	4C-1	4C-3		
0	verall Warrant Met	?		No	No	No	No		

Table 3 – Summary	of Signal Warrant A	nalysis – Existing (2019)) Traffic Volume Conditions

¹ Volumes on Washington Avenue and Linderman Avenue as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Washington Avenue/Linderman Avenue intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

<u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Washington Avenue ¹	Existing Pedestrian Volume Crossing Washington Avenue ¹	Signal Warrant #4 Met?
7:00 AM	456	0	No
8:00 AM	487	2	No
9:00 AM	392	7	No
10:00 AM	343	0	No
11:00 AM	349	5	No
12:00 PM	443	0	No
1:00 PM	418	6	No
2:00 PM	542	5	No
3:00 PM	622	15	No
4:00 PM	585	4	No
5:00 PM	554	2	No
6:00 PM	354	6	No
Dogwined Volumos	Two Lane Ma	jor Street – Vehicles	See Figure 4C 7
Required volumes	Crossing Major	Street – Pedestrians	See Figure 4C-7
	Overall Warrant Me	:?	No

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Washington Avenue and pedestrian volumes crossing Washington Avenue as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *George Washington Elementary School* is located approximately 800-feet southeast of the intersection on Washington Avenue; however, the school crossing warrant is not met since adequate gaps in vehicle traffic flow are provided on Washington Avenue based on a review of the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Coll	ision	Seve	erity			Collisio	n Type			
Washington Avenue/ Linderman Avenue Intersection	Non-Reportable	Property Damage	Injury	Fatal	Overtaking	Right Angle	Rear-End	Fixed Object	Left-Turn	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	0	0	0	0	0	0	0	0	0	0	No
Jun 1, 2016 to May 31, 2017	1	0	1	0	0	1	0	0	1	2	No
Jun 1, 2017 to May 31, 2018	0	4	0	0	1	1	1	1	0	4	No
Required Volumes Two-Lane Major Street							See Table 4C-1				
-	Two-Lane Minor Street										
		Ov	erall	Warr	ant Me	t?					No

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Washington Avenue is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Washington Avenue/Linderman Avenue intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control (existing conditions) A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the eastbound and westbound Linderman Avenue approaches.
- All-Way Stop Control Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions

of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	reation		Control	Existin	g 2019
inte	rsection		Control	AM Peak Hour	PM Peak Hour
Was	shington Avenue/Linderman A	venue			
	Linderman Avenue EB	LTR	S	B (14.9)	B (14.8)
вu	Linderman Avenue WB	LTR		B (15.4)	B (15.5)
isti	Washington Avenue NB	LTR		В (10.6)	B (11.1)
Ĕ	Washington Avenue SB	LTR		B (11.9)	B (11.5)
		Overall		В (12.0)	В (12.0)
	Washington Avenue NB	L	TW	A (0.4)	A (0.5)
	Washington Avenue SB	L		A (0.4)	A (0.4)
s	Linderman Avenue EB	LTR		C (15.1)	C (17.0)
tive	Linderman Avenue WB	LTR		B (13.2)	C (15.7)
rna.	Linderman Avenue EB	LTR	AW	A (8.9)	A (9.1)
ltei	Linderman Avenue WB	LTR		A (8.7)	A (9.2)
∢	Washington Avenue NB	LTR		В (10.1)	В (10.8)
	Washington Avenue SB	LTR		B (11.3)	B (11.3)
		Overall		B (10.4)	B (10.7)

Table 6 – Level of Service Summary

X (Y.Y) = Level of Service (Delay, seconds per vehicle).

Key:

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections.

NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Washington Avenue/Linderman Avenue intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS C conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour				
Measure of Effectiveness	Signal (Existing)	Two-Way Stop	All-Way Stop	Signal (Existing)	Two-Way Stop	All-Way Stop		
Stops (#)	359	169	631	438	203	752		
Fuel Consumed (gal)	9	7	10	11	8	13		
CO Emissions (kg)	0.64	0.49	0.73	0.77	0.59	0.88		
NOx Emissions (kg)	0.12	0.09	0.14	0.15	0.11	0.17		
VOC Emissions (kg)	0.15	0.11	0.17	0.18	0.14	0.20		

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The existing traffic signal and the two-way stop alternative are comparable in terms of emissions and fuel consumption; however, the all-way stop alternative increases the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Washington Avenue/Linderman Avenue intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Washington Avenue would be the major street and a stop sign would be installed on the Linderman Avenue approaches. The results of the sight distance evaluation are summarized in Table 8.

			1	ntersection	Sight Distan	ce1		Stoppir Dista	ng Sight Ince ²
Washington Avenue/ Linderman Avenue		Right Turn from Linderman	Crossing from Lii Ave	Maneuver nderman enue	Left Tu Linderma	irn from an Avenue	Left Turn from Washington	SSD _{NB}	SSD _{SB}
		Ave (D _L)	Looking Left (D _L)	Looking Right (D _R)	Looking Left (D∟)	Looking Right (D _R)	Ave (D _s)		
Washington Ave/	Available	155	155	>400	155	>400	>500	>500	>500
Enderman Ave	Recommended ³	290	290	290	335	335	245	175	175
Washington Ave/	Available	230	230	225	230	225	>500	>500	>500
West Leg	Recommended ³	290	290	290	335	335	245	175	175

Table 8 – Sight Distance Evaluat	ion (feet)
----------------------------------	------------

1. Intersection sight distance is measured at 14.5 feet back from Washington Avenue at an eye height and object height of 3.5 feet.

2. Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Washington Avenue. 3. Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Washington Avenue.

The sight distance analysis on Washington Avenue shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Washington Avenue on to both legs of Linderman Avenue exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distance looking left from the east leg of Linderman Avenue does not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Linderman Avenue or to cross Washington Avenue due to a row of hedges. In addition, the analysis shows that the sight distances looking left and right from the west leg of Linderman Avenue do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Linderman Avenue or to cross Washington Avenue due to vegetation and a fence. The available sight lines looking left and right from the east legs of Linderman Avenue are illustrated below in Photographs 1 through 4.

Photograph 1 – Sight distance looking left (D_L) from the east leg of Linderman Avenue

Photograph 2 – Sight distance looking right (D_R) from the east leg of Linderman Avenue

Photograph 3 – Sight distance looking left (D_L) from the west leg of Linderman Avenue

Photograph 4 – Sight distance looking right (D_R) from the west leg of Linderman Avenue

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking left from the east leg of Linderman Avenue is critically limited due to the row of hedges. At a minimum, an "Intersection Warning" sign is recommended if the two-way stop control condition were implemented. It is noted that the available sight distance could be mitigated if on-street parking was restricted near the intersection; however, it is anticipated that the City of Kingston would not consider limiting on-street parking in the vicinity of the intersection.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 9 summarizes which of the criteria are met for the Washington Avenue/Linderman Avenue intersection.

Washington Avenue/	Condition Met?						
Linderman Avenue	Α	В	С	D			
Section 2B.07.04	NA	No	No	No			
Section 2B.07.05	NA	No	Yes	Yes			

Table 9 – All-Way Stop Criteria	Table 9 -	- All-Way	/ Stop	Criteria
---------------------------------	-----------	-----------	--------	----------

Table 10 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Washington Avenue/Linderman Avenue intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Washington Avenue/Linderman Avenue intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound Linderman Avenue approaches and the northbound and southbound Washington Avenue approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20foot minimum/50-foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment B Washington Avenue/Pearl Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Washington Avenue/Pearl Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Washington Avenue/Pearl Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Washington Avenue is classified as an urban minor arterial and provides north-south travel from I-587 to Petit Avenue. Washington Avenue is a 28 foot wide roadway that allows two-way traffic and on-street parking on the west side of the road. The city speed limit is 30 mph and land uses along Washington Avenue near Pearl Street generally include residential land uses.

Pearl Street is classified as an urban major collector and provides east-west travel from Ringtop Road to Clinton Avenue. Pearl Street is a 28 to 30 foot wide roadway that allows two-way traffic and on-street parking on the south side of the road near the Washington Avenue intersection. The city speed limit is 30 mph and land uses along Pearl Street near Washington Avenue generally include residential land uses.

Study Area Intersection

The Washington Avenue/Pearl Street intersection is a four-leg intersection controlled by a pre-timed traffic signal. Each approach provides a single lane for shared travel movements on all approaches.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Washington Avenue and Pearl Street. There are marked crosswalks on all approaches of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

	Table 1 – Pedestrian	and Bicycle	Activity	/ Summary	1
--	----------------------	-------------	----------	-----------	---

Washington Avenue/	Washing NB Ap	ton Ave. proach	Washing SB Apj	ton Ave. proach	Pearl EB Ap	Street proach	Pearl WB Ap	Street proach	То	tal
Pean Street Intersection	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes
7:00 to 8:00 a.m.	0	0	2	0	1	0	3	0	6	0
8:00 to 9:00 a.m.	0	0	2	0	1	0	2	0	5	0
9:00 to 10:00 a.m.	2	0	3	1	1	0	6	0	12	1
10:00 to 11:00 a.m.	5	0	2	0	4	0	4	0	15	0
11:00 a.m. to 12:00 p.m.	3	0	4	1	2	1	6	0	15	1
12:00 to 1:00 p.m.	1	0	5	0	0	0	4	0	10	0
1:00 to 2:00 p.m.	9	0	9	0	5	0	7	0	30	0
2:00 to 3:00 p.m.	2	0	2	0	1	0	7	1	12	0
3:00 to 4:00 p.m.	0	0	2	0	9	0	11	0	22	0
4:00 to 5:00 p.m.	2	0	0	0	1	0	1	0	4	0
5:00 to 6:00 p.m.	6	0	6	1	2	0	1	1	15	1
6:00 to 7:00 p.m.	8	0	2	0	3	0	2	0	15	0
Total	38	0	39	3	30	1	54	2	161	3

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

		llision 9	Sever	ity	Collision Type											
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Washington Avenue/Pearl Street	1	1	0	0	0	0	1	1	0	0	0	0	0	0	2	0.17

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were two total accidents at the Washington Avenue/Pearl Street intersection during the three year period, which results in an accident rate lower than the average accident rate when compared to similar intersections. Of the two accidents, one resulted in property damage only while the other was a non-reportable accident. Non reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. The rear-end accident reported at this intersection was attributed to driver inattention by a motorist traveling in the southbound direction while the overtaking accident was the result of improper lane usage while the vehicles were traveling in the westbound direction. There was no predominant accident type at the study area intersection. An accident summary (TE-213 equivalent) at the Washington Avenue/Pearl Street intersection is included under Attachment J.

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 ummarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

Time Decin	Existing \	/olumes ¹		Signal Warrants Met?					
(1-hour period)	Washington Ave	Pea	rl St	#	1	#2	#2		
(1-nour periou)	NB/SB	EB	WB	Cond. A	Cond. B	#2	#5		
7:00 AM	517	130	43	No	No	No	No		
8:00 AM	596	155	77	Yes	No	No	No		
9:00 AM	505	74	89	No	No	No	No		
10:00 AM	445	89	103	No	No	No	No		
11:00 AM	442	51	146	No	No	No	No		
12:00 PM	520	74	128	No	No	No	No		
1:00 PM	490	93	106	No	No	No	No		
2:00 PM	626	89	128	No	No	No	No		
3:00 PM	705	100	140	No	No	No	No		
4:00 PM	658	90	155	Yes	No	No	No		
5:00 PM	671	94	164	Yes	No	No	No		
6:00 PM	394	72	129	No	No	No	No		
Be and the day of here are	Two Lane N	Aajor Stre	et	500	750	See Figure	See Figure		
Required Volumes	Two Lane M	Two Lane Minor Street			75	4C-1	4C-3		
0	verall Warrant Met	?	No	No	No	No			

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Washington Avenue and Pearl Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Washington Avenue/Pearl Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

 <u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Washington Avenue ¹	Existing Pedestrian Volume Crossing Washington Avenue ¹	Signal Warrant #4 Met?
7:00 AM	517	2	No
8:00 AM	596	2	No
9:00 AM	505	5	No
10:00 AM	445	7	No
11:00 AM	442	7	No
12:00 PM	520	6	No
1:00 PM	490	18	No
2:00 PM	626	4	No
3:00 PM	705	2	No
4:00 PM	658	2	No
5:00 PM	671	12	No
6:00 PM	394	10	No
Boguirod Volumos	Two Lane Ma	Soo Figuro 4C 7	
Required Volumes	Crossing Major	Street – Pedestrians	See rigure 4C-7
	No		

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Washington Avenue and pedestrian volumes crossing Washington Avenue as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *St. Joseph's School* is located approximately 700-feet northeast of the intersection on Pearl Street; however, the school crossing warrant is not met since adequate gaps in vehicle traffic flow are provided on Washington Avenue based on a review of the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Coll	ision	Seve	erity			Collisio	n Type			
Washington Avenue/ Pearl Street Intersection	Non-Reportable	Property Damage	Injury	Fatal	Overtaking	Right Angle	Rear-End	Fixed Object	Left-Turn	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	1	1	0	0	1	0	1	0	0	2	No
Jun 1, 2016 to May 31, 2017	0	0	0	0	0	0	0	0	0	0	No
Jun 1, 2017 to May 31, 2018	0	0	0	0	0	0	0	0	0	0	No
				See Table 4C 1							
Required volumes				See Table 4C-1							
		Ov	erall	Warı	ant Me	t?					No

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Washington Avenue is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Washington Avenue/Pearl Street intersection.

3.0 **Existing Traffic Control and Potential Alternatives Assessment**

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control (existing conditions) A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the eastbound and westbound Pearl Street approaches.
- All-Way Stop Control Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the Highway Capacity Manual. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

				Existin	g 2019
Intersection		Control	AM Peak Hour	PM Peak Hour	
Was	shington Avenue/Pearl Street				
	Pearl Street EB	LTR	S	C (24.3)	C (22.6)
ജപ	Pearl Street WB	LTR		C (22.5)	C (25.5)
istiı	Washington Avenue NB	LTR		B (11.3)	В (12.0)
EX	Washington Avenue SB	LTR		В (12.0)	B (12.7)
		Overall		B (14.9)	В (15.6)
	Washington Avenue NB	L	TW	A (7.9)	A (8.1)
	Washington Avenue SB	L		A (8.0)	A (8.2)
s	Pearl Street EB	LTR		C (23.4)	C (24.6)
tive	Pearl Street WB	LTR		C (16.6)	E (36.8)
nai	Pearl Street EB	LTR	AW	B (10.7)	B (11.2)
lter	Pearl Street WB	LTR		A (9.7)	B (12.8)
A	Washington Avenue NB	LTR		В (12.2)	C (17.8)
	Washington Avenue SB	LTR		В (13.5)	C (19.7)
		Overall		B (12.2)	C (17.1)

Table 6 – Level of Service Summary

Key:

X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections.

NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Washington Avenue/Pearl Street intersection indicates that the traffic signal control and all-way stop control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS C conditions or better on all approaches); however, the westbound Pearl Street approach will operate at LOS E during the PM peak hour under two-way stop control.

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour				
Measure of Effectiveness	Signal (Existing)	Two-Way Stop	All-Way Stop	Signal (Existing)	Two-Way Stop	All-Way Stop		
Stops (#)	476	354	829	601	399	989		
Fuel Consumed (gal)	10	8	12	13	11	15		
CO Emissions (kg)	0.71	0.57	0.82	0.90	0.74	1.08		
NOx Emissions (kg)	0.14	0.11	0.16	0.18	0.14	0.21		
VOC Emissions (kg)	0.16	0.13	0.19	0.21	0.17	0.25		

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The existing traffic signal and the two-way stop alternative are comparable in terms of emissions and fuel consumption; however, the all-way stop alternative increases the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

Traffic Operations – Sensitivity Analysis

A review of the *Kingston Downtown Revitalization Initiative* (Kingston DRI) indicates that a transportation plan has been recommended to improve accessibility and circulation in the Uptown Stockade area. In general, the proposed improvements would reverse street directions along Wall Street and Fair Street in addition to some secondary streets such as John Street and Main Street. This improvement would impact at least four of the eight study area intersections. A sensitivity analysis was conducted to determine if the preferred traffic control alternatives would change if the proposed traffic pattern change was implemented. The existing traffic volumes were redistributed based on a review of the proposed *Kingston DRI* plan and are shown on Figure 4 and Figure 5. A level of service sensitivity analysis was conducted at the Washington Avenue/Pearl Street intersection similar to the assessment provided in section 3.0. Table 8 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	Intersection		Control	Existin	g 2019						
Intersection		Control	AM Peak Hour	PM Peak Hour							
Was	shington Avenue/Pearl Street										
	Pearl Street EB	LTR	S	C (23.8)	C (22.2)						
മപ	Pearl Street WB	LTR		C (25.3)	C (31.7)						
istii	Washington Avenue NB	LTR		B (11.3)	B (12.0)						
EX	Washington Avenue SB	LTR		B (11.8)	B (12.3)						
		Overall		B (15.8)	B (18.1)						
	Washington Avenue NB	L	TW	A (7.8)	A (8.0)						
	Washington Avenue SB	L		A (8.0)	A (8.2)						
ŝ	Pearl Street EB	LTR		C (22.3)	C (23.5)						
tive	Pearl Street WB	LTR		C (20.9)	F (90.7)						
rnat	Pearl Street EB	LTR	AW	B (10.8)	B (11.6)						
Itei	Pearl Street WB	LTR		B (11.1)	B (17.9)						
◄	Washington Avenue NB	LTR		B (13.1)	C (21.1)						
	Washington Avenue SB	LTR		B (14.2)	C (21.8)						
	[Overall		B (12.8)	C (19.8)						

Table 8 – Level of Service Kingston DRI Sensitivity Analysis Summary

Key:

X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections. NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The sensitivity analysis indicates that the Washington Avenue/Pearl Street intersection will operate adequately during the AM and PM peak hours under traffic signal control and the all-way stop control options if the proposed improvement plan recommended in the *Kingston DRI* is implemented in the Uptown Stockade area (LOS C conditions or better on all approaches). The westbound Pearl Street approach will operate at LOS F during the PM peak hour under two-way stop control if the proposed changes are implemented.

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Washington Avenue/Pearl Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Washington Avenue would be the major street and a stop sign would be installed on the Pearl Street approaches. The results of the sight distance evaluation are summarized in Table 9.

			Intersection Sight Distance ¹								
Washington Avenue/		Right Turn	Crossing from Pe	Maneuver arl Street	Left Turn from Pearl Street		Left Turn from				
Fean Street		Pearl St (D _L)	Looking Left (D _L)	Looking Right (D _R)	Looking Left (D∟)	Looking Right (D _R)	Washington Ave (D _s)	SSD _{NB}	SSD _{SB}		
Washington Ave/	Available	215	215	225	215	225	>500	>500	>500		
East Leg	Recommended ³	290	290	290	335	335	245	175	175		
Washington Ave/ Pearl St	Available	175 [+335]	175 [+335]	155 (275)	175 [+335]	155 (275)	>500	>500	>500		
West Leg	Recommended ³	290	290	290	335	335	245	175	175		

Table 9 – Sight Distance Evaluation (feet)

1. Intersection sight distance is measured at 14.5 feet back from Washington Avenue at an eye height and object height of 3.5 feet.

2. Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Washington Avenue. 3. Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Washington Avenue.

XX [YY] = Available Sight Distance Limited by On-Street Parking [Available Sight Distance without On-Street Parking]

XX (YY) = Available Sight Distance Limited by Vegetation (Available Sight Distance with Vegetation Cleared)

The sight distance analysis on Washington Avenue shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Washington Avenue on to both legs of Pearl Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distance looking left or right from the east leg of Pearl Street does not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Pearl Street or to cross Washington Avenue due to vegetation. In addition, the analysis shows that the sight distances looking left and right from the west leg of Pearl Street do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Pearl Street or to cross Washington Avenue due to wegetation. In addition, the analysis shows that the sight distances looking left and right from the west leg of Pearl Street do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Pearl Street or to cross Washington Avenue due to on-street parking and trees. The sight distance looking left and right from the west leg of Pearl Street are illustrated below in Photographs 1 through 4.

Photograph 1 – Sight distance looking left (DL) from the east leg of Pearl Street

Photograph 2 – Sight distance looking right (D_R) from the east leg of Pearl Street

Photograph 3 – Sight distance looking left (D_L) from the west leg of Pearl Street

Photograph 4 – Sight distance looking right (D_R) from the west leg of Pearl Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking left and right from the west leg of Pearl Street is critically limited due to on-street parking. It is noted that the available sight distance on several approaches could be mitigated if on-street parking was restricted near the intersection; however, it is anticipated that the City of Kingston would not consider limiting on-street parking in the vicinity of the intersection.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 10 summarizes which of the criteria are met for the Washington Avenue/Pearl Street intersection.

Washington Avenue/		Condition Met?								
Pearl Street	Α	В	С	D						
Section 2B.07.04	NA	No	No	No						
Section 2B.07.05	NA	No	Yes	Yes						

Table 10 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Washington Avenue/Pearl Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Washington Avenue/Pearl Street intersection should be removed and replaced with all-way stop control due to limited sight lines and poor levels of service under two-way stop control. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound Pearl Street approaches and the northbound and southbound Washington Avenue approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment C Washington Avenue/Main Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York
Washington Avenue/Main Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Washington Avenue/Main Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Washington Avenue is classified as an urban minor arterial and provides north-south travel from I-587 to Petit Avenue. Washington Avenue is a 28 to 30 foot wide roadway that allows two-way traffic. On-street parking is permitted on the west side of Washington Avenue; however, on-street parking is restricted on both sides of the street between the Main Street and Janet Street intersections. The city speed limit is 30 mph and land uses along Washington Avenue near Main Street generally include residential land uses.

Main Street is classified as an urban local road and provides east-west travel from Grandview Avenue to Clinton Avenue. Main Street is a 30 foot wide roadway that allows two-way traffic west of Washington Avenue and one-way traffic in the westbound direction east of Washington Avenue. On-street parking is permitted on both sides of the road west of Washington Avenue and on the south side of the road east of Washington Avenue. The city speed limit it is 30 mph and land uses along Main Street near Washington Avenue generally include residential land uses.

Study Area Intersection

The Washington Avenue/Main Street intersection is a four-leg intersection that provides a single travel lane for shared travel movements on all approaches. It is noted that Main Street is a one-way roadway in the westbound direction east of Washington Avenue. A pre-timed traffic signal is provided at this intersection; however, it is currently operating under all-red flash control.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Washington Avenue and Main Street. There are marked crosswalks on all approaches of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Washington Avenue/ Main Street	Washing NB Ap	ton Ave. proach	Washing SB Ap	gton Ave proach	Main EB Ap	Street proach	Main WB Ap	Street proach	То	tal
Intersection	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes
7:00 to 8:00 a.m.	5	0	3	0	3	0	7	0	18	0
8:00 to 9:00 a.m.	4	0	11	0	1	0	12	2	28	2
9:00 to 10:00 a.m.	4	0	7	0	2	0	16	1	29	1
10:00 to 11:00 a.m.	2	0	5	0	3	0	5	0	15	0
11:00 a.m. to 12:00 p.m.	7	0	10	0	3	0	16	1	36	1
12:00 to 1:00 p.m.	8	1	18	0	5	0	5	0	36	1
1:00 to 2:00 p.m.	6	0	4	0	4	0	10	0	24	0
2:00 to 3:00 p.m.	4	0	4	1	4	0	15	0	27	1
3:00 to 4:00 p.m.	8	0	7	0	8	0	16	0	39	0
4:00 to 5:00 p.m.	6	0	7	0	5	0	9	0	27	0
5:00 to 6:00 p.m.	5	0	8	0	4	0	6	1	23	1
6:00 to 7:00 p.m.	8	0	5	0	6	0	10	1	29	1
Total	67	1	89	1	48	0	127	6	331	8

Table 1 – Pedestrian and Bicycle Activity Summary

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersection. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

	Со	llision S	Sever	ity					Colli	sion [·]	Гуре					
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	uwouyuN	Total	Crash Rate (ACC/ MEV)
Washington Avenue/Main Street	4	1	1	0	0	0	2	0	0	0	3	0	0	1	6	0.52

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were six total accidents at the Washington Avenue/Main Street intersection during the three year period, which results in an accident rate similar to the average accident rate when compared to similar intersections. Of the six accidents, one resulted in an injury while the remaining five were either a property damage only accident or a non-reportable accident. Non-reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. The three collisions with parked cars occurred when mainline vehicles sideswiped vehicles legally parked on the street due to driver inattention. The two rear-end accidents were the result of driver inattention and following too closely for vehicles traveling northbound and southbound on Washington

Avenue. There was one accident with no detailed information provided other than an injury which was reported. The predominant accident type at the study area intersection is collisions with parked cars (three total); however, they are associated with driver inattention and not the result of geometric or operational issues with the intersection. An accident summary (TE-213 equivalent) at the Washington Avenue/Main Street intersection is included under Attachment J.

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

	Existing \	/olumes ¹			Signal War	rants Met?		
(1-hour period)	Washington Ave	Main	Street	#	1	#2	#2	
(1-nour periou)	NB/SB	EB	WB	Cond. A	Cond. B	#2	#5	
7:00 AM	500	33	74	No	No	No	No	
8:00 AM	578	40	73	No	No	No	No	
9:00 AM	504	37	97	No	No	No	No	
10:00 AM	485	33	103	No	No	No	No	
11:00 AM	465	30	105	No	No	No	No	
12:00 PM	518	37	124	No	No	No	No	
1:00 PM	502	31	110	No	No	No	No	
2:00 PM	631	32	149	No	No	No	No	
3:00 PM	723	25	150	Yes	Yes	No	No	
4:00 PM	668	33	184	Yes	Yes	No	No	
5:00 PM	570	45	202	Yes	Yes	No	No	
6:00 PM	396	37	113	No	No	No	No	
	Two Lane Major Street		500	750	See Figure	See Figure		
Two Lane Minor Street				150	75	4C-1	4C-3	
0	No	No	No	No				

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Washington Avenue and Main Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Washington Avenue/Main Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

<u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Washington Avenue ¹	Existing Pedestrian Volume Crossing Washington Avenue ¹	Signal Warrant #4 Met?
7:00 AM	500	8	No
8:00 AM	578	15	No
9:00 AM	504	11	No
10:00 AM	485	7	No
11:00 AM	465	17	No
12:00 PM	518	26	No
1:00 PM	502	10	No
2:00 PM	631	8	No
3:00 PM	723	15	No
4:00 PM	668	13	No
5:00 PM	570	13	No
6:00 PM	396	13	No
Required Volumes	Two Lane Ma	jor Street – Vehicles	Soo Figuro 4C 7
Required volumes	Crossing Major	r Street – Pedestrians	See Figure 4C-7
	Overall Warrant Me	t?	No

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Washington Avenue and pedestrian volumes crossing Washington Avenue as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *St. Joseph's School* is located approximately ¼ of a mile southeast
 of the intersection on Pearl Street; however, the school crossing warrant is not met since
 adequate gaps in vehicle traffic flow are provided on Washington Avenue based on a review of
 the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Co	llision	Sever	rity		Collision	Туре		
Washington Avenue/ Main Street Intersection	Non-Reportable	Property Damage	Injury	Fatal	Parked Car	Rear-End	Unknown	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	1	0	1	0	1	0	1	2	No
Jun 1, 2016 to May 31, 2017	2	0	0	0	0	2	0	2	No
Jun 1, 2017 to May 31, 2018	1	1	0	0	2	0	0	2	No
Required Volumes Two-Lane Major Street Two-Lane Minor Street									See Table 4C-1
Overall Warrant Met?								No	

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Washington Avenue is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Washington Avenue/Main Street intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the eastbound and westbound Main Street approaches.
- All-Way Stop Control (existing conditions since the traffic signal is operating under all-red flash control) Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F

generally represents conditions with very long delays. Attachment L contains further detailed descriptions of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	reaction		Control	Existin	g 2019
inte	rsection		Control	AM Peak Hour	PM Peak Hour
Was	shington Avenue/Main Street				
	Main Street EB	LR	AW	A (8.5)	A (9.9)
ы В С	Main Street WB	LTR		A (9.1)	B (12.8)
isti	Washington Avenue NB	LT		B (11.4)	C (17.8)
EX	Washington Avenue SB	TR		B (10.8)	C (15.9)
		Overall		В (10.7)	C (15.7)
	Washington Avenue NB	L	TW	A (0.4)	A (0.6)
	Main Street EB	LR		B (12.2)	C (18.5)
/es	Main Street WB	LTR		B (14.2)	C (31.8)
iativ	Main Street EB	LR	S	B (12.8)	B (12.8)
ern	Main Street WB	LTR		B (13.2)	B (15.4)
Alt	Washington Avenue NB	LT		B (12.7)	B (14.3)
	Washington Avenue SB	TR		В (12.6)	В (13.5)
		Overall		B (12.7)	B (14.2)

Table 6 – Level of Service Summary

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections.

NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Washington Avenue/Main Street intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS C conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour					
Measure of Effectiveness	Signal	Two-Way Stop	All-Way Stop (Existing)	Signal	Two-Way Stop	All-Way Stop (Existing)			
Stops (#)	359	148	710	438	315	968			
Fuel Consumed (gal)	9	4	8	11	7	12			
CO Emissions (kg)	0.64	0.26	0.56	0.77	0.49	0.85			
NOx Emissions (kg)	0.12	0.05	0.11	0.15	0.10	0.17			
VOC Emissions (kg)	0.15	0.06	0.13	0.18	0.11	0.20			

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The traffic signal and the existing all-way stop alternatives are comparable in terms of emissions and fuel consumption.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

Traffic Operations – Sensitivity Analysis

A review of the *Kingston Downtown Revitalization Initiative* (Kingston DRI) indicates that a transportation plan has been recommended to improve accessibility and circulation in the Uptown Stockade area. In general, the proposed improvements would reverse street directions along Wall Street and Fair Street in addition to some secondary streets such as John Street and Main Street. This improvement would impact at least four of the eight study area intersections. A sensitivity analysis was conducted to determine if the preferred traffic control alternatives would change if the proposed traffic pattern change was implemented. The existing traffic volumes were redistributed based on a review of the proposed *Kingston DRI* plan and are shown on Figure 4 and Figure 5. A level of service sensitivity analysis was conducted at the Washington Avenue/Main Street intersection similar to the assessment provided in section 3.0. Table 8 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	vecetion		Control	Existin	g 2019
inte	rsection		Control	AM Peak Hour	PM Peak Hour
Was	shington Avenue/Main Street				
b0	Main Street EB	LTR	AW	A (8.7)	A (9.2)
ting	Washington Avenue NB	LTR		B (11.6)	B (14.1)
xis	Washington Avenue SB	LTR		B (10.4)	В (12.0)
ш		Overall		B (10.8)	В (12.9)
	Washington Avenue NB	L	TW	A (8.1)	A (8.2)
S	Washington Avenue SB	L		A (0.0)	A (0.0)
tive	Main Street EB	LTR		B (11.7)	B (13.6)
na.	Main Street EB	LTR	S	B (13.0)	В (13.0)
Itei	Washington Avenue NB	LTR		B (13.3)	B (15.1)
A	Washington Avenue SB	LTR		B (12.6)	В (13.5)
		Overall		B 13.0)	B (14.3)

Table 8 – Level of Service Kingston DRI Sensitivity Analysis Summary

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections. NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches. LTR = Left-turn, through, and/or right-turn movements.

The sensitivity analysis indicates that the Washington Avenue/Main Street intersection will operate adequately during the AM and PM peak hours under all traffic control options if the proposed improvement plan recommended in the *Kingston DRI* is implemented in the Uptown Stockade area (LOS B conditions or better on all approaches).

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Washington Avenue/Main Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Washington Avenue would be the major street and a stop sign would be installed on the Main Street approaches. The results of the sight distance evaluation are summarized in Table 9.

				Stopping Sight Distance ²					
Washington Avenue/ Main Street		Right Turn from	Crossing from Ma	Maneuver ain Street	Left Tu Main	ırn from Street	Left Turn from		
		Main Street (D₁)	Looking Left (D∟)	Looking Right (D _R)	Looking Looking) Left (D _L) Right (D _R)		Washington Ave (D _s)	SSD _{NB}	SSD _{SB}
Washington Ave/	Available	+335	+335	140	+335	140	NA	>500	>500
East Leg	Recommended ³	290	290	290	335	335	245	175	175
Washington Ave/ Main Street	Available	70 [+335]	70 [+335]	260 [+335]	70 [+335]	260 [+335]	>500	>500	>500
West Leg	Recommended ³	290	290	290	335	335	245	175	175

Table 9 – Sight Distance Evaluation (feet)

1. Intersection sight distance is measured at 14.5 feet back from Washington Avenue at an eye height and object height of 3.5 feet.

2. Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Washington Avenue. 3. Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Washington Avenue.

XX [YY] = Available Sight Distance Limited by On-Street Parking [Available Sight Distance without On-Street Parking]

The sight distance analysis on Washington Avenue shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Washington Avenue on to the west leg of Main Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distance looking left and right from the west leg of Main Street do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Main Street due to cars parked on the street at the corner of the intersection and telephone poles. In addition, the analysis shows that the sight distance looking right from the east leg of Main Street does not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left turn from Main Street due to cars parked on the street at the corner of the intersection and telephone poles. In addition, the analysis shows that the sight distance looking right from the east leg of Main Street does not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left turn from Main Street or to cross Washington Avenue due to cars, telephone poles, and a fence on the northeast corner of the intersection. The available sight lines looking left and right from the east and west legs of Main Street are illustrated below in Photographs 1 through 4

Photograph 1 – Sight distance looking left (D_L) from the east leg of Main Street

Photograph 2 – Sight distance looking right (D_R) from the east leg of Main Street

Photograph 3 – Sight distance looking left (DL) from the west leg of Main Street

Photograph 4 – Sight distance looking right (D_R) from the west leg of Main Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking left from the west leg of Main Street and looking right from the east leg of Main Street are critically limited due to on-street parking. At a minimum, an "Intersection Warning" sign is recommended if the two-way stop control condition were implemented. It is noted that the available sight distance on several approaches could be mitigated if on-street parking was restricted near the intersection; however, it is anticipated that the City of Kingston would not consider limiting on-street parking in the vicinity of the intersection.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 10 summarizes which of the criteria are met for the Washington Avenue/Main Street intersection.

Washington Avenue/	Condition Met?							
Main Street	Α	В	С	D				
Section 2B.07.04	NA	No	No	No				
Section 2B.07.05	NA	No	Yes	Yes				

	Table 1	10 – 1	All-Way	Stop	Criteria
--	---------	--------	---------	------	----------

Table 10 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Washington Avenue/Main Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Washington Avenue/Main Street intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound Main Street approaches and the northbound and southbound Washington Avenue approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment D Pearl Street/Fair Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Pearl Street/Wall Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Pearl Street/Wall Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Pearl Street is classified as an urban major collector and provides east-west travel from Ringtop Road to Clinton Avenue. Pearl Street is a 34 foot wide roadway that allows two-way traffic and metered on-street parking on the south side of the road east of the Wall Street intersection. The city speed limit is 30 mph and land uses along Pearl Street near Wall Street include the *St. Jospeh's School, Fair Street Church,* and a mix of commercial and residential land.

Wall Street is classified as an urban major collector and provides northbound travel from Henry Street to N. Front Street. Wall Street is a 26 foot wide roadway that allows one-way traffic in the northbound direction and metered on-street parking on the west side of the road north of the Pearl Street intersection. The city speed limit is 30 mph and land uses along Wall Street near Pearl Street include the *St. Jospeh's School, St. Joseph's Church,* and a mix of commercial and residential land.

Study Area Intersection

The Pearl Street/Wall Street intersection is a four-leg intersection controlled by a pre-timed traffic signal. Wall Street is a one-way road in the northbound direction. Each approach provides a single lane for shared travel movements on all approaches. Vehicles traveling westbound on Pearl Street and northbound on Wall Street are not allowed to make a right-turn on red.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Wall Street and Pearl Street. There are marked crosswalks on all approaches of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Pearl Street/Wall Street	Pearl EB Ap	Pearl Street EB Approach		Pearl Street WB Approach		Street proach	Wall SB Ap	Street proach	Total	
intersection	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes
7:00 to 8:00 a.m.	2	0	4	0	1	0	4	0	11	0
8:00 to 9:00 a.m.	4	0	9	0	3	0	7	0	23	0
9:00 to 10:00 a.m.	12	0	7	0	2	1	10	0	31	1
10:00 to 11:00 a.m.	15	0	10	0	4	0	5	1	34	1
11:00 a.m. to 12:00 p.m.	12	1	19	0	9	0	6	0	46	1
12:00 to 1:00 p.m.	10	0	6	0	5	0	14	0	35	0
1:00 to 2:00 p.m.	9	2	20	1	7	0	10	3	46	6
2:00 to 3:00 p.m.	11	0	13	0	10	0	10	1	44	1
3:00 to 4:00 p.m.	16	0	16	1	21	0	10	0	63	1
4:00 to 5:00 p.m.	25	1	9	0	4	0	3	0	41	1
5:00 to 6:00 p.m.	10	0	30	0	12	0	13	0	65	0
6:00 to 7:00 p.m.	2	0	3	1	4	0	4	0	13	1
Total	128	4	146	3	82	1	96	5	452	13

Table 1 – Pedestrian and Bicycle Activity Summary

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersection. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

	Collision Severity				Collision Type											
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Pearl Street/Wall Street	2	0	6	0	0	1	6	0	1	0	0	0	0	0	8	1.00

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were eight total accidents at the Pearl Street/Wall Street intersection during the three year period, which results in an accident rate approximately two times the average accident rate when compared to similar intersections. Of the eight accidents, six resulted in injuries, while the remaining two were non-reportable accidents which are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. All six of the rear end accidents reported at this intersection were attributed to driver inattention. The right angle accident occurred when a driver disregarded the red light while traveling northbound on Wall Street and was struck by a vehicle on Pearl Street. Similarly, the left-turn accident occurred when a driver on Wall Street disregarded the red

light while making a northbound left turn and was struck by a vehicle on Pearl Street. The predominant accident type at the study area intersection is rear end collisions (six total); however, they are associated with driver error and not the result of geometric or operational issues with the intersection. An accident summary (TE-213 equivalent) at the Pearl Street/Wall Street intersection is included under Attachment J.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

Time Beele	Existing	/olumes ¹		Signal War	rants Met?	
(1-hour period)	Pearl Street	Wall Street	#	1	#2	#2
(1-liour periou)	EB/WB	NB	Cond. A	Cond. B	#2	#5
7:00 AM	174	101	No	No	No	No
8:00 AM	316	194	No	No	No	No
9:00 AM	336	142	No	No	No	No
10:00 AM	314	118	No	No	No	No
11:00 AM	364	145	No	No	No	No
12:00 PM	327	167	No	No	No	No
1:00 PM	325	134	No	No	No	No
2:00 PM	347	184	No	No	No	No
3:00 PM	366	241	No	No	No	No
4:00 PM	331	183	No	No	No	No
5:00 PM	381	170	No	No	No	No
6:00 PM	238	102	No	No	No	No
Degistered Volumes	Two Lane N	lajor Street	500	750	See Figure	See Figure
Required Volumes	One Lane Minor Street		150	75	4C-1	4C-3
0	verall Warrant Met	?	No	No	No	No

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Pearl Street and Wall Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Pearl Street/Wall Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

<u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Pearl Street ¹	Existing Pedestrian Volume Crossing Pearl Street ¹	Signal Warrant #4 Met?
7:00 AM	174	6	No
8:00 AM	316	13	No
9:00 AM	336	19	No
10:00 AM	314	25	No
11:00 AM	364	31	No
12:00 PM	327	16	No
1:00 PM	325	29	No
2:00 PM	347	24	No
3:00 PM	366	32	No
4:00 PM	331	34	No
5:00 PM	381	40	No
6:00 PM	238	5	No
Dogwined Volumes	Two Lane Maj	jor Street – Vehicles	See Figure 4C 7
Required volumes	Crossing Major	Street – Pedestrians	See Figure 4C-7
	Overall Warrant Met	t?	No

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Pearl Street and pedestrian volumes crossing Pearl Street as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *St. Joseph's School* is located on the southwest corner of the intersection; however, the school crossing warrant is not met since adequate gaps in vehicle traffic flow are provided on Pearl Street based on a review of the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Colli	sion Se	verity		Collision	п Туре		
Pearl Street/Wall Street Intersection	Non-Reportable	Injury	Fatal	Right Angle	Rear-End	Left-Turn	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	1	2	0	1	2	0	3	No
Jun 1, 2016 to May 31, 2017	0	2	0		1	1	2	No
Jun 1, 2017 to May 31, 2018	1	2	0	0	3	0	3	No
Required Volumes			Two-l	See Table 4C-1				
Overall Warrant Met?								No

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Pearl Street is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Pearl Street/Wall Street intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control (existing conditions) A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the northbound Wall Street approach.
- All-Way Stop Control Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions

of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

linte			Control	Existin	g 2019
Inte	rsection		Control	AM Peak Hour	PM Peak Hour
Pea	rl Street/Wall Street				
50	Pearl Street EB	LT	S	B (16.0)	B (15.7)
ting	Pearl Street WB	TR		B (15.1)	B (15.8)
xis	Wall Street NB	LTR		B (11.4)	B (12.3)
ш		Overall		B (14.3)	B (14.4)
	Pearl Street EB	L	TW	A (7.7)	A (7.8)
ves	Wall Street NB	LTR		B (12.6)	C (15.4)
ativ	Pearl Street EB	LT	AW	B (10.5)	В (10.5)
ern	Pearl Street WB	TR		A (8.8)	A (9.5)
Alt	Wall Street NB	LTR		A (9.9)	B (11.2)
		Overall		A (9.9)	В (10.5)

Table 6 – Level of Service Summary

X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections. NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Pearl Street/Wall Street intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS C conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour						
Measure of Effectiveness	Signal (Existing)	Two-Way Stop	All-Way Stop	Signal (Existing)	Two-Way Stop	All-Way Stop				
Stops (#)	257	253	527	296	312	607				
Fuel Consumed (gal)	5	4	6	5	5	7				
CO Emissions (kg)	0.35	0.31	0.44	0.38	0.38	0.50				
NOx Emissions (kg)	0.07	0.06	0.09	0.07	0.07	0.10				
VOC Emissions (kg)	0.08	0.07	0.10	0.09	0.09	0.12				

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

Key:

- The existing traffic signal and the two-way stop alternative are comparable in terms of emissions and fuel consumption; however, the all-way stop alternative increases the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

Traffic Operations – Sensitivity Analysis

Key:

A review of the *Kingston Downtown Revitalization Initiative* (Kingston DRI) indicates that a transportation plan has been recommended to improve accessibility and circulation in the Uptown Stockade area. In general, the proposed improvements would reverse street directions along Wall Street and Fair Street in addition to some secondary streets such as John Street and Main Street. This improvement would impact at least four of the eight study area intersections. A sensitivity analysis was conducted to determine if the preferred traffic control alternatives would change if the proposed traffic pattern change was implemented. The existing traffic volumes were redistributed based on a review of the proposed *Kingston DRI* plan and are shown on Figure 4 and Figure 5. A level of service sensitivity analysis was conducted at the Pearl Street/Wall Street intersection similar to the assessment provided in section 3.0. Table 8 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	waation		Control	Existin	g 2019
Inte	rsection		Control	AM Peak Hour	PM Peak Hour
Pea	rl Street/Wall Street				
b0	Pearl Street EB	TR	S	B (16.1)	B (15.8)
ting	Pearl Street WB	LT		A (5.9)	A (6.7)
xis	Wall Street SB	LTR		B (11.5)	B (13.2)
ш		Overall		В (11.6)	В (11.6)
	Pearl Street WB	L	TW	A (7.9)	A (7.8)
/es	Wall Street SB	LTR		C (16.1)	D (28.7)
ativ	Pearl Street EB	TR	AW	B (10.5)	B (11.6)
ern	Pearl Street WB	LT		A (10.0)	B (130)
Alt	Wall Street SB	LTR		B (10.5)	B (14.7)
		Overall		B (10.3)	В (13.3)

Table 8 – Level of Service Kingston DRI Sensitivity Analysis Summary

X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections. NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The sensitivity analysis indicates that the Pearl Street/Wall Street intersection will operate adequately during the AM and PM peak hours under all three traffic control options if the proposed improvement plan recommended in the *Kingston DRI* is implemented in the Uptown Stockade area (LOS D conditions or better on all approaches).

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Pearl Street/Wall Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Pearl Street would be the major street and a stop sign would be installed on the Wall Street approach. The results of the sight distance evaluation are summarized in Table 9.

			In	tersection Sig	ght Distance	2 ¹		Stoppii Dista	ng Sight ance²
Pearl Street/Wall Street		Right Turn from	Crossing from W	Maneuver all Street	Left Tu Wall	rn from Street	Left Turn from		
		Wall Street (D⊾)	Looking Left (D _L)	Looking Right (D _R)	Looking Left (D∟)	Looking Right (D _R)	Pearl Street (D _s)	SSD _{EB}	SSD _{WB}
Pearl St/ Available		85 [250]	85 [250] 85 [250]		85 [250]	50 [135]	>300	>300	>400
Wall St	Recommended ³	290	290	290	335	335	245	175	175

Table 9 – Sight Distance Evaluation (feet)

1. Intersection sight distance is measured at 14.5 feet back from Pearl Street at an eye height and object height of 3.5 feet.

2. Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Pearl Street.

3. Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Pearl Street. XX [XX] = Available sight distance [Available sight distance without on-street parking]

The sight distance analysis on Pearl Street shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Pearl Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distance looking left and right from the south leg of Wall Street do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Wall Street or to cross Pearl Street if cars are parked on the street. If parked cars are not present and do not impede sight lines, the available sight distance looking right would only improve from approximately 85 to 250 feet; however, the sight distance looking right would only improve from approximately 50 to 135 feet due to obstructed sight lines associated with a building on the corner. The available sight lines looking left and right from the south leg of Wall Street are illustrated below in Photographs 1 and 2.

Photograph 1 – Sight distance looking left (D_L) from the south leg of Wall Street

Photograph 2 – Sight distance looking right (D_R) from the south leg of Wall Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking right from the south leg of Wall Street is critically limited due to the building on the corner. At a minimum, an "Intersection Warning" sign is recommended if the two-way stop control condition were implemented.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 10 summarizes which of the criteria are met for the Pearl Street/Wall Street intersection.

Dearl Street /Mall Street	Condition Met?										
Pearl Street/ wall Street	А	В	С	D							
Section 2B.07.04	NA	No	No	No							
Section 2B.07.05	NA	No	Yes	Yes							

Table 10 -	· All-Way	Stop	Criteria
------------	-----------	------	----------

Table 10 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Pearl Street/Wall Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Pearl Street/Wall Street intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the northbound Wall Street approach and the eastbound and westbound Pearl Street approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50-foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment E Pearl Street/Wall Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Fair Street/Pearl Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Fair Street/Pearl Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Fair Street is classified as an urban major collector and provides provides southbound travel from Schwenk Drive to Greenkill Avenue. Fair Street is a 30 to 32 foot wide roadway that allows one-way traffic in the southbound direction. Metered parking is provided on the east side of the road north of Pearl Street and on both sides of the road south of Pearl Street. The city speed limit is 30 mph and land uses along Fair Street near Pearl Street include the *Ulster County Office Building*, the *James United Methodist Church*, the *Fair Street Church*, and commercial land uses.

Pearl Street is classified as an urban major collector and provides east-west travel from Ringtop Road to Clinton Avenue. Pearl Street is a 30 foot wide roadway that allows two-way traffic and metered on-street parking on the south side of the road. The city speed limit it is 30 mph and land uses along Pearl Street near Fair Street generally include commercial and some residential land uses and *St. Joseph's School*.

Study Area Intersection

The Fair Street/Pearl Street intersection is a four-leg intersection controlled by a pre-timed traffic signal control. Fair Street is a one-way road in the southbound direction. Each approach provides a single lane for shared travel movements on all approaches.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Fair Street and Pearl Street. There are marked crosswalks on all approaches of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Fair Street/ Pearl Street	Fair S NB Ap	Street proach	Fair S SB Ap	Street proach	Pearl EB Ap	Street proach	Pearl WB Ap	Street proach	То	tal
Intersection	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes
7:00 to 8:00 a.m.	1	0	1	0	4	1	4	0	10	1
8:00 to 9:00 a.m.	3	0	3	0	6	0	11	0	23	0
9:00 to 10:00 a.m.	3	1	5	0	19	1	10	1	37	2
10:00 to 11:00 a.m.	12	0	9	0	27	0	20	0	68	0
11:00 a.m. to 12:00 p.m.	21	0	8	0	22	1	18	0	69	3
12:00 to 1:00 p.m.	5	0	17	0	23	0	29	0	74	0
1:00 to 2:00 p.m.	9	2	7	0	18	0	31	0	65	2
2:00 to 3:00 p.m.	5	0	12	0	20	1	28	2	65	2
3:00 to 4:00 p.m.	12	0	11	0	16	1	18	0	57	1
4:00 to 5:00 p.m.	8	0	2	0	17	0	20	0	47	0
5:00 to 6:00 p.m.	15	0	4	0	13	0	30	0	62	0
6:00 to 7:00 p.m.	3	0	2	0	9	0	13	0	27	0
Total	97	3	81	0	194	5	232	3	604	11

Table 1 – Pedestrian and Bicycle Activity Summary

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

		Collision Severity			Collision Type												
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Right Turn	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Fair Street/Pearl Street	6	2	2	0	2	1	1	1	1	0	0	3	1	0	0	10	1.31

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were 10 total accidents at the Fair Street/Pearl Street intersection during the three year period, which results in an accident rate over two times the average accident rate when compared to similar intersections. Of the 10 accidents, two resulted in an injury while the remaining eight were either a property damage only accident or a non-reportable accident. Non reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents. The three accidents involving parked cars reported at this intersection were attributed to glare and passing too closely while the two backing accidents were the result of driver inattention and backing unsafely. The left-turn accident was attributed to inadequate lane markings while the right-turn accident was the result of a disregard for the traffic control. The overtaking accident was the result of vehicles limited visibility while the rear-end collision was the result of following too closely. The pedestrian collision occurred when a eastbound vehicle on Pearl Street failed to yield the right-of-way to a pedestrian in the crosswalk when attempting to make a left turn onto Fair Street. The predominant accident type at the study area intersection are collisions with parked cars (three total) and backing (two total); however, they are associated with driver error and not the result of geometric or operational issues with the intersection. An accident summary (TE-213 equivalent) at the Fair Street/Pearl Street intersection is included under Attachment J.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

Time Denin	Existing	/olumes ¹		Signal War	rants Met?	
(1-hour period)	Pearl St	Fair St	#	1	#2	#2
(1 nour period)	EB/WB	SB	Cond. A	Cond. B	#2	# 5
7:00 AM	153	84	No	No	No	No
8:00 AM	312	144	No	No	No	No
9:00 AM	314	184	No	No	No	No
10:00 AM	302	188	No	No	No	No
11:00 AM	359	218	No	No	No	No
12:00 PM	324	239	No	No	No	No
1:00 PM	320	244	No	No	No	No
2:00 PM	350	238	No	No	No	No
3:00 PM	345	243	No	No	No	No
4:00 PM	342	254	No	No	No	No
5:00 PM	354	267	No	No	No	No
6:00 PM	228	144	No	No	No	No
Two Lane Major Street			500	750	See Figure	See Figure
One Lane Minor Street			150	75	4C-1	4C-3
0	verall Warrant Met	?	No	No	No	No

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Fair Street and Pearl Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Fair Street/Pearl Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

<u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Pearl Street ¹	Existing Pedestrian Volume Crossing Pearl Street ¹	Signal Warrant #4 Met?							
7:00 AM	153	8	No							
8:00 AM	312	17	No							
9:00 AM	314	29	No							
10:00 AM	302	47	No							
11:00 AM	359	40	No							
12:00 PM	324	52	No							
1:00 PM	320	49	No							
2:00 PM	350	48	No							
3:00 PM	345	34	No							
4:00 PM	342	37	No							
5:00 PM	354	43	No							
6:00 PM	228	22	No							
Required Volumes	Two Lane Maj	or Street – Vehicles	See Figure 4C 7							
Required Volumes	Crossing Major	Street – Pedestrians	See Figure 4C-7							
	Overall Warrant Met?									

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Pearl Street and pedestrian volumes crossing Pearl Street as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *St. Joseph's School* is located approximately 500-feet west of the intersection on Pearl Street; however, the school crossing warrant is not met since adequate gaps in vehicle traffic flow are provided on Pearl Street based on a review of the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Coll	ision	Seve	erity			(Collisi	ion Ty	pe			
Fair Street/Pearl Street Intersection	Non-Reportable	Property Damage	Injury	Fatal	Overtaking	Right Turn	Rear-End	Backing	Parked Car	Pedestrian	Left-Turn	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	1	2	0	0	0	1	0	1	1	0	0	3	No
Jun 1, 2016 to May 31, 2017	1	0	1	0	0	0	1	1	0	0	0	2	No
Jun 1, 2017 to May 31, 2018	4	0	1	0	1	0	0	0	2	1	1	5	No
Required Volumes						o-Lane	e Maj e Min	or Str or Str	eet eet				See Table 4C-1
	Warı	rant N	/let?							No			

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Pearl Street is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Fair Street/Pearl Street intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control (existing conditions) A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the southbound Fair Street approach.
- All-Way Stop Control Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions

of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

Inda			Control	Existin	g 2019
Inte	rsection		Control	AM Peak Hour	PM Peak Hour
Fair	Street/Pearl Street				
50	Pearl Street EB	TR	S	B (12.4)	B (12.7)
ting	Pearl Street WB	LT		B (12.1)	В (12.6)
xis	Fair Street SB	LTR		B (16.5)	C (20.7)
ш		Overall		B (13.8)	B (16.4)
	Fair Street SB	LTR	TW	B (13)	C (22.2)
ŝ	Pearl Street EB	TR		A (0)	A (0)
tive	Pearl Street WB	LR		A (7.7)	A (7.8)
'nai	Pearl Street EB	TR	AW	A (9.1)	B (10.7)
ltei	Pearl Street WB	LT		A (9)	B (10.8)
∢	Fair Street SB	LTR		A (9.6)	B (14)
		Overall		A (9.2)	В (12.2)

Table 6 – Level of Service Summary

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections. NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Fair Street/Pearl Street intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS C conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour					
Measure of Effectiveness	Signal (Existing)	Two-Way Stop	All-Way Stop	Signal (Existing)	Two-Way Stop	All-Way Stop			
Stops (#)	269	205	499	390	329	642			
Fuel Consumed (gal)	4	3	5	6	6	7			
CO Emissions (kg)	0.29	0.22	0.36	0.41	0.42	0.48			
NOx Emissions (kg)	0.06	0.04	0.07	0.08	0.08	0.09			
VOC Emissions (kg)	0.07	0.05	0.08	0.10	0.10	0.11			

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The existing traffic signal and the two-way stop alternative are comparable in terms of emissions and fuel consumption; however, the all-way stop alternative increases the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

Traffic Operations – Sensitivity Analysis

A review of the *Kingston Downtown Revitalization Initiative* (Kingston DRI) indicates that a transportation plan has been recommended to improve accessibility and circulation in the Uptown Stockade area. In general, the proposed improvements would reverse street directions along Wall Street and Fair Street in addition to some secondary streets such as John Street and Main Street. This improvement would impact at least four of the eight study area intersections. A sensitivity analysis was conducted to determine if the preferred traffic control alternatives would change if the proposed traffic pattern change was implemented. The existing traffic volumes were redistributed based on a review of the proposed *Kingston DRI* plan and are shown on Figure 4 and Figure 5. A level of service sensitivity analysis was conducted at the Fair Street intersection similar to the assessment provided in section 3.0. Table 8 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	waation		Control	Existin	g 2019
Inte	rsection		Control	AM Peak Hour	PM Peak Hour
Fair	Street/Pearl Street				
b0	Pearl Street EB	TR	S	A (4.1)	A (4.8)
ting	Pearl Street WB	LT		B (128)	В (13.6)
xis	Fair Street NB	LTR		B (19.1)	C (26.5)
ш		Overall		В (11.3)	B(15.2)
	Pearl Street WB	L	TW	A (7.8)	A (8.0)
/es	Fair Street NB	LTR		C (17.9)	F (54.8)
ativ	Pearl Street EB	TR	AW	B (11.6)	C (17.1)
ern	Pearl Street WB	LT		A (9.6)	B (12.5)
Alt	Fair Street BB	LTR		B (11.1)	C (18.0)
		Overall		B (10.9)	C (16.3)

Table 8 – Level of Service Kingston DRI Sensitivity Analysis Summary

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections. NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The sensitivity analysis indicates that the Fair Street/Pearl Street intersection will operate adequately during the AM and PM peak hours under all-way stop control and traffic signal control options if the proposed improvement plan recommended in the *Kingston DRI* is implemented in the Uptown Stockade area (LOS C conditions or better on all approaches). The sensitivity analysis also indicates that the northbound Fair Street approach will operate at LOS C/F during the AM and PM peak hours under stop control conditions; therefore, it is recommended that all-way stop control or traffic signal control be proposed at this intersection if the *Kingston DRI* is implemented in the Uptown Stockade area.

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Fair Street/Pearl Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Pearl Street would be the major street and a stop sign would be installed on the Fair Street approach. The results of the sight distance evaluation are summarized in Table 9.

Fair Street/Pearl Street				Intersection S	Sight Distan	ce1		Stoppir Dista	ng Sight ance ²
		Right TurnCrossing Maneuverfromfrom Fair Street			Left Tu Fair	ırn from Street	Left Turn from		
		Fair Street Looking Looking (D _L) Left (D _L) Right (D _R)		Looking Right (D _R)	Looking Left (D∟)	Looking Right (D _R)	Pearl Street (D _s)	33D _{NB}	SSUSB
Fair Street /	Available	335	335	140	335	140	>500	>500	>500
North Leg	Recommended ³	290	335	335	290	290	245	175	175

Table 9 – Sight Distance Evaluation (feet)

1. Intersection sight distance is measured at 14.5 feet back from Pearl Street at an eye height and object height of 3.5 feet.

2. Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Pearl Street.

3. Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Pearl Street.

The sight distance analysis on Pearl Street shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Pearl Street onto the south leg of Fair Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distance looking left from the north leg of Fair Street meets the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Fair Street or to cross Pearl Street. In addition, the analysis shows that the sight distances looking right from the north leg of Fair Street or to cross Pearl Street does not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left from Fair Street or to cross Pearl Street due to a vegetation and a building. The available sight lines looking left and right from the north leg of Fair Street are illustrated below in Photographs 1 and 2

Photograph 1 – Sight distance looking left (D_L) from the north leg of Fair Street

Photograph 2 – Sight distance looking right (D_R) from the north leg of Fair Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking right from the north leg of Fair Street is critically limited due to the vegetation and building. At a minimum, an "Intersection Warning" sign is recommended if the two-way stop control condition were implemented.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 10 summarizes which of the criteria are met for the Fair Street/Pearl Street intersection.

Fair Streat/Dearl Streat	Condition Met?									
Fair Street/Feari Street	А	В	С	D						
Section 2B.07.04	NA	No	No	No						
Section 2B.07.05	NA	No	Yes	Yes						

Table	10 –	All-Way	Stop	Criteria
-------	------	---------	------	----------

Table 10 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Fair Street/Pearl Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Fair Street/Pearl Street intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound Pearl Street approaches and the southbound Fair Street approach. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50-foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment F Clinton Avenue/St. James Street Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Clinton Avenue/St. James Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Clinton Avenue/St. James Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Clinton Avenue is classified as an urban major collector and provides north-south travel from Schwenk Drive to Barmann Avenue. Clinton Avenue is a 32 foot wide roadway that allows two-way traffic. On-street parking is allowed on the west side of the road and on the east side of the road north of St. James Street. The city speed limit is 30 mph and land uses along Clinton Avenue near St. James Street generally include residential land uses.

St. James Street is classified as an urban major collector and provides east-west travel from Wall Street to Route 32 (Broadway). St. James Street is a 28 to 37 foot wide roadway that allows two-way traffic and onstreet parking on both sides of the road. The city speed limit it is 30 mph and land uses along St. James Street near Clinton Avenue generally include residential land uses and some commercial land uses.

Study Area Intersection

The Clinton Avenue/St. James Street intersection is a four-leg intersection that provides a single lane for shared travel movements on all approaches. A pre-timed traffic signal is provided at this intersection; however, it is currently operating under all-red flash control.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Clinton Avenue and St James Street. There are no marked crosswalks on any approach of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Clinton Avenue/St. James Street	Clinton Appr	Ave NB oach	Clinto SB Apj	on Ave proach	St Jame EB Ap	s St Ave proach	St Jar WB Ap	nes St proach	Total		
Intersection	Peds	Bikes	Peds	Bikes	Peds	Peds Bikes		Bikes	Peds	Bikes	
7:00 to 8:00 a.m.	2	0	12	0	2	0	1	0	17	0	
8:00 to 9:00 a.m.	7	0	1	0	8	0	7	0	23	0	
9:00 to 10:00 a.m.	2	0	3	0	7	0	3	0	15	1	
10:00 to 11:00 a.m.	5	0	7	0	4	0	8	0	24	0	
11:00 a.m. to 12:00 p.m.	3	0	4	0	7	0	9	0	23	0	
12:00 to 1:00 p.m.	5	0	3	0	8	0	4	0	20	0	
1:00 to 2:00 p.m.	11	0	0	0	7	0	7	0	25	0	
2:00 to 3:00 p.m.	11	0	2	2	13	0	12	0	38	2	
3:00 to 4:00 p.m.	3	0	6	0	12	0	7	1	28	1	
4:00 to 5:00 p.m.	6	0	5	0	12	0	4	0	27	0	
5:00 to 6:00 p.m.	11	0	13	0	13	0	5	0	42	0	
6:00 to 7:00 p.m.	3	1	3	1	10	0	9	0	25	2	
Total	69	1	59	3	103	0	76	1	307	5	

Table 1 – Pedestrian and Bicycle Activity Summary

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

		Collision Severity			Collision Type											
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Clinton Avenue/St. James Street	2	2	1	0	0	1	1	0	2	0	0	0	1	0	5	0.83

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were five total accidents at the Clinton Avenue/St. James Street intersection during the three year period, which results in an accident rate slightly higher than the average accident rate when compared to similar intersections. Of the five accidents, one resulted in an injury while the remaining four were either a property damage only accident or a non-reportable accident. Non reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. The two right-angle accidents reported at this intersection were attributed to a disregard to the traffic signal control. The left-turn accident was the result of vehicles failing to yield the right-of-way while the rear end accident occurred due to driver inattention of a motorist traveling northbound. The injury accident occurred when a vehicle on St. James Street made a right-turn-on-red and struck a bicyclist traveling in the wrong lane/direction on Clinton Avenue. The predominant accident type at the study area intersection is right angle collisions (two total); however, they are associated with driver error and not the result of geometric or operational issues with the intersection. An accident summary (TE-213 equivalent) at the Clinton Avenue/St. James Street intersection is included under Attachment J.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

Time Desin	Existing	/olumes ¹			Signal War	rants Met?	
(1-hour period)	Clinton Ave	St. Jar	nes St	#	1	#2	#2
(I nour periou)	NB/SB	EB	WB	Cond. A	Cond. B	#2	# 5
7:00 AM	176	30	28	No	No	No	No
8:00 AM	199	50	40	No	No	No	No
9:00 AM	202	43	38	No	No	No	No
10:00 AM	192	58	54	No	No	No	No
11:00 AM	226	55	48	No	No	No	No
12:00 PM	204	51	78	No	No	No	No
1:00 PM	221	44	77	No	No	No	No
2:00 PM	289	70	50	No	No	No	No
3:00 PM	341	62	69	No	No	No	No
4:00 PM	317	64	68	No	No	No	No
5:00 PM	316	91	72	No	No	No	No
6:00 PM	165	34	52	No	No	No	No
Two Lane Major Street		500	750	See Figure	See Figure		
Two Lane Minor Street				150	75	4C-1	4C-3
0	verall Warrant Met	?		No	No	No	No

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Clinton Avenue and St. James Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Clinton Avenue/St. James Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

 <u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.
Time Begin (1-hour period)	Existing Traffic Volume on Clinton Avenue ¹	Existing Pedestrian Volume Crossing Clinton Avenue ¹	Signal Warrant #4 Met?						
7:00 AM	176	14	No						
8:00 AM	199	8	No						
9:00 AM	202	5	No						
10:00 AM	192	12	No						
11:00 AM	226	7	No						
12:00 PM	204	8	No						
1:00 PM	221	11	No						
2:00 PM	289	13	No						
3:00 PM	341	9	No						
4:00 PM	317	11	No						
5:00 PM	316	24	No						
6:00 PM	165	6	No						
Deguined Volumes	Two Lane Major Street – Vehicles								
Required volumes	Crossing Major Street – Pedestrians								
	Overall Warrant Met?								

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Clinton Avenue and pedestrian volumes crossing Clinton Avenue as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *St. Joseph's School* is located approximately ¼ of a mile northwest
 of the intersection on Pearl Street; however, the school crossing warrant is not met since
 adequate gaps in vehicle traffic flow are provided on Clinton Avenue based on a review of the
 turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Со	llision	Seve	rity		Co				
Clinton Avenue/ St. James Street Intersection	Non-Reportable	Property Damage	Injury	Fatal	Right Angle	Rear-End	Bicycle	Left-Turn	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	0	1	1	0	1	0	1	0	2	No
Jun 1, 2016 to May 31, 2017	1	0	0	0	0	0	0	1	1	No
Jun 1, 2017 to May 31, 2018	1	1	0	0	1	1	0	0	2	No
Required Volumes				See Table 4C-1						
	Overall Warrant Met?								No	

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Clinton Avenue is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Clinton Avenue/St. James Street intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control- A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the eastbound and westbound St. James Street approaches.
- All-Way Stop Control (existing conditions since the traffic signal is operating under all-red flash control) Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions

of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

Internetion		Control	Existing 2019					
inte	rsection		Control	AM Peak Hour	PM Peak Hour			
Clinton Avenue/St James Street								
	St James Street EB	LTR	AW	A (7.8)	A (8.8)			
ы В Ц	St James Street WB	LTR		A (7.5)	A (8.3)			
isti	Clinton Avenue NB	LTR		A (8.6)	A (9.7)			
Ĕ	Clinton Avenue SB	LTR		A (7.7)	A (9.2)			
	Overall			A (8.1)	A (9.2)			
	St James Street EB	LTR	S	B (13.0)	B (13.6)			
	St James Street WB	LTR		B (13.1)	В (13.6)			
s	Clinton Avenue NB	LTR		A (1.9)	A (2.2)			
tive	Clinton Avenue SB	LTR		B (10.2)	B (11.3)			
nai		Overall		A (7.1)	A (8.7)			
lter	Clinton Avenue NB	LTR	TW	A (0.4)	A (0.7)			
∢	Clinton Avenue SB	LTR		A (1.3)	A (0.9)			
	St James Street EB	LTR		B (11)	B (14.4)			
	St James Street WB	LTR		B (10.5)	A (11.6)			

Table 6 – Level of Service Summary

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections.

NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Clinton Avenue/St. James Street intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS B conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour					
Measure of Effectiveness	Signal	Two-Way Stop	All-Way Stop (Existing)	Signal	Two-Way Stop	All-Way Stop (Existing)			
Stops (#)	359	122	305	438	212	485			
Fuel Consumed (gal)	9	3	4	11	5	6			
CO Emissions (kg)	0.64	0.20	0.29	0.77	0.32	0.45			
NOx Emissions (kg)	0.12	0.04	0.06	0.15	0.06	0.09			
VOC Emissions (kg)	0.15	0.05	0.07	0.18	0.07	0.11			

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The existing all-way stop control and the two-way stop alternative are comparable in terms of emissions and fuel consumption. Reactivating the traffic signal will generally increase the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Clinton Avenue/St. James Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Clinton Avenue would be the major street and a stop sign would be installed on each of the St. James Street approaches. The results of the sight distance evaluation are summarized in Table 8.

				Stopping Sight Distance ²					
Clinton Avenue/ St. James Street		Right Turn from	Crossing from St.	Maneuver James St.	Left Tu St. Jam	ırn from es Street	Left Turn from		
		St. James St. (D∟)	Looking Left (D∟)	Looking Right (D _R)	Looking Left (D∟)	Looking Right (D _R)	Clinton Ave (D _s)	SSD _{NB}	SSD _{SB}
Clinton Avenue/	Available	165	165	150	165	150	>500	>500	>500
East Leg	Recommended ³	290	290	290	335	335	245	175	175
Clinton Avenue/ St. James Street	Available	140	140 [+335]	170	140 [+335]	170	>500	>500	>500
West Leg	Recommended ³	290	290	290	335	335	245	175	175

Table 8 – Sight Distance	e Evaluation (feet)
--------------------------	---------------------

Intersection sight distance is measured at 14.5 feet back from Clinton Avenue at an eye height and object height of 3.5 feet.
 Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Clinton Avenue.
 Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Clinton Avenue.

XX [YY] = Available Sight Distance Limited by On-Street Parking [Available Sight Distance without On-Street Parking]

The sight distance analysis on Clinton Avenue shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Clinton Avenue on to both legs of St. James Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distances looking left and right from the east and west legs of St. James Street do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from St. James Street or to cross Clinton Avenue due to cars parked on the street and also telephone/utility poles on the corners of the intersection. The available sight lines looking left and right from the east and west legs of St. James Street are illustrated below in Photographs 1 through 4.

Photograph 1 – Sight distance looking left (DL) from the east leg of St. James Street

Photograph 2 – Sight distance looking right (D_R) from the east leg of St. James Street

Photograph 4 – Sight distance looking right (D_R) from the west leg of St. James Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking left and right from the east and west legs of St. James Street are critically limited. At a minimum, an "Intersection Warning" sign is recommended on each approach if the two-way stop control condition were implemented. It is noted that the available sight distance on some of the approaches could be mitigated if on-street parking was restricted near the intersection; however, it is anticipated that the City of Kingston would not consider limiting on-street parking in the vicinity of the intersection.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 9 summarizes which of the criteria are met for the Clinton Avenue/St. James Street intersection.

Clinton Avenue/	Condition Met?									
St. James Street	Α	В	С	D						
Section 2B.07.04	NA	No	No	No						
Section 2B.07.05	NA	No	Yes	Yes						

Table 9 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Clinton Avenue/St. James Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Clinton Avenue/St. James Street intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound St. James Street approaches and the northbound and southbound Clinton Avenue approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment G Clinton Street/Frnaklin Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Clinton Avenue/Franklin Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Clinton Avenue/Franklin Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Clinton Avenue is classified as an urban major collector and provides north-south travel from Schwenk Drive to Barmann Avenue. Clinton Avenue is a 32 to 42 foot wide roadway that allows two-way traffic and on-street parking on both sides of the road. The city speed limit is 30 mph and land uses along Clinton Avenue near Franklin Street include *Clinton Avenue United Methodist Church* and residential land uses.

Franklin Street is classified as an urban local road and provides east-west travel from Wall Street to Broadway. Franklin Street is a 30 to 32 foot wide roadway that allows two-way traffic and on-street parking on both sides of the road. The city speed limit it is 30 mph and land uses along Franklin Street near Clinton Avenue include *Kingston Library* and residential land uses.

Study Area Intersection

The Clinton Avenue/Franklin Street intersection is a fourleg intersection that provides a single lane for shared travel movements on all approaches. A pre-timed traffic signal is provided at this intersection; however, it is currently operating under all-red flash control.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Clinton Avenue and Franklin Street. There are marked crosswalks on all approaches of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Clinton Avenue/ Franklin Street	Clinto NB Ap	n Ave. proach	Clinto SB Ap	n Ave. proach	Frank EB Ap	din St. proach	Frank WB Ap	din St. proach	Total		
Intersection	n Peds Bikes Peds Bikes Peds		Peds	Bikes	Peds	Bikes	Peds	Bikes			
7:00 to 8:00 a.m.	5	0	11	0	14	0	8	0	38	0	
8:00 to 9:00 a.m.	7	0	13	0	4	0	3	0	27	0	
9:00 to 10:00 a.m.	3	0	9	0	6	0	1	0	19	0	
10:00 to 11:00 a.m.	5	0	5	0	3	0	5	0	18	0	
11:00 a.m. to 12:00 p.m.	5	0	1	0	2	0	7	0	15	0	
12:00 to 1:00 p.m.	3	0	8	0	0	0	7	0	18	0	
1:00 to 2:00 p.m.	6	0	10	0	3	0	7	0	26	0	
2:00 to 3:00 p.m.	17	1	24	0	13	1	13	0	67	2	
3:00 to 4:00 p.m.	22	0	70	1	9	0	15	3	116	4	
4:00 to 5:00 p.m.	6	0	8	0	3	0	1	0	18	0	
5:00 to 6:00 p.m.	9	0	7	0	11	0	10	4	37	4	
6:00 to 7:00 p.m.	11	0	6	0	5	0	8	1	30	1	
Total	99	1	172	1	73	1	85	8	429	11	

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches is in an urban setting 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

		Collision Severity			Collision Type											
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	Unknown	Total	Crash Rate (ACC/ MEV)
Clinton Avenue/Franklin Street	3	1	1	0	0	0	1	1	0	0	1	0	2	0	5	0.80

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were five total accidents at the Clinton Avenue/Franklin Street intersection during the three year period, which results in an accident rate slightly higher than the average accident rate when compared to similar intersections. Of the five accidents, one resulted in an injury while the remaining four were either a property damage only accident or a non-reportable accident. Non reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. The rear-end accidents reported at this intersection were attributed to driver inattention or a disregard to the traffic signal control. The overtaking accident was the result of a disregard of the traffic control while the rear end accident occurred due to driver inattention of a motorist traveling eastbound. The collision with a parked car occurred due to improper lane usage. One of the bicycle accidents resulted in an injury and was the result of the bicyclist disregarding the traffic signal control. The non-reportable bicycle accident occurred when a westbound vehicle made a right-turn and struck the bicyclist as she was making a right-turn due to limited visibility. An accident summary (TE-213 equivalent) at the Clinton Avenue/Franklin Street intersection is included under Attachment J.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

Time Basis	Existing	/olumes ¹		Signal Warrants Met?					
(1 hour pariod)	Clinton Ave	Frank	din St	#	1	#2	#3		
(1-nour period)	NB/SB	EB	WB	Cond. A	Cond. B	#2			
7:00 AM	146	44	56	No	No	No	No		
8:00 AM	187	91	65	No	No	No	No		
9:00 AM	183	74	45	No	No	No	No		
10:00 AM	184	66	53	No	No	No	No		
11:00 AM	194	49	35	No	No	No	No		
12:00 PM	186	54	54	No	No	No	No		
1:00 PM	186	72	71	No	No	No	No		
2:00 PM	247	69	82	No	No	No	No		
3:00 PM	295	89	95	No	No	No	No		
4:00 PM	240	89	119	No	No	No	No		
5:00 PM	257	81	90	No	No	No	No		
6:00 PM	169	61	66	No	No	No	No		
Be and the division of	Two Lane N	/lajor Stre	et	500	750	See Figure	See Figure		
Required Volumes	Two Lane N	et	150	75	4C-1	4C-3			
0	verall Warrant Met	?		No	No	No	No		

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Clinton Avenue and Main Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Clinton Avenue/Franklin Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

 <u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Clinton Avenue ¹	Existing Pedestrian Volume Crossing Franklin Street ¹	Signal Warrant #4 Met?					
7:00 AM	146	16	No					
8:00 AM	187	20	No					
9:00 AM	183	12	No					
10:00 AM	184	10	No					
11:00 AM	194	6	No					
12:00 PM	186	11	No					
1:00 PM	186	16	No					
2:00 PM	247	41	No					
3:00 PM	295	92	No					
4:00 PM	240	14	No					
5:00 PM	257	16	No					
6:00 PM	169	17	No					
Do mulino di Malumana	See Figure 40 7							
Required Volumes	See Figure 4C-7							
	Overall Warrant Met?							

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Clinton Avenue and pedestrian volumes crossing Clinton Avenue as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *George Washington Elementary School* is located approximately ¼ of a mile southwest of the intersection on Washington Avenue; however, the school crossing warrant is not met since adequate gaps in vehicle traffic flow are provided on Clinton Avenue based on a review of the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Co	llision	Sever	rity		Collision				
Clinton Avenue/ Franklin Street Intersection	Non-Reportable	Property Damage	Injury	Fatal	Overtaking	Bicycle	Rear-End	Total	Signal Warrant #7 Met?	
Jun 1, 2015 to May 31, 2016	2	0	0	0	1	1	0	2	No	
Jun 1, 2016 to May 31, 2017	1	0	0	0	1	0	0	1	No	
Jun 1, 2017 to May 31, 2018	0	1	1	0	0	1	1	2	No	
Required Volumes Two-Lane Major Street								See Table 4C-1		
Two-Lane Minor Street										
		Overall Warrant Met?								

Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Clinton Avenue is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Clinton Avenue/Franklin Street intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the eastbound and westbound Franklin Street approaches.
- All-Way Stop Control (existing conditions since the traffic signal is operating under all-red flash control) Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions

of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

Into	reaction		Control	Existing 2019				
inte	rsection		Control	AM Peak Hour	PM Peak Hour			
Clinton Avenue/Franklin Street								
	Franklin Street EB	LTR	AW	A (8)	A (8.7)			
ы В Ц	Franklin Street WB	LTR		A (7.7)	A (8.5)			
isti	Clinton Avenue NB	LTR		A (8.3)	A (8.5)			
Ĕ	Clinton Avenue SB LTR			A (7.9)	A (8.7)			
		Overall		A (8)	A (8.6)			
	Franklin Street EB	LTR	S	B (13.3)	B (13.2)			
	Franklin Street WB	LTR		B (13.1)	В (14.0)			
S	Clinton Avenue NB	LTR		A (1.7)	A (1.8)			
tive	Clinton Avenue SB	LTR		В (10.2)	A (1.9)			
na.		Overall		A (9.0)	A (6.9)			
lter	Clinton Avenue NB	LTR	TW	A (0.6)	A (0.4)			
A	Clinton Avenue SB	LTR		A (0.9)	A (1.3)			
	Franklin Street EB	LTR		В (10.6)	В (12.3)			
	Franklin Street WB	LTR		B (10.5)	B (12.2)			

Table 6 – Level of Service Summary

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections.

NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Clinton Avenue/Franklin Street intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS B conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour		PM Peak Hour				
Measure of Effectiveness	Signal	Two-Way Stop	All-Way Stop (Existing)	Signal	Two-Way Stop	All-Way Stop (Existing)		
Stops (#)	139	181	343	204	252	486		
Fuel Consumed (gal)	3	3	4	5	5	6		
CO Emissions (kg)	0.22	0.22	0.29	0.32	0.32	0.43		
NOx Emissions (kg)	0.04	0.04	0.06	0.06	0.06	0.08		
VOC Emissions (kg)	0.05	0.05	0.07	0.07	0.07	0.10		

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The existing traffic signal and the two-way stop alternative are comparable in terms of emissions and fuel consumption; however, the all-way stop alternative increases the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The traffic signal and two-way stop alternatives have the lowest environmental/emissions impacts compared to the all-way stop intersection control option.
- All traffic control alternatives are considered feasible.

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Clinton Avenue/Franklin Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Clinton Avenue would be the major street and a stop sign would be installed on the Franklin Street approaches. The results of the sight distance evaluation are summarized in Table 8.

				Stopping Sight Distance ²					
Clinton Avenue/ Franklin Street		Right Turn from	Crossing from Frar	Maneuver Iklin Street	Left Tu Frankli	ırn from in Street	Left Turn from		SSD _{SB}
		Franklin St. (D∟)	Looking Left (D∟)	Looking Right (D _R)	Looking Left (D _L)	Looking Right (D _R)	Clinton Ave (D _s)	SSD _{NB}	
Clinton Ave/ Franklin St	Available	85 [+335]	85 [+335]	60	85 [+335]	60	>500	>500	>500
East Leg	Recommended ³	290	290	290	335	335	245	175	175
Clinton Ave/ Franklin St	Available	60 [+335]	60 [+335]	55 [+335]	60 [+335]	55 [+335]	>500	>500	>500
West Leg	Recommended ³	290	290	290	335	335	245	175	175

1. Intersection sight distance is measured at 14.5 feet back from Clinton Avenue at an eye height and object height of 3.5 feet.

Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Clinton Avenue.
 Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Clinton Avenue.
 XX [YY] = Available Sight Distance Limited by On-Street Parking [Available Sight Distance without On-Street Parking]

The sight distance analysis on Clinton Avenue shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Clinton Avenue on to both legs of Franklin Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distances looking left and right from the east and west legs of Franklin Street do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Franklin Street or to cross Clinton Avenue due possible cars parked on the street. The available sight lines looking left and right from the east and west legs of Franklin Street do not meet the value of the street or to cross Clinton Avenue due possible cars parked on the street. The available sight lines looking left and right from the east and west legs of Franklin Street are illustrated below in Photographs 1 through 4

 $\label{eq:photograph1-Sight distance looking left (D_L) from \\ the west leg of Franklin Street$

Photograph 2 – Sight distance looking right (D_R) from the west leg of Franklin Street

Photograph 3 – Sight distance looking left (D_L) from the east leg of Franklin Street

Photograph 4 – Sight distance looking right (D_R) from the east leg of Franklin Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking left and right from the east and west legs of Franklin Street would be critically limited by on-street parking. At a minimum, "Intersection Warning" signs are recommended on all approaches if the two-way stop control condition were implemented. It is noted that the available sight distance on several of the approaches could be mitigated if on-street parking was restricted near the intersection; however, it is anticipated that the City of Kingston would not consider limiting on-street parking in the vicinity of the intersection.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 9 summarizes which of the criteria are met for the Clinton Avenue/Franklin Street intersection.

Clinton Avenue/	Condition Met?							
Franklin Street	Α	В	С	D				
Section 2B.07.04	NA	No	No	No				
Section 2B.07.05	NA	No	Yes	Yes				

Table 9 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Clinton Avenue/Franklin Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Clinton Avenue/Franklin Street intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound Franklin Street approaches and the northbound and southbound Clinton Avenue approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop ahead signs (W3-1) with flags should be placed on each approach. The flags and stop ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment H Clinotn Street/Henry Street Assessment

Traffic Signal Removal Assessment City of Kingston, New York

Clinton Avenue/Henry Street Signal Warrant Assessment

1.0 Purpose and Existing Conditions

The purpose of this paper is to document the signal warrant and traffic control analysis completed for the Clinton Avenue/Henry Street intersection. The Ulster County Transportation Council (UCTC) initiated a comprehensive study to evaluate the potential removal of traffic signals at several intersections identified by the City of Kingston that may not meet the minimum traffic and safety warrants to justify their continued operation.

Roadways Serving the Study Area

Clinton Avenue is classified as an urban major collector and provides north-south travel from Schwenk Drive to Barmann Avenue. Clinton Avenue is a 32 to 42 foot wide roadway that allows two-way traffic and on-street parking on both sides of the road. The city speed limit is 30 mph and land uses along Clinton Avenue near Henry Street include the *Metropolitan Knothole League Park* and residential land uses.

Henry Street is classified as an urban minor arterial and provides east-west travel from Wall Street to Broadway. Henry Street is a 36 to 38 foot wide roadway that allows two-way traffic and on-street parking on both sides of the road. The city speed limit it is 30 mph and land uses along Henry Street near Clinton Avenue generally include residential land uses.

Study Area Intersection

The Clinton Avenue/Henry Street intersection is a four-leg intersection that provides a single lane for shared travel movements on all approaches. A pre-timed traffic signal is provided at this intersection; however, it is currently operating under all-red flash control.

Pedestrian/Bicycle Accommodations

Sidewalks exist on both sides of Clinton Avenue and Henry Street. There are marked crosswalks on all approaches of the study area intersection. Table 1 summarizes the peak hour pedestrian and bicycle activity observed during the turning movement count.

Table 1 – Pedestrian and Bicycle Activity Summary

Clinton Avenue/ Henry Street	Clinto NB Ap	n Ave. proach	Clinton Ave. Henry St. SB Approach EB Approach		Hen WB Ap	ry St. proach	Total			
Intersection	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes	Peds	Bikes
7:00 to 8:00 a.m.	1	0	1	0	11	0	5	0	18	0
8:00 to 9:00 a.m.	26	3	19	0	1	1	4	0	50	4
9:00 to 10:00 a.m.	9	0	2	0	4	0	1	0	16	0
10:00 to 11:00 a.m.	7	2	4	0	1	0	7	0	19	2
11:00 a.m. to 12:00 p.m.	3	0	0	0	0	0	4	0	7	0
12:00 to 1:00 p.m.	2	1	1	0	0	0	2	0	5	1
1:00 to 2:00 p.m.	9	0	1	0	2	0	6	0	18	0
2:00 to 3:00 p.m.	12	0	9	0	5	0	6	0	32	0
3:00 to 4:00 p.m.	13	0	27	1	2	0	7	0	49	1
4:00 to 5:00 p.m.	9	0	3	1	7	1	10	2	29	4
5:00 to 6:00 p.m.	8	0	1	2	7	0	12	0	28	2
6:00 to 7:00 p.m.	3	2	6	2	7	0	3	0	19	4
Total	102	8	74	6	47	2	67	2	290	14

Accident Assessment

An accident analysis was performed at the study area intersection in accordance with NYSDOT Highway Design Manual Chapter 5. Accident data was requested from NYSDOT to quantify the number of accidents, determine an accident rate, and identify any accident patterns or concentrations at the intersection. Safety Information Management System (SIMS) and Accident Location Information System (ALIS) data was provided by NYSDOT at this intersection for a three-year period from June 1, 2015 through May 31, 2018. Table 2 summarizes the predominant accident types for the intersection and also provides the intersections. The statewide average accident rate for a four-way, signalized intersection with single lane approaches in an urban setting is 0.52 accidents per million entering vehicles (ACC/MEV) and is used for comparison to the study area intersection. It is noted that the character of city streets may be different than state highways; therefore, the comparison to the statewide average crash rate may not be as applicable to city streets.

		Collision Severity			Collision Type											
Intersection	Non-Reportable ¹	Property Damage	Injury	Fatal	Backing	Left-Turn	Rear-End	Overtaking	Right-Angle	Fixed Object	Parked Car	Pedestrian	Bicycle	unknown	Total	Crash Rate (ACC/ MEV)
Clinton Avenue/Henry Street	2	1	1	0	0	1	0	0	2	0	0	0	0	1	4	0.60

Table 2 – Accident Type, Severity, and Crash Rate

¹ A non-reportable accident indicates no personal injuries occurred and property damages totaled less than \$1,000. MEV = Million Entering Vehicles

As shown in the table, there were four total accidents at the Clinton Avenue/Henry Street intersection during the three year period, which results in an accident rate slightly higher than the average accident rate when compared to similar intersections. Of the four accidents, one resulted in an injury while the remaining three were either a property damage only accident or a non-reportable accident. Non reportable accidents are collisions that result in damage less than \$1,000. There were no fatal accidents and no pedestrian related collisions. The two right-angle accidents reported at this intersection were attributed to driver inattention or a disregard to the traffic signal control. The left-turn accident was the result of a vehicle failing to yield the right-of-way. There was one accident with no detailed information provided. The predominant accident type at the study area intersection is right angle collisions (two total); however, they are associated with driver error and not the result of geometric or operational issues with the intersection. An accident summary (TE-213 equivalent) at the Clinton Avenue/Henry Street intersection is included under Attachment J.

The removal of unwarranted traffic signals at intersections with high accident rates located in urban areas has been shown to decrease all types of accidents by 24 percent based on an assessment of 199 intersections, as noted in the *Desktop Reference for Crash Reduction Factors* published by the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA).

2.0 Signal Warrant Assessment

Detailed Signal Warrant Analysis

<u>Warrants 1, 2, and 3</u> – Table 3 summarizes the analysis of Warrants 1, 2, and 3 based on the traffic volume data. A "Yes" under the "Signal Warrants Met?" column indicates that the criteria are

satisfied for that hour. The detailed evaluation for Warrants 1, 2, and 3 is included under Attachment K.

Time Beele	Existing	/olumes ¹		Signal Warrants Met?					
(1-hour period)	Clinton Ave Henry St			#	1	#2	#2		
(1-nour period)	NB/SB	NB/SB EB WB Cond. A		Cond. A	Cond. B	#2	#3		
7:00 AM	156	60	63	No	No	No	No		
8:00 AM	229	79	105	No	No	No	No		
9:00 AM	191	64	83	No	No	No	No		
10:00 AM	188	48	60	No	No	No	No		
11:00 AM	188	56	64	No	No	No	No		
12:00 PM	222	62	63	No	No	No	No		
1:00 PM	297	65	81	No	No	No	No		
2:00 PM	245	89	102	No	No	No	No		
3:00 PM	300	95	128	No	No	No	No		
4:00 PM	266	76	109	No	No	No	No		
5:00 PM	258	69	120	No	No	No	No		
6:00 PM	180	43	88	No	No	No	No		
Demuined Volumes	Two Lane N	/lajor Stre	et	500	750	See Figure	See Figure		
Required Volumes	Two Lane N	linor Stre	et	150	75	4C-1	4C-3		
0	verall Warrant Met	?		No	No	No	No		

Table 3 – Summary of Signal Warrant Analysis – Existing (2019) Traffic Volume Conditions

¹ Volumes on Clinton Avenue and Henry Street as per Tri-State turning movement count data.

Table 3 indicates that traffic volumes over the course of a typical day at the Clinton Avenue/Henry Street intersection are not high enough under existing traffic volume conditions to meet the minimum traffic signal criteria for Warrants 1, 2, or 3.

<u>Warrant 4</u> – Pedestrians were observed during the 12-hour intersection turning movement counts. Table 4 summarizes the analysis of Warrant 4 using this data. A "Yes" under the "Signal Warrant #4 Met?" column indicates that the criteria are satisfied for that hour.

Time Begin (1-hour period)	Existing Traffic Volume on Clinton Avenue ¹	Existing Pedestrian Volume Crossing Henry Street ¹	Signal Warrant #4 Met?				
7:00 AM	156	2	No				
8:00 AM	229	45	No				
9:00 AM	191	11	No				
10:00 AM	188	11	No				
11:00 AM	188	3	No				
12:00 PM	222	3	No				
1:00 PM	297	10	No				
2:00 PM	245	21	No				
3:00 PM	300	40	No				
4:00 PM	266	12	No				
5:00 PM	258	9	No				
6:00 PM	180	9	No				
Demotre d Malance	6						
Requirea Volumes	Street – Pedestrians	See Figure 4C-7					
	Overall Warrant Met?						

Table 4 – Summary of Signal Warrant 4 Analysis

1 Traffic volumes on Clinton and pedestrian volumes crossing Fair Street as per Tri-State intersection turn movement count data.

Table 4 indicates that existing pedestrian volumes observed at the study intersection during the peak 12-hours of the day are not high enough to meet the minimum traffic signal criteria for Warrant 4. The existing traffic volumes and observed pedestrian volumes at the intersection fell well short of the minimum 107 pedestrian threshold associated with mainline traffic volumes during these peak periods. It is not anticipated that this intersection experiences heavy pedestrian usage during the remaining 12 hours of the day or that future pedestrian usage will increase to levels that would warrant the installation of a traffic signal; therefore, Warrant 4 is not satisfied under these conditions.

- <u>Warrant 5</u> It is noted that the *George Washington Elementary School* is located approximately ¼ of a mile west of the intersection on Wall Street; however, the school crossing warrant is not met since adequate gaps in vehicle traffic flow are provided on Clinton Avenue based on a review of the turning movement count data and the SimTraffic simulation.
- <u>Warrant 6</u> The adjacent intersections are not part of a coordinated signal system; therefore, this
 warrant is not met since the installation of a traffic signal is not necessary to maintain adequate
 vehicle platooning.
- <u>Warrant 7</u> Table 5 summarizes accident data provided by NYSDOT for three years (2015 through 2018). A check mark under the "Signal Warrant #7 Met?" column indicates that the warrant is met.

	Coll	ision	Seve	erity			Collisio	n Type			
Clinton Avenue/ Henry Street Intersection	Non-Reportable	Property Damage	Injury	Fatal	Overtaking	Right Angle	Unknown	Fixed Object	Left-Turn	Total	Signal Warrant #7 Met?
Jun 1, 2015 to May 31, 2016	1	1	0	0	0	1	1	0	0	2	No
Jun 1, 2016 to May 31, 2017	1	0	0	0	0	0	0	0	1	1	No
Jun 1, 2017 to May 31, 2018	0	0	1	0	0	1	0	0	0	1	No
Domined Malumon					Two-L	ane Ma	jor Stre	et			Coo Toble AC 1
Required volumes					Two-L	ane Mi	nor Stre	et			See Table 4C-1
		Ov	erall	Warı	ant Me	t?					No

 Table 5 – Summary of Signal Warrant 7 Analysis

Table 5 indicates that the number of accidents experienced at this intersection each year from 2015 to 2018 do not meet the minimum of five accidents required for the warrant and that the volume criteria on Clinton Avenue is not met for the eight hours required. This indicates that Warrant 7 is not satisfied under these conditions.

<u>Warrant 8</u> – Entering traffic volumes (as noted in Table 3) at this intersection will not exceed 1,000 vph during peak weekday or weekend time periods; therefore, this warrant will not be satisfied.

A review of the signal warrant criteria contained in the 2009 National MUTCD (NMUTCD) indicates that none of the eight warrants investigated meet the minimum criteria for the installation of a traffic signal at the Clinton Avenue/Henry Street intersection.

3.0 Existing Traffic Control and Potential Alternatives Assessment

An assessment of all three potential traffic control alternatives is provided for comparison purposes even though the re-installation of a traffic signal should not be pursued based on the traffic signal warrant evaluation provided.

Traffic Control Alternatives

The following intersection alternatives were reviewed to determine if this intersection will operate adequately under different forms of traffic control:

- Pre-timed Traffic Signal Control A traffic signal operating under a pre-timed signal cycle.
- Two-Way Stop Control Install a stop sign on the eastbound and westbound Henry Street approaches.
- All-Way Stop Control (existing conditions since the traffic signal is operating under all-red flash control) Install stop signs on all approaches.

Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made for each alternative using the Synchro software which automates the procedures contained in the *Highway Capacity Manual*. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Attachment L contains further detailed descriptions of LOS criteria for signalized and unsignalized intersections and copies of the detailed level of service reports. Table 6 shows the results of the Level of Service calculations for the AM and PM peak hours.

				Existin	g 2019
Inte	rsection		Control	AM Peak Hour	PM Peak Hour
Clin	ton Avenue/Henry Street				
	Henry Street EB	LTR	AW	A (8.3)	A (8.9)
ng Ng	Henry Street WB	LTR		A (8.7)	A (9.8)
istiı	Clinton Avenue NB	LTR		A (8.7)	A (9.6)
EX	Clinton Avenue SB	LTR		A (8.6)	A (9.7)
		Overall		A (8.6)	A (9.5)
	Henry Street EB	LTR	S	B (13.6)	B (13.9)
	Henry Street WB	LTR		В (13.9)	B (14.7)
ŝ	Clinton Avenue NB	LTR		B (11.0)	B (11.5)
tive	Clinton Avenue SB	LTR		B (10.5)	A (2.1)
nai		Overall		B (12.2)	В (10.2)
Iter	Clinton Avenue NB	LTR	TW	A (0.3)	A (0.6)
∢	Clinton Avenue SB	LTR		A (1.5)	A (2.1)
	Henry Street EB	LTR		B (11.7)	В (13.7)
	Henry Street WB	LTR		B (12.6)	C (16.1)

Table 6 -	– <mark>Lev</mark> el of	Service Summary
-----------	--------------------------	-----------------

Key: X (Y.Y) = Level of Service (Delay, seconds per vehicle).

S, TW, AW = Signalized control, Two-way stop controlled, and All-way stop controlled intersections.

NB, SB, WB, EB = Northbound, Southbound, Westbound, Eastbound intersection approaches.

LTR = Left-turn, through, and/or right-turn movements.

The level of service analysis conducted at the Clinton Avenue/Henry Street intersection indicates that all three traffic control alternatives would provide adequate traffic operations during the AM and PM peak hours (LOS C conditions or better on all approaches).

Table 7 compares the alternatives to the existing conditions for several measures of effectiveness (MOEs) including the number of stops, fuel consumed, and vehicle emissions.

		AM Peak Hour			PM Peak Hour	
Measure of Effectiveness	Signal	Two-Way Stop	All-Way Stop (Existing)	Signal	Two-Way Stop	All-Way Stop (Existing)
Stops (#)	220	243	426	289	292	524
Fuel Consumed (gal)	4	4	5	5	5	6
CO Emissions (kg)	0.29	0.27	0.36	0.38	0.34	0.45
NOx Emissions (kg)	0.06	0.05	0.07	0.07	0.07	0.09
VOC Emissions (kg)	0.07	0.06	0.08	0.09	0.08	0.10

Table 7 – Measures of Effectiveness Comparison

The analysis shows the following:

- The existing traffic signal and the two-way stop alternative are comparable in terms of emissions and fuel consumption; however, the all-way stop alternative increases the number of vehicle stops which creates a higher environmental/emission impacts associated with idling/braking/accelerating at the intersection.
- The two-way stop alternative has the lowest environmental/emissions impacts compared to the remaining two intersection control options.
- All traffic control alternatives are considered feasible.

4.0 Two-Way Stop Control – Sight Distance Evaluation

In order to provide two-way stop control, adequate sight lines must be provided; therefore, a sight distance evaluation was completed at the Clinton Avenue/Henry Street intersection based on the criteria summarized in the *Traffic Signal Removal Assessment* memo. It is assumed that Clinton Avenue would be the major street and a stop sign would be installed on the Henry Street approaches. The results of the sight distance evaluation are summarized in Table 8.

				Intersection	Sight Distan	ce1		Stoppir Dista	ng Sight Ince ²
Clinton Avenue/ Henry Street		Right Turn from	Crossing from He	Maneuver nry Street	Left Tu Henry	ırn from / Street	Left Turn from		
		Henry St. (D∟)	Looking Left (D _L)	Looking Right (D _R)	Looking Left (D∟)	Looking Right (D _R)	Clinton Ave (D _s)	SSD _{NB}	SSD _{SB}
Clinton Avenue/ Henry Street	Available	85 [+335]	85 [+335]	120 [+335]	85 [+335]	120 [+335]	>500	>500	>500
East Leg	Recommended ³	290	290	290	335	335	245	175	175
Clinton Avenue/ Henry Street	Available	90 [+335]	90 [+335]	85 [+335]	90 [+335]	85 [+335]	>500	>500	>500
West Leg	Recommended ³	290	290	290	335	335	245	175	175

Table 8 – Sight	Distance	Evaluation	(feet)
-----------------	----------	------------	--------

1. Intersection sight distance is measured at 14.5 feet back from Clinton Avenue at an eye height and object height of 3.5 feet.

2. Stopping sight distance is measured at an eye height of 3.5 feet for a 2-foot object located in the path of vehicles on Clinton Avenue.

3. Sight distance measurements are compared to AASHTO recommended distances for a 30-mph operating speed on Clinton Avenue. XX [YY] = Available Sight Distance Limited by On-Street Parking [Available Sight Distance without On-Street Parking] The sight distance analysis on Clinton Avenue shows that the available stopping sight distance and the available intersection sight distance looking straight to make left turns from Clinton Avenue on to both legs of Henry Street exceed AASHTO guidelines for the 30-mph operating speed. The analysis also shows that the sight distance looking left and right from the east and west legs of Henry Street Avenue do not meet the AASHTO recommended guidelines for a 30-mph operating speed to make a left or right turn from Henry Street or to cross Clinton Avenue due cars parked on the street. The available sight lines looking left and right from the east and west legs of Henry Street below in Photographs 1 through 4.

Photograph 1 – Sight distance looking left (DL) from the east leg of Henry Street

Photograph 3 – Sight distance looking left (DL) from the west leg of Henry Street

Photograph 2 – Sight distance looking right (D_R) from the east leg of Henry Street

Photograph 4 – Sight distance looking right (D_R) from the west leg of Henry Street

Figure 2C-101 found in the New York State Supplement (NYS Supplement) to the NMUTCD provides guidance for the installation of "Intersection Warning" signs as mitigation for sight distance. A review of Figure 2C-101 indicates that the available sight distance looking left and right from the east and west legs of henry Street is critically limited due to on-street parking. At a minimum, an "Intersection Warning" signs are recommended on all approaches if the two-way stop control condition were implemented. It is noted that the available sight distance could be mitigated if on-street parking was restricted near the intersection; however, it is anticipated that the City of Kingston would not consider limiting on-street parking in the vicinity of the intersection.

5.0 All-Way Stop Control – NMUTCD and NYS Supplement Guidance

The use of all-way stop control can be useful as a safety measure if certain traffic conditions exist such as limited visibility and the streets with similar characteristics among others. Safety concerns associated with all-way stops include pedestrians, bicyclists, and all road users expecting other road users to stop. Installation of all-way stop control is determined by guidance from the NMUTCD and the NYS Supplement and as summarized in the *Traffic Signal Removal Assessment* memo. Table 9 summarizes which of the criteria are met for the Clinton Avenue/Henry Street intersection.

Clinton Avenue/		Conditio	on Met?	
Henry Street	Α	В	С	D
Section 2B.07.04	NA	No	No	No
Section 2B.07.05	NA	No	Yes	Yes

Table	9 –	All-	Way	Stop	Criteria
-------	-----	------	-----	------	----------

Table 9 indicates that guidelines provided under Section 2B.07.05 are met for the provision of an all-way stop control condition at the Clinton Avenue/Henry Street intersection.

6.0 Conclusion/Recommendation

The intersection assessment indicates that the existing traffic signal at the Clinton Avenue/Henry Street intersection should be removed and replaced with all-way stop control due to limited sight lines. This intersection will provide adequate operations for vehicles, pedestrians, and bicycles after the traffic control change.

Based on a review of the NMUTCD and NYS Supplement guidelines, it is recommended that stop signs (R1-1) with supplemental "All-Way" plaques (R1-3P) be installed on the eastbound and westbound Henry Street approaches and the northbound and southbound Clinton Avenue approaches. It is also recommended that additional stop signs be placed on the left-hand side of the streets as well due to the width of the intersection and available on-street parking. Stop-ahead (W3-1) with flags should be placed on each approach. The flags and stop-ahead signs should be removed no later than six months after the regulation has been in effect. All signs should be installed in accordance with the NMUTCD. On-street parking should be set back for sight distance (20-foot minimum/50-foot desirable) per AASHTO Guide for Planning, Design, and Operation of Pedestrian Facilities, 2004.

Attachment I Turning Movement Counts

Traffic Signal Removal Assessment City of Kingston, New York

Kingston, NY Washington Ave & Linderman Ave Wednesday, May 8, 2019 Location: 41,927234, -74.017933

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Linderman Ave Site Code: Start Date: 05/08/2019 Page No: 1

Turning Movement Data

			Lind	erman	Ave					Lind	erman	Ave					Was	hingtor	n Ave					Wash	inglor	n Ave			
			Ea	asibour	nd					W	estbou	nd					No	orthbou	ınd					So	uthbou	ind			
Start Time	Left	Thru	Righ	Righ	U-	Ped	App. Tota	Left	Thru	Righ	Righ 1 on	_U-	Ped	App. Tota	Left	Thru	Righ	Righ Ion	U-	Ped	App. Tota	Left	Thru	Righ	Righ t on	U-	Ped	App. Tota	Int. Tota
	Lon	ma	I	Red	Turn	s	1	Lon		1	Red	lum	s	1			t	Red	Turn	s	1	-		1	Red	Tum	5	1	
7:00 AM	3	2	1	2	0	1	8	0	6	0	1	0	0	7	7	29	1	0	0	C	37	1	33	1	0	0	0	35	87
7:15 AM	4	5	4	0	0	1	13	0	9	2	2	0	3	13	3	56	0	0	0	0	59	5	43	1	0	0	0	49	134
7:30 AM	1	8	4	3	0	0	16	1	5	6	2	0	0	14	1	59	0	0	0	0	60	2	56	3	0	0	0	61	151
7:45 AM	5	5	1	0	0	C	11	0	8	10	2	0	0	20	6	61	0	0	0	0	67	1	78	3	0	0	0	88	186
Hourly Total	13	20	10	5	0	2	48	1	28	18	7	0	3	54	1/	205	1	0	0	0	223	15	210	8	0	0	0	233	000
8 00 AM	4	5	3	2	0	0	14	0	7	9	3	0	1	19	2	44	0	0	0	-	40	3	57	4	-	0	0	77	144
8:15 AM	3	5	0	0	0	0	8	2	7	3	2	0	3	14	2	40	0	0	0	0	50	4	45	4	0	0	1	48	144
8 30 AM	3	5	1	0	0	0	9	2	6	8	2	0	2	18	2	67	3	0	0	0	69	2	40	2	0	0	0	64	161
8:45 AM	1	6	1	2	0	2	10	c	30	07	2	0	7	70	12	215	6	0	0	1	233	11	231	11	1	0	1	254	598
	11	21	2	4	0	2	41	1	29	7	1	0	,	12	2	51	1	0	0	2	54	4	54	1	2	0	0	61	135
9:00 AM		4	2	0	0	2	10	0	7	7	2	0	0	12	2	33	0	0	0	2	35	2	41	3	0	0	0	46	103
9:15 AM	5	2	3	0	0	2	10	0	8	8	1	0	1	17	1	49	0	0	0	0	50	6	43	2	0	0	3	51	128
9.30 AN	3	1	1	1	0	0	7	1	3	4	1	0	0	9	1	49	0	0	0	0	50	8	35	1	1	0	0	45	111
Hourie Total	12	14	7	2	0	3	35	2	21	22	5	0	1	50	6	182	1	0	0	4	189	20	173	7	3	0	3	203	477
10:00 AM	2	4	1	0	0	0	7	1	4	6	5	0	0	16	2	33	0	0	0	0	35	3	44	2	0	0	0	49	107
10:15 AM	1	3	1	0	0	0	5	1	7	3	1	0	0	12	5	30	0	0	0	0	35	2	36	3	1	0	0	42	94
10.30 AM	1	3	0	0	0	1	4	2	9	7	3	0	0	21	2	44	0	0	0	0	46	5	33	0	2	0	0	40	111
10:45 AM	5	2	1	0	0	0	8	1	4	2	0	0	2	7	4	39	2	0	0	0	45	6	43	2	0	0	0	51	111
Hourly Total	9	12	3	0	0	1	24	5	24	18	9	0	2	56	13	146	2	0	0	0	161	16	156	7	3	0	0	182	423
11:00 AM	2	4	0	0	0	0	6	0	з	5	0	0	2	8	3	44	0	0	0	0	47	2	31	0	2	0	0	35	96
11:15 AM	1	5	2	1	0	2	9	4	3	8	0	0	1	15	2	42	0	0	0	1	44	2	36	2	0	0	1	40	108
11:30 AM	4	5	2	3	0	1	14	1	з	3	1	0	0	8	1	40	1	1	0	2	43	2	47	2	0	0	1	51	116
11:45 AM	5	4	0	0	0	1	9	1	7	4	1	0	0	13	6	33	0	0	0	0	39	2	47	1	0	0	0	50	111
Hourly Total	12	18	4	4	0	4	38	6	16	20	2	0	З	44	12	159	1	1	0	3	173	8	161	5	2	0	2	176	431
12:00 PM	1	2	0	0	0	1	3	3	7	5	0	0	0	15	7	40	0	1	0	0	48	1	51	2	1	0	0	55	121
12:15 PM	1	2	4	0	0	0	7	1	7	5	1	0	1	14	-3	39	0	0	0	0	42	4	49	2	0	0	0	55	118
12.30 PM	1	5	2	2	0	0	10	0	5	2	2	0	1	9	5	65	0	0	0	0	70	8	47	1	0	0	0	56	145
12:45 PM	2	4	1	1	0	1	8	1	8	3	2	0	1	14	7	41	1	0	0	0	49	0	66	2	0	0	0	68	139
Houriy Total	5	13	7	3	0	2	28	5	27	15	5	0	3	52	22	185	1	1	0	0	209	13	213	7	1	0	0	234	523
1:00 PM	0	4	1	0	0	1	5	0	в	3	2	0	1	13	1	48	0	0	0	2	49	2	53	2	2	0	' 0	59	126
1:15 PM	2	6	0	0	0	2	8	1	6	2	0	0	1	9	7	38	1	0	0	0	46	2	47	Э	0	0	1	52	115
1:30 PM	2	5	1	2	0	3	10	2	6	4	1	0	0	13	2	40	0	0	0	2	42	2	50	5	0	0	0	57	122
1:45 PM	1	10	1	0	0	0	12	3	6	7	3	0	0	19	3	48	0	0	0	0	51	3	58	1	0	0	1	62	144
Hourly Total	5	25	3	2	0	6	35	6	26	16	6	0	2	54	13	174	1	0	0	4	188	g	208	11	2	0	2	230	507
2:00 PM	6	2	2	0	0	0	10	2	9	7	2	0	4	20	4	55	2	2	0	0	63	4	51	1	1	0	1	57	150
2:15 PM	4	5	0	0	0	1	9	1	9	11	6	0	3	2/	9	57	0	1	0	2	5/	4	46	3	0	0	0	71	190
2:30 PM	2	7	1	0	0	0	10	1	1/	4	2	0	2	24	10	66	0	0	0	0	76	10	76	2	3	0		01	199
2 45 PM	4	3	1	1	0	1	9	2	12	6	4	0	2	24	/	004	0	1	0	2	04	12	227	2	5	0	2	272	675
Houriy Total	16	1/	4	1	0	2	38	0	47	20	14	0	2	95	12	79	2		0		03	6	68	1	0	0	4	75	198
3:00 PM	3	0	4	0	0	1	-	4	12	7	2	0	2	23	7	60	1	0	0	3	77	9	60	6	0	0	5	75	178
3:15 PW	-	3		0	0		0	4	10	1	2	0	-	19	8	64	0	0	0	0	72	3	77	1	0	0	0	81	181
3,30 PN	1	4	2	1	0	1	10	2	13	10	4	0	2	27	7	65	1	1	0	1	74	6	64	4	1	0	2	75	186
Hourly Total	10	13	7	1	0	5	31	7	43	30	10	0	6	90	34	276	5	1	0	4	316	24	269	12	1	0	11	306	743
4:00 PM	1	4	1	0	0	2	6	1	15	7	3	0	0	26	8	70	1	0	0	2	79	8	54	1	1	0	0	64	175
4 15 PM	2	7	2	0	0	D	11	3	18	6	4	0	0	31	5	64	0	0	0	0	69	5	50	4	0	0	1	59	170
4:30 PM	2	7	1	1	0	2	11	2	14	8	2	0	0	26	3	65	1	0	0	1	69	2	74	3	0	0	1	79	185
4:45 PM	3	2	2	0	0	2	7	2	10	3	2	0	0	17	6	79	2	0	0	0	87	1	75	3	0	0	0	79	190
Hourly Total	8	20	6	1	0	6	35	8	57	24	11	0	0	100	22	278	4	0	0	3	304	16	253	11	1	0	2	281	720
5:00 PM	6	7	0	0	0	0	13	2	16	3	2	0	0	23	8	64	2	0	D	1	74	3	77	5	1	0	0	86	196
5:15 PM	6	5	1	0	0	0	12	3	11	7	4	0	1	25	3	57	0	1	0	1	61	9	71	3	1	0	0	84	182
5:30 PM	3	4	1	0	0	0	8	2	7	6	3	0	2	18	5	51	0	0	0	0	56	5	75	5	0	0	0	85	167
5 45 PM	1	5	4	1	0	0	11	. 1	13	8	0	0	3	22	10	40	0	0	0	0	50	3	52	3	0	0	0	58	141
Hourly Total	16	21	6	1	0	0	44	8	47	24	9	0	6	88	26	212	2	1	0	2	241	20	275	16	2	0	0	313	686
6:00 PM	2	5	1	2	0	1	10	1	11	5	1	0	1	18	9	44	0	0	0	1	53	1	46	4	2	0	1	53	134
6:15 PM	2	5	4	0	0	0	11	0	15	1	1	0	0	17	5	25	2	0	0	1	32	4	38	3	0	0	1	45	105
6:30 PM	3	З	1	0	0	1	7	3	10	2	8	0	2	23	8	27	1	0	0	1	36	5	46	2	2	0	0	55	121
6:45 PM	2	4	1	1	0	0	8	1	16	5	1	0	0	23	5	31	0	1	0	1	37	5	37	1	0	0	0	43	111
Hourly Total	9	17	7	3	0	2	36	5	52	13	11	0	3	81	27	127	3	1	0	4	158	15	167	10	4	0	2	196	471

Grand Total	126	211	69	27	0	35	433	64	417	255	98	0	47	834	234	2393	29	9	0	27	2865	189	2553	113	25	0	26	2880	6812
Approach %	29 1	48.7	15.9	6.2	0.0		.+	7.7	50.0	30.6	11.8	0.0	+	•	8.8	89.8	1.1	0.3	0,0			6.6	88.6	3.9	0.9	0.0			•
Total %	1.8	3.1	1.0	0.4	0.0	4	6.4	0.9	6.1	3.7	1.4	0.0		12.2	3.4	35,1	0.4	0.1	0.0	- 14	39.1	2.8	37.5	1.7	0,4	0.0		42.3	
Lights	118	206	64	27	0	4	415	63	404	245	96	0	+	808	228	2239	28	9	0	- 4	2504	179	2397	110	24	0	-54	2710	6437
% Lights	93.7	97.6	92.8	100 0	-	90	95,8	98.4	96.9	96,1	98,0			96.9	97.4	93.6	96.6	100 0		-	94.0	94.7	93_9	97.3	96 0			94.1	94,5
Buses	2	5	3	0	0		10	0	9	9	0	0		18	5	67	1	0	0	14	73	5	73	1	0	0		79	180
% Buses	1.6	2.4	4.3	0.0		4	2.3	0.0	2.2	3.5	0.0		_#-	2.2	2.1	2,8	3.4	0.0			2.7	2,6	2.9	0,9	0_0		14	2.7	2.6
Trucks	6	0	2	0	0		в	1	4	1	2	0	14.1	8	1	87	0	0	0		88	5	83	2	1	0	-	91	195
% Trucks	4.8	0.0	2.9	0.0			1.8	1.6	1.0	0.4	2.0			1.0	0.4	3.6	0,0	0.0			3.3	2.6	3.3	1.8	4.0			3.2	2.9
Bicycles on Crosswalk	4	-	•			2			. 4 .				6				•		•	1		•	•	•	÷	•	0		*
% Bicycles on Crosswalk		+	e	*	•	57	•			-	*		12 8	•	-	•	•			37						•	0 0		
Pedestrian s						33							41					•	•	26	•			•			26	-	•
% Pedesinan				÷		94 3			4	*		-	87 2	•						96 3							100 D		

Kingston, NY Washington Ave & Linderman Ave Wednesday, May 8, 2019 Location: 41,927234, -74,017933

Coatesville, Pennsylvania, United States 19320 610-486-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Linderman Ave Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (7:30 AM)

			Lind Ei	erman astbou	ı Ave nd				-	Lind W	lerman esibou	Ave Ind					Was No	hingto orthbou	n Ave und					Wasi So	ningtor uthbou	n Ave Ind			
Start Time	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota I	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tola I	Left	Thru	Righ t	Righ 1 on Red	U- Tum	Ped s	App. Tota	Int, Tota
7:30 AM	1	8	4	з	0	0	16	1	5	6	2	0	0	14	1	59	0	0	0	0	60	2	56	3	0	0	0	61	151
7:45 AM	5	5	1	0	0	0	11	0	8	10	2	0	0	20	6	61	0	0	0	0	67	7	78	3	0	0	0	88	186
8:00 AM	4	5	3	2	0	0	14	0	7	9	3	0	1	19	2	44	0	0	0	1	46	3	57	4	1	0	0	65	144
8:15 AM	3	5	0	0	0	0	8	2	7	3	2	0	3	14	2	48	0	0	0	0	50	4	69	4	0	0	0	77	149
Total	13	23	8	5	0	0	49	3	27	28	9	0	4	67	11	212	0	0	0	1	223	16	260	14	1	0	0	291	630
Approach %	26.5	46.9	16.3	10.2	0.0	-	-	4.5	40 3	41.8	13_4	0.0		•	4,9	95.1	0.0	0.0	00			5.5	89.3	4.8	0.3	0.0	Ϋ́.		-
Total %	2.1	3.7	1.3	0.8	0.0	1.0	7.8	0.5	4.3	4.4	1.4	0.0		10.6	1.7	33,7	0.0	0.0	0.0		35.4	2.5	41.3	2.2	0.2	0.0		46.2	
PHF	0.65 0	0 719	0 500	0 417	0 000	•	0 766	0 375	0 844	0 700	0 750	0 000		0 838	0 458	0 669	0 000	0 000	0 000	14	0 832	0 571	0 833	0 875	0 250	0 000	4	0 827	0 847
Lights	13	21	8	5	0	140	47	3	27	24	9	0	1.01	63	11	187	0	0	0		198	15	239	14	1	0	4	269	577
% Lights	100. 0	91_3	100 0	100 0			95.9	100 0	100 0	85.7	100 0	•	-	94.0	100 0	88.2	-	-	4	-10	88.8	93.8	91.9	100 0	100 0		20	92.4	91.6
Buses	0	2	0	0	0	14	2	0	0	4	0	0		4	0	17	0	0	0	4	17	1	12	0	0	0	÷	13	36
% Buses	0.0	8.7	0.0	0.0			4.1	0.0	0.0	14.3	0.0			6.0	0.0	8.0	-	-		-	7.6	6.3	4.6	0.0	0.0		4	4.5	5,7
Trucks	0	0	0	0	0	-	0	0	0	0	0	0	1	0	0	8	0	0	0		8	0	9	0	0	0	-	9	17
% Trucks	0.0	0.0	0.0	0.0			0.0	0.0	0,0	0.0	0.0		100	0.0	0.0	3.8	-				3.6	0.0	3.5	0.0	0.0			3.1	2.7
Bicycles on Crosswalk		1.40	÷			Ð	÷		٠			(*)	0			-	-	•:		D		•	•	-		•	0		•
% Bicycles on Crosswalk	14	1.			-	4		4	*	÷	÷	14	0 0		14	-		1	•	00	-		•				÷.		•
Pedestrian s						0				-		-	4	-	-	-		•	•	1	•	•	•	1.			0	•	-
% Pedestrian s		-				-	4		÷	6	-	•	100 C	-	-		-	10		100.0			*				1	•	•

www.TSTData.co 184 Baker Rd

Kingston, NY Washington Ave & Linderman Ave Wednesday, May 8, 2019 Location: 41,927234, -74,017933

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Linderman Ave Site Code: Start Date: 05/08/2019 Page No: 5

Turning Movement Peak Hour Data Plot (7:30 AM)

www_T3 184

Kingston, NY Washington Ave & Linderman Ave Wednesday, May 8, 2019 Location: 41.927234, -74,017933

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Linderman Ave Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (4:30 PM)

			Lind E:	erman astbou	Ave nd					Lind W	erman estbou	Ave nd					Was No	hingto hingtou	n Ave und					Wasl So	ningtor uthbou	n Ave Ind			
Start Time	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App. Tota 1	Lefl	Thru	Righ l	Righ t on Red	U- Turn	Ped s	App Tota	Lefl	Thru	Righ t	Righ Lon Red	U- Turn	Ped s	App. Tota	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App Tola	Ini Tota
4.30 PM	2	7	1	1	0	2	11	2	14	8	2	0	0	26	3	65	1	0	0	1	69	2	74	3	0	0	1	79	185
4 45 PM	3	2	2	0	0	2	7	2	10	3	2	0	0	17	6	79	2	0	0	0	87	1	75	3	0	0	0	79	190
5:00 PM	6	7	0	0	0	0	13	2	16	3	2	0	0	23	8	64	2	0	0	1	74	3	77	5	1	0	0	86	196
5:15 PM	6	5	1	0	0	0	12	3	11	7	4	0	1	25	3	57	0	1	0	1	61	9	71	3	1	0	0	84	182
Total	17	21	4	1	0	4	43	9	51	21	10	0	1	91	20	265	5	1	0	3	291	15	297	14	2	0	1	328	753
Approach %	39.5	48,8	9,3	2.3	0,0		•	9,9	56 0	23.1	11.0	0,0	i.		6,9	91,1	1.7	0,3	0,0	-		4.6	90 5	4.3	0.6	0_0	-	-	
Total %	2.3	2.8	0.5	0.1	0.0	100	57	1.2	6.8	2.8	1,3	0.0	-	12.1	2.7	35.2	0.7	0,1	0,0		38.6	2.0	39.4	1.9	0.3	0_0		43.6	-
PHF	0.70 8	D 750	0 500	0 250	0 000	2	0 827	0 750	0 797	0 656	0 625	0 000		0 875	0 625	0 839	0 625	0 250	0 000	- 4	0 836	0 417	0 964	0 700	0 500	0 000	÷	0 953	0 960
Lights	17	21	4	1	0		43	9	50	21	10	0	1.9	90	20	254	5	1	0		280	15	293	14	2	0		324	737
% Lights	100. 0	100 0	100 0	100 0	-	11	100 0	100 D	98.0	100 0	100 0		-	98.9	100 0	95.8	100 0	100 0	•		96.2	100 0	98.7	100 0	100 0		-	98.8	97.9
Buses	0	0	0	0	0	ā.	0	0	0	0	0	0		0	0	3	0	0	0	191	3	0	4	0	0	0		4	7
% Buses	0.0	0.0	0,0	0.0			0.0	0.0	0.0	0.0	0.0		- 41-	0,0	0.0	1.1	0.0	0.0	-		1.0	0.0	1.3	0.0	0.0			1.2	0.9
Trucks	0	0	0	0	0		0	0	1	0	0	0	-00	1	0	8	0	0	0		8	0	0	0	0	0	-	0	9
% Trucks	0.0	0.0	0.0	0.0		50	0.0	0.0	2.0	0.0	0.0		1	1.1	0.0	3.0	0.0	0.0		- 1	2.7	0.0	0.0	0.0	0.0		- 1	0.0	1.2
Bicycles on Crosswalk			-			0		• :					0			-		•		0				•		•	0		-
% Bicycles on Crosswalk		÷			•	00		-	•			-	0 0	•		-			•	0 0					à.		0.0		
Pedestrian 5						4				•	•	-	1	-	-		-		-	3	•	•			*		-1	•	-
% Pedestrian 5			•		-	100 0	-	*		~	•	7	100.0	-	-	-	-	-		100-2		•	•	•	•		100.0	•	

 \mathbf{O}

184 Baker Rd

Kingston, NY Washington Ave & Linderman Ave Wednesday, May 8, 2019 Location: 41.927234, -74.017933

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Linderman Ave Site Code: Start Date: 05/08/2019 Page No: 9

Kingston, NY Washington Ave & Pearl St Wednesday, May 8, 2019 Location: 41,930053, -74,020973

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Pearl St Site Code: Start Date: 05/08/2019 Page No: 1

Turning Movement Data

			F	Pearl S	a					ſ	Pearl S	it –					Wasi	hinglor	n Ave			Washington Ave									
a			Ea	slbou	nd					W	eslbou	nd			Northbound								Southbound								
Slart Time	Left	Thru	Righ	Righ t on	_U-	Ped	App. Tota	Left	Thru	Righ	Righ t on	U-	Ped	App. Tota	Left	Thru	Righ	Righ t on	U-	Ped	App. Tota	Left	Thru	Righ	Righ Lon	U- Turn	Ped	App. Tota	Tota		
	Lun		t	Red	Tum	S	1			1	Red	Turn	s	1			t	Red	Tum	5	1	-			Red	10111	3	1			
7:00 AM	1	11	2	0	0	0	14	0	3	3	1	0	1	7	0	36	1	0	0	0	37	7	33	1	0	0	0	41	99		
7:15 AM	5	18	8	0	0	0	31	0	3	6	0	0	0	9	1	62	5	0	0	0	68	10	46	1	0	0	0	57	165		
7:30 AM	7	20	9	0	0	0	36	1	3	10	0	0	2	14	1	74	2	0	0	0	77	12	53	4	0	0	2	69	196		
7:45 AM	6	28	14	1	0	1	49	2	6	5	0	0	0	13	1	72	8	0	0	0	81	13	72	2	0	0	0	87	230		
Hourly Total	19	77	33	1	0	1	130	3	15	24	1	0	3	43	3	244	16	0	0	0	263	42	204	8	0	0	2	254	690		
8 00 AM	10	23	6	1	0	0	40	0	15	6	2	0	1	23	3	58	4	0	0	0	65	14	62	6	0	0	1	02	107		
8:15 AM	1	21	10	1	0	0	33	0	9	5	0	0	0	14	3	4/	2	0	0	0	52	20	40	1	1	0	0	67	202		
8 30 AM	3	18	6	1	0	0	28	2	11	13	0	0	1	26	2	70	10	0	0	0	74	10	49	- 2	0	0	1	86	203		
8.45 AM	4	44	6	0	0	1	54	1	6	5	0	0	0	77	1	00	1	0	0	0	272	20	227	10	1	0	2	323	828		
Houriy Total	18	106	28	3	0	1	100	3	43	10	4	0	1	22	1	56	3	1	0	0	61	19	57	1	0	0	2	77	176		
9:00 AM	1	13	2	0	0	0	10	0	9	12	0	0	2	22	0	41	2	0	0	0	44	15	40	2	0	0	0	57	142		
9:15 AM	3	12	2	0	0	0	19	1	8	5	3	0	2	17	3	62	2	1	0	2	68	12	64	0	0	0	1	76	177		
9:30 AM	4	10	3	0	0	0	23	0	11	17	0	0	1	28	2	59	4	0	0	0	65	10	43	4	0	0	1	57	173		
5.40 AlVI	18	46	10	0	0	1	74	2	37	46	4	0	6	89	6	218	12	2	0	2	238	56	204	7	0	0	4	267	668		
10:00 AM	5	20	3	0	0	0	28	0	12	10	2	0	1	24	1	48	2	0	0	1	51	11	49	3	0	0	0	63	166		
10:15 AM	2	8	1	0	0	2	11	5	7	9	4	0	0	25	0	37	4	0	0	2	41	12	45	2	0	0	1	59	136		
10:30 AM	6	21	4	0	0	2	31	2	16	11	0	0	1	29	0	56	1	0	0	2	57	17	39	2	0	0	0	58	175		
10.45 AM	3	14	2	0	0	0	19	2	7	16	0	0	2	25	0	46	1	0	0	0	47	10	57	2	0	0	1	69	160		
Hourly Total	16	63	10	0	0	4	89	9	42	46	6	0	4	103	1	187	8	0	0	5	196	50	190	9	0	0	2	249	637		
11:00 AM	2	11	1	0	0	0	14	4	12	18	0	0	4	34	2	51	4	0	0	0	57	12	31	1	0	0	1	44	149		
11:15 AM	2	6	0	0	0	2	8	3	18	15	0	0	1	36	0	48	7	0	0	0	55	19	43	2	0	0	3	64	163		
11:30 AM	0	12	3	0	0	0	15	6	10	20	0	0	1	36	3	48	1	0	0	5	52	10	43	2	0	0	1	55	158		
11:45 AM	2	9	3	0	0	1	14	0	20	20	0	0	0	40	2	42	6	0	0	0	50	11	51	3	0	0	0	65	169		
Hourly Total	6	38	7	0	0	3	51	13	60	73	0	0	6	146	7	189	18	0	0	3	214	52	168	8	0	0	5	228	639		
12:00 PM	3	9	2	0	0	0	14	4	19	15	0	o	0	38	3	36	5	0	0	0	44	11	53	2	0	0	4	66	162		
12 15 PM	2	16	З	3	0	0	24	2	14	12	0	0	2	28	-5	51	0	0	0	1	56	7	48	5	2	0	0	62	170		
12 30 PM	0	10	0	3	0	0	13	2	15	10	1	0	0	28	4	74	2	1	0	0	81	13	59	4	0	0	1	76	198		
12 45 PM	4	16	3	0	0	0	23	0	14	20	0	0	2	34	3	48	4	0	0	0	55	13	65	2	0	0	0	80	192		
Hourly Total	9	51	8	6	0	0	74	8	62	57	1	0	4	128	15	209	11	1	0	1	236	44	225	13	2	0	5	284	722		
1:00 PM	4	13	7	1	0	1	25	3	20	13	0	0	2	36	2	52	1	1	0	4	56	14	58	0	0	0	3	72	189		
1:15 PM	1	21	1	0	0	2	23	1	7	10	2	0	3	20	1	40	5	0	0	3	46	10	52	0	0	0	4	62	151		
1:30 PM	3	17	2	0	0	2	22	5	10	11	1	0	0	27	0	48	2	0	0	1	50	9	56	4	0	0	1	69	168		
1:45 PM	0	17	6	0	0	0	23	3	10	9	1	0	2	23	3	55	2	0	0	1	60	8	62	5	0	0	1	75	181		
Hourly Total	8	68	16	1	0	5	93	12	47	43	4	0	7	106	6	195	10	1	0	9	212	41	228	9	0	0	9	278	689		
2:00 PM	2	11	5	0	0	1	18	1	13	14	0	0	1	28	1	71	3	0	0	1	75	12	55	3	0	0	1	70	191		
2:15 PM	0	13	3	0	0	0	16	2	16	17	1	0	0	36	2	69	3	0	0	U	/4	18	55	2	0	0	1	77	201		
2:30 PM	3	13	10	0	0	0	26	4	9	15	0	0	4	28	4	70	3	0	0	r O	77	18	50	3	0	0	0	101	200		
2:45 PM	2	18	9	0	0	0	29	1	16	19	0	0	3	36	1	70	6	0	0	0	202	12	250	12	0	0	2	322	843		
Hourly Total	7	55	21	0	0	1	89	8	54	65	1	0	0	42	0	200	10	0	0	2	00	11	63	2	0	0	0	76	244		
3:00 PM	3	13	11	0	0	1	21	1	20	10	3	0	3	42	7	71	5	0	0	0	83	11	89	7	0	0	0	107	241		
3:15 PM	4	13	4	0	0	1	21	2	15	15	2	0	1	35	3	75	4	0	n	0	82	13	70	4	0	0	1	87	230		
3.30 PM		17	5	0	0	6	20	2	14	14	2	0	3	33	2	79	2	0	0	0	83	13	74	1	0	0	1	86	230		
Hourby Total	11	63	26	0	0	9	100	9	62	60	9	0	11	140	16	310	21	0	0	0	347	48	296	14	0	0	2	358	945		
A OO PM	2	17	3	0	0	0	22	3	20	14	0	0	1	37	2	73	2	0	0	0	77	14	60	1	0	0	0	75	211		
4.15 PM	3	16	2	2	0	0	23	5	23	13	0	0	0	41	1	85	3	0	0	0	89	6	55	2	1	0	0	64	217		
4.30 PM	1	13	7	0	0	1	21	6	16	9	1	0	0	32	1	77	3	0	0	0	81	14	77	7	0	0	0	98	232		
4:45 PM	0	18	5	1	0	0	24	5	23	17	0	0	0	45	3	90	3	0	0	2	96	7	69	2	0	0	0	78	243		
Hourly Total	6	64	17	3	0	1	90	19	82	53	1	0	1	155	7	325	11	0	0	2	343	41	261	12	1	0	0	315	903		
5 00 PM	3	15	4	0	0	0	22	6	35	23	2	0	2	66	3	78	4	0	0	1	85	13	95	3	0	0	3	111	284		
5:15 PM	1	14	4	1	0	0	20	4	16	13	0	0	0	33	8	71	5	0	0	1	84	14	80	0	0	0	0	94	231		
5:30 PM	6	17	3	0	0	1	26	5	18	14	0	0	0	37	1	58	3	0	0	2	62	22	73	6	0	0	1	101	226		
5:45 PM	1	15	10	0	0	1	26	0	19	9	0	0	0	28	2	50	2	0	0	2	54	17	57	4	2	0	3	80	188		
Hourly Total	11	61	21	1	0	2	94	15	88	59	2	0	2	164	14	257	14	0	0	6	285	66	305	13	2	0	7	386	929		
6:00 PM	0	12	2	1	0	0	15	7	20	10	2	0	1	39	2	47	2	0	0	2	51	8	46	3	0	0	2	57	162		
6:15 PM	4	21	1	1	0	2	27	1	10	10	1	0	0	22	3	27	1	0	0	2	31	7	54	0	0	0	0	61	141		
6:30 PM	4	10	3	1	0	1	18	8	24	10	2	0	1	44	2	40	0	0	0	3	42	7	46	1	0	0	0	54	158		
6:45 PM	1	7	4	0	0	0	12	1	18	5	0	0	0	24	0	42	4	0	0	1	46	7	44	1	0	0	0	52	134		
Hourly Total	9	50	10	3	0	3	72	17	72	35	5	0	2	129	7	156	7	0	0	8	170	29	190	5	0	0	2	224	595		

Grand Total	138	742	213	18	0	31	1111	118	664	590	36	0	56	1408	99	2811	166	4	0	38	3080	604	2758	121	6	0	42	3489	908
Approach %	12.4	66.8	19.2	1.6	0.0	- 24		8.4	47.2	41.9	2.6	0.0	τ.		3.2	91.3	5.4	0.1	0.0			17,3	79.0	3.5	0.2	0.0	×	*	
Total %	1.5	8.2	2.3	0.2	0.0	.4	12.2	1.3	7.3	6.5	0.4	0.0		15.5	1.1	30.9	1.8	0.0	0,0		33.9	6.6	30,3	1.3	0.1	0.0	1	38.4	
Lights	131	726	209	17	0	4	1083	116	647	579	36	0	9	1378	95	2858	145	4	0	-4	2902	597	2585	112	5	0		3299	8663
% Lights	94.9	97.8	98.1	94.4		.+	97.5	98.3	97.4	98.1	100 0			97.9	96.0	94.6	87.3	100 0		-	94.2	98.6	93.7	92.6	83.3			94.6	95.3
Buses	5	7	2	0	0	-	14	0	5	5	0	0	- 54	10	1	58	19	0	0		78	3	79	4	0	0	-	86	186
% Buses	3.6	0.9	0.9	0.0		4	1.3	0.0	8,0	0.8	0.0			07	1.0	2.1	11.4	0.0			2.5	0.5	2.9	3.3	0.0	34		2.5	2.1
Trucks	2	9	2	1	0		14	2	12	6	0	0	.+	20	3	95	2	0	0	18	100	4	94	5	1	0		104	238
% Trucks	1.4	12	0.9	5.6		- 2	1.3	1.7	1.8	1.0	0.0		4	1.4	3.0	3.4	1.2	0.0			3.2	0.7	3.4	4.1	16.7			3.0	2.6
Bicycles on Crosswalk	4	-				1				4	-4-		2	.4	•	•				0	-				•		3		
% Bicycles on Crosswalk						3 2		-	•	÷.		•	36		.4.	4	4	4	4	00		a.			•		71		
Pedestrian \$						30					4	1	54		*	•		÷.	+	38			•		•		39		
% Pedestnan		•	•			96 8		-		•	4		96 4	-		÷.		4		100.0	4	4	4	+	.4		92 9	•	

Kingston, NY Washington Ave & Pearl St Wednesday, May 8, 2019 Location: 41.930053, -74,020973

Coatesville, Pennsylvania, United States 19320 610-486-1469 Serving Transportation Professionals Since 1995

Count Name: Washington Ave & Pearl St Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (7:45 AM)

			F	Pearl S	il nd					F	Pearl S	St					Was	hingtor	n Ave			Washington Ave								
Start Time	Left	Thru	Righ t	Righ Ion Red	U- Turn	Ped s	App. Tota I	Left	Thru	Righ	Righ t on Red	U- Turn	Ped s	App. Tota	Left	Thru	Righ	Righ Ion Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ I on Red	U- Tum	Ped s	App. Tota I	Int Tota	
7:45 AM	6	28	14	1	0	1	49	2	6	5	0	0	0	13	1	72	8	0	0	0	B1	13	72	2	0	0	0	87	230	
8:00 AM	10	23	6	1	0	0	40	0	15	6	2	0	1	23	3	58	4	0	0	0	65	14	62	6	0	0	0	82	210	
8:15 AM	1	21	10	1	0	C	33	0	9	5	0	0	0	14	3	47	2	0	0	0	52	20	66	1	1	0	1	88	187	
8:30 AM	3	18	6	1	0	0	28	2	11	13	0	0	1	26	2	70	10	0	0	0	82	16	49	2	0	0	0	67	203	
Total	20	90	36	4	0	1	150	4	41	29	2	0	2	76	9	247	24	0	0	0	280	63	249	11	1	0	1	324	830	
Approach	13.3	60.0	24 0	2.7	0,0	-	+	5.3	53.9	38.2	2,6	0,0	+		3.2	88,2	8,6	0.0	0,0	1		19.4	76 9	3.4	0.3	0.0	-	-	-	
Total %	2.4	10.8	4.3	0.5	0.0	-1-	18.1	0,5	4.9	3,5	0.2	0_0	-	9.2	1.1	29.8	2,9	0_0	0.0		33 7	7.6	30.0	1.3	0.1	0.0		39.0	-	
PHF	0.50 0	0 804	0 643	1 000	0 000	-	0 765	0 500	0 663	0 558	0 250	0 000	~	0 731	0 750	0 858	0 600	0 000	0 000	×.	0 854	0 788	0 865	0 458	0 250	0 000	-	0 920	0 902	
Lights	19	89	36	3	0	-	147	4	36	28	2	0		70	9	228	16	0	0	-	253	63	229	10	0	0		302	772	
% Lights	95.0	98.9	100 0	75.0		-	98.0	100 0	87.8	96.6	100 0		÷	92,1	100 0	92.3	66 7	-			90.4	100 0	92.0	90.9	0_0			93,2	93.0	
Buses	1	1	0	0	0		2	0	3	0	0	0		3	0	11	7	0	0	-4	18	0	8	1	0	0	-	9	32	
% Buses	5.0	1.1	0.0	0.0	•		1.3	0.0	7.3	0.0	0.0			3,9	0.0	4.5	29.2		*	1	6.4	0.0	3.2	9,1	0.0		2	2.8	3.9	
Trucks	0	0	0	1	0	4	1	0	2	1	0	0	-	3	0	8	1	0	0	-	9	0	12	0	1	0	1.1	13	26	
% Trucks	0.0	0.0	0.0	25.0			0.7	0,0	4.9	3.4	0.0			3,9	0.0	3.2	4.2	-		-	3.2	0.0	4.8	0_0	100 0			4.0	3.1	
Bicycles on Crosswalk						a	*	•		•	•	•	0	•		*		÷	•	0			-	÷		.÷.	0		-	
% Bicycles on Crosswalk			×.			00				÷	•	-	00				*	-	•	4	•	+	•	÷	÷		0 0			
Pedestrian s		÷			-	1	-	-	-				2	-		*	-	*		0	•						1			
% Pedestrian \$				31		100 0	-			~	•		100 0				1	+	•	4	•		÷	•	•	•	100 0	÷.	•	

184 Baker Rd

Kingston, NY Washington Ave & Pearl St Wednesday, May 8, 2019 Location: 41.930053, -74,020973

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Pearl St Site Code: Start Date: 05/08/2019 Page No: 5

Kingston, NY Washington Ave & Pearl St Wednesday, May 8, 2019 Location: 41,930053, -74,020973

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Pearl St Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (4:30 PM)

			E	Pearl S aslbou	St nd				-	F	Pearl S eslbou	it nd					Was No	hingto orthbou	n Ave und					Wasl So	ningtor uthbou	n Ave und			
Start Time	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App. Tola	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota I	Left	Thru	Righ 1	Righ t on Red	U- Tum	Ped s	App Tota	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App Tota	Int Tota
4 30 PM	1	13	7	0	0	1	21	6	16	9	1	0	0	32	1	77	3	0	0	0	81	14	77	7	0	0	0	98	232
4 45 PM	0	18	5	1	0	0	24	5	23	17	0	0	0	45	3	90	3	0	0	2	96	7	69	2	0	0	0	78	243
5:00 PM	3	15	4	0	0	0	22	6	35	23	2	0	2	66	3	78	4	0	0	1	85	13	95	3	0	0	3	111	284
5:15 PM	1	14	4	1	0	0	20	4	16	13	0	0	0	33	8	71	5	0	0	1	84	14	80	0	0	0	۵	94	231
Total	5	60	20	2	0	1	87	21	90	62	3	0	2	176	15	316	15	0	0	4	346	48	321	12	0	0	3	381	990
Approach %	5.7	69.0	23.0	2.3	0.0	+	4	11.9	51.1	35.2	1.7	0.0		-	4.3	91.3	4.3	0.0	0.0	1	a.	12.6	84.3	3_1	0.0	0_0	-		•
Total %	0.5	6,1	2,0	0.2	0.0		8.8	2,1	9.1	6.3	0.3	0.0	-	17.8	1.5	31.9	1,5	0,0	0,0		34.9	4.8	32.4	1.2	0.0	0_0		38.5	-
PHF	0.41 7	0 833	0 714	0 500	0 000	-	0 906	0 875	0 643	0 674	0 375	0 000	1	0 667	0 469	0 878	0 750	0 000	0 000	140	0 901	0 857	0 845	0 429	0 000	0 000	4	0 858	0 871
Lights	5	59	20	2	0		86	21	88	62	3	0		174	15	305	15	0	0	1.	335	48	315	12	0	0	-	375	970
% Lights	100, 0	98.3	100 0	100 0		-	98 9	100 0	97.8	100 0	100 0	-		98.9	100 0	96.5	100 0	_	~	15	96.8	100 0	98.1	100 0			-	98,4	98.0
Buses	0	0	0	0	0	4	0	0	0	0	0	0	Ĵ.	0	0	3	0	0	0	2	3	0	4	0	0	0	10	4	7
% Buses	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0		. 4-	0.0	0.0	0,9	0.0				0.9	0.0	1.2	0_0			- A.	10	0.7
Trucks	0	1	0	0	0		1	0	2	0	0	0	- 21	2	0	8	0	0	0	-	8	0	2	0	0	0		2	13
% Trucks	0.0	1.7	0.0	0.0		4	1.1	0.0	2.2	0.0	0.0		-	1.1	0.0	2.5	0.0	-		91	2.3	0.0	0.6	0_0				0.5	1.3
Bicycles on Crosswalk	-	÷	•		-	0			+1	-			1							¢				•	a.		1	•	•
% Bicycles on Crosswalk	-	÷				0.0			-	*	*		50 0	•		-				00		•	•			•	233		•
Pedestrian 5	-	•	*		-	1		•				*	1	41			-	•		4		•		•	*	*	2	•	-
% Pedestrian				-	-	100 0	•	•		6			50 0	-	-	•	÷	•		100.0	•		•	•	•	•	66 7		

 \mathbf{O}

184 Baker Rd

Kingston, NY Washington Ave & Pearl St Wednesday, May 8, 2019 Location: 41,930053, -74.020973

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Pearl St Site Code: Start Date: 05/08/2019 Page No: 9

Turning Movement Peak Hour Data Plot (4:30 PM)

Kingston, NY Washington Ave & Main St Wednesday, May 8, 2019 Location: 41.931166, -74_022173

Start Time

7:00 AM

7.15 AM

7:30 AM

7:45 AM

Hourly Total

8:00 AM

8:15 AM

8 30 AM

8 45 AM

Hourly Total

9.00 AM

9:15 AM

9:30 AM

9:45 AM

Hourly Total

10:00 AM

10:15 AM

10:30 AM

10_45 AM

Hourly Total

11:00 AM

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Main St Site Code: Start Date: 05/08/2019 Page No: 1

> Int Tota

Turning Movement Data Washington Ave Washington Ave Main St Main St Southbound Northbound Eastbound Westbound Righ t on Red Righ t on Red Righ t on Red App Tota Righ Lon Red App. Tota U-Tum Ped s App Tota 11-Ped s App Tola Righ U-Ped s Righ U-Ped Righ Righ Left Left Thru Leíl Thru Thru left Thru Turn Turn Turn s Ó З **1** Ω . З з З з δ

11:15 AM	1	0	4	0	0	0	5	3	9	18	0	0	6	30	2	62	0	0	0	0	64	0	51	5	0	0	3	56	155
11:30 AM	6	0	7	2	0	0	15	4	4	11	1	0	1	20	4	63	0	0	0	2	67	0	46	0	0	0	1	46	148
11:45 AM	1	0	2	1	0	1	4	2	7	14	4	0	2	27	1	63	0	0	0	1	64	0	58	3	0	0	1	61	156
Hourly Total	10	0	16	4	0	3	30	10	30	60	5	0	17	105	9	252	0	0	0	7	261	0	193	11	0	0	10	204	600
12:00 PM	4	0	6	1	0	D	11	6	13	10	3	0	1	32	3	51	0	0	0	1	54	0	54	0	0	0	1	54	151
12:15 PM	2	0	4	0	0	1	6	4	6	19	3	0	2	32	2	64	0	0	0	5	66	0	53	2	0	0	3	55	159
12:30 PM	3	0	6	2	0	0	11	6	11	13	2	0	0	32	1	80	0	0	0	0	81	0	59	3	0	0	7	62	186
12:45 PM	3	0	6	0	0	4	9	2	-11	12	3	0	2	28	2	70	0	0	0	3	72	0	73	1	0	0	7	74	183
Hourly Total	12	0	22	3	0	5	37	18	41	54	11	0	5	124	8	265	0	0	0	9	273	0	239	6	0	0	18	245	679
1:00 PM	5	0	6	0	0	0	11	1	7	17	2	0	2	27	4	63	0	0	0	1	67	0	62	0	0	0	1	62	167
1:15 PM	3	0	5	0	0	2	8	4	17	14	1	0	3	36	2	48	0	0	0	1	50	0	55	1	0	0	2	56	150
1:30 PM	1	0	2	1	0	1	4	0	10	9	1	0_	3	20	1	65	0	0	0	2	66	0	70	1	0	0	1	71	161
1:45 PM	2	0	5	1	0	1	8	2	12	12	1	0	2	27	3	58	0	0	0	2	61	0	67	2	0	0	0	69	165
Houriy Total	11	0	18	2	0	4	31	7	46	52	5	0	10	110	10	234	0	0	0	6	244	0	254	4	0	0	4	258	643
2:00 PM	3	0	5	0	0	0	8	2	14	9	0	0	4	25	1	87	0	0	0	0	88	0	62	0	1	0	2	63	184
2:15 PM	3	0	2	1	0	1	6	3	в	23	1	0	2	35	4	84	0	0	0	2	88	0	63	1	1	0	1	65	194
2:30 PM	1	0	8	0	0	0	9	5	9	25	0	0	8	39	3	87	0	0	0	_ 1	90	0	67	0	0	0	1	67	205
2 45 PM	3	0	5	1	0	3	9	6	15	25	4	0	1	50	9	75	0	0	0	1	84	0	85	1	0	0	1	86	229
Hourly Total	10	0	20	2	0	4	32	16	46	82	5	0	15	149	17	333	0	0	0	4	350	0	277	2	2	0	5	281	812
3:00 PM	1	0	2	0	0	0	3	3	14	28	1	0	4	46	5	101	0	0	0	0	106	0	67	2	0	0	3	69	224
3:15 PM	0	0	5	0	0	0	5	4	14	12	4	0	4	34	2	88	0	0	0	4	90	0	92	6	0	0	1	98	227
3:30 PM	2	0	8	0	0	2	10	6	15	14	1	0	2	36	6	89	0	0	0	4	95	0	79	0	0	0	2	79	220
3.45 PM	2	0	4	1	0	6	7	5	14	13	2	0	6	34	5	96	0	0	0	D	101	0	84	1	0	0	1	85	227
Hourly Total	5	0	19	1	0	8	25	18	57	67	8	0	16	150	18	374	0	0	0	В	392	0	322	9	0	0	7	331	898
4 00 PM	1	0	8	1	0	1	10	2	16	28	1	0	2	47	2	90	0	0	0	2	92	0	67	1	0	0	1	68	217
4:15 PM	4	0	4	0	0	1	8	2	24	21	1	0	3	48	4	96	0	0	0	2	100	0	58	0	0	0	3	58	214
4 30 PM	4	0	6	0	0	2	10	2	20	19	2	0	1	43	4	76	0	0	0	0	80	0	90	0	0	0	2	90	223
4 45 PM	3	0	1	1	0	1	5	9	24	13	0	0	3	46	11	93	0	0	0	2	104	0	74	2	0	0	1	76	231
Hourly Total	12	0	19	2	0	5	33	15	84	81	4	0	9	184	21	355	0	0	0	6	376	0	289	3	0	0	7	292	885
5:00 PM	3	0	7	0	0	1	10	8	28	34	1	0	2	71	7	91	0	0	0	1	98	0	94	1	1	0	5	96	275
5:15 PM	2	0	10	5	0	2	17	9	20	18	0	0	0	47	7	91	0	0	0	1	98	0	74	2	0	0	0	76	238
5.30 PM	3	0	7	3	0	1	13	5	15	19	2	0	3	41	1	69	0	0	0	1	70	0	84	2	0	0	2	86	210
5.45 PM	0	0	4	1	0	0	5	4	21	16	2	0	2	43	1	64	0	0	0	2	65	0	71	1	0	0	1	72	185
Hourly Total	8	0	28	9	0	4	45	26	84	87	5	0	7	202	16	315	0	0	0	5	331	0	323	6	1	0	8	330	908
6:00 PM	4	0	8	4	0	0	16	2	12	15	4	0	3	33	4	52	0	0	0	1	56	0	46	1	0	0	0	47	152
6:15 PM	1	0	4	1	0	2	6	4	10	13	3	0	1	30	4	39	0	0	0	2	43	0	47	2	1	0	3	50	129
6:30 PM	2	0	6	1	0	3	9	2	19	6	2	0	1	29	2	54	0	0	0	5	56	0	47	1	0	0	1	48	142
6:45 PM	1	0	5	0	0	1	6	3	10	1	7	0	6	21	2	47	0	0	0	0	49	0	44	3	0	0	1	47	123
Hourly Total	8	0	23	6	0	6	37	11	51	35	16	0	11	113	12	192	0	0	0	В	204	0	184	7	1	0	5	192	546

Grand Total	110	0	231	72	0	48	413	166	551	684	83	0	133	1484	154	3405	0	0	0	68	3559	0	2997	68	7	0	90	3072	8528
Approach %	26.6	0.0	55.9	17.4	0.0	-		11,2	37.1	46_1	5,6	0.0	4	-	4.3	95.7	0.0	0.0	0.0	. *		0.0	97,6	2,2	0.2	0.0			•
Total %	13	0.0	2.7	0.8	0.0	-	4.8	1.9	6.5	8.0	1.0	0,0		174	1.8	39.9	0.0	0.0	0.0		41.7	0.0	35_1	0.8	0.1	0.0	-	36.0	-
Lights	106	0	218	72	0		396	161	541	671	81	0		1454	149	3237	0	0	0	4	3386	0	2827	65	7	0	-	2899	8135
% Lights	96.4		94.4	100 0			95.9	97.0	98.2	98_1	97.6			98.0	96.8	95_1					95,1		94.3	95.6	100 0		-	94.4	95.4
Buses	0	0	6	0	0		6	2	9	8	0	0		19	4	64	0	0	0		68	0	75	0	0	0		75	168
% Buses	0.0		2.6	0.0			1.5	1.2	1.6	1,2	0.0			1.3	2.6	1,9	-			4	1.9		2.5	0.0	0.0	•	-	2.4	2.0
Trucks	4	0	7	0	0		11	3	1	5	2	0		11	1	104	0	0	0		105	0	95	3	0	0	-	98	225
% Trucks	3.6		3.0	0.0			2.7	1.8	0.2	0.7	2.4		4	0.7	0.6	3.1				4	3.0		3,2	44	0.0			3.2	26
Bicycles on Crosswalk			•		•	0		54	-		-		6		4	4			.4	1			•				1	•	•
% Bicycles on Crosswalk			•	•		00		÷	÷		•		4 5	•		•				15	4	-	-	4			11		
Pedestrian S		-	•	-		48	24		:4	+			127						1	67							89	-	•
% Pedestrian		*		+		100 0		+		•	•		95 5	÷		•	•			98 5	-			4	a.		98 9	•	

Kingston, NY Washington Ave & Main St Wednesday, May 8, 2019 Location: 41.931166, -74,022173

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Washington Ave & Main St Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (7:30 AM)

			E	Main S aslbou	it nd				-	w	Main S eslbou	it Ind					Was No	hingto orthbou	n Ave und					Was So	hingtor uthbou	n Ave Ind			
Start Time	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ l on Red	U- Tum	Ped s	App. Tota I	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App Tota	Lefl	Thru	Righ l	Righ Ion Red	U- Tum	Ped s	App. Tota	Int. Tota I
7:30 AM	2	0	6	з	0	0	11	3	11	3	2	0	2	19	8	85	0	0	0	0	93	0	59	1	0	0	2	60	183
7:45 AM	1	0	6	4	0	1	11	2	6	8	2	0	2	18	3	79	0	0	0	2	82	0	75	0	0	0	1	75	186
8 00 AM	4	0	4	1	0	0	9	5	6	14	0	0	4	25	1	73	0	0	0	0	74	0	71	4	0	0	2	75	183
8:15 AM	3	0	2	5	0	0	10	3	4	6	0	0	6	13	3	56	0	0	0	1	59	0	73	1	1	0	2	75	157
Total	10	0	18	13	0	1	41	13	27	31	4	0	14	75	15	293	0	0	0	3	308	D	278	6	1	0	7	285	709
Approach %	24.4	0.0	43 9	31 7	0.0	-		17.3	36.0	41.3	5.3	0,0	-	-	4.9	95_1	0.0	0,0	0.0		•	0,0	97.5	2,1	0.4	0_0			
Total %	1.4	0.0	2.5	1.8	0.0		5.8	1.8	3.8	4.4	0.6	0.0		10.6	2,1	41.3	0,0	0.0	0.0	-	43.4	0,0	39.2	0,8	0.1	0.0	-	40.2	
PHF	0.62 5	0 000	0 750	0 650	0 000		0 932	0 650	0 614	0 554	0 500	0 000	-	0 750	0 469	0 862	0 000	0 000	0 000		0 828	0 000	0 927	0 375	0 250	0 000	-	0 950	0 953
Lights	10	0	17	13	0	-	40	12	26	27	4	0	-	69	13	271	0	0	0	11	284	0	257	6	1	0	-	264	657
% Lights	100. 0	-	94.4	100 0	-		97.6	92.3	96,3	87,1	100 0	$\langle \vec{a} \rangle$	194	92.0	86.7	92.5	-	~			92.2		92.4	100 0	100 0	-	-	92.6	92.7
Buses	0	0	1	0	0	-	1	1	1	З	0	0	-	5	2	13	0	0	0		15	0	12	0	0	0	245	12	33
% Buses	0.0		5,6	0.0			2.4	7.7	3.7	97	0.0			6.7	13.3	4.4	-		-	-	49	-	4.3	0.0	0.0	4	1	4.2	4.7
Trucks	0	0	0	0	0	1.	0	0	0	1	0	0	-	1	0	9	0	0	0	-	9	0	9	0	0	0		9	19
% Trucks	0,0		0.0	0.0		-	0.0	0.0	0.0	3.2	0_0			1.3	0.0	3.1	-	-		-	2.9		3.2	0.0	0.0		. +	3.2	2.7
Bicycles on Crosswalk	-	•	÷	÷		0		-	-				2		-	•	-		•	0					•		0	÷	+
% Bicycles on Crosswalk				•	•	0.0		-	•		*	.*	14 3			-				0.0	14	•					0 0	•	-
Pedestnan s	(6)					5						•	12	-	-			•	•	3			•		•	•	7	•	•
% Pedestnan s		÷				100 0	-		•	-	e	-	85 7	-	-			141		130.0					*		100 0	•	•

Kingston, NY Washington Ave & Main St Wednesday, May 8, 2019 Location: 41,931166, -74,022173

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Main St Site Code: Start Date: 05/08/2019 Page No: 5

Kingston, NY Washington Ave & Main St Wednesday, May 8, 2019 Location: 41,931166, -74,022173

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Washington Ave & Main St Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (4:30 PM)

			E E	Main S astbou	it nd				-	W	Vain S estbou	t nd					Was No	hingto: orthbou	n Ave und					Wash So	ningtor uthbou	n Ave Ind			
Start Time	Left	Thru	Righ t	Righ 1 on Red	U- Turn	Ped s	App. Tota I	Lefl	Thru	Righ I	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota 1	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App. Tota	Int Tota I
4:30 PM	4	0	6	0	0	2	10	2	20	19	2	0	1	43	4	76	0	0	0	0	80	0	90	0	0	0	2	90	223
4:45 PM	3	0	1	1	0	1	5	9	24	13	0	0	3	46	11	93	0	0	0	2	104	0	74	2	0	0	1	76	231
5:00 PM	3	0	7	0	0	1	10	8	28	34	1	0	2	71	7	91	0	0	0	1	98	0	94	1	1	0	5	96	275
5:15 PM	2	0	10	5	0	2	17	9	20	18	0	0	0	47	7	91	0	0	0	1	98	0	74	2	0	0	0	76	238
Total	12	0	24	6	0	G	42	28	92	84	3	0	G	207	29	351	0	0	0	4	380	0	332	5	1	0	B	338	967
Approach %	28,6	0.0	57 1	14.3	0.0	- 4 -	:4	13.5	44.4	40,6	1.4	0.0			7,6	92.4	0,0	0,0	0,0	÷		0,0	98,2	1.5	0.3	0,0		•	-
Total %	1.2	0.0	2.5	0.6	0,0	a	4.3	2.9	9.5	8,7	0,3	0.0	2	21.4	3.0	36.3	0.0	0,0	0_0	046	39.3	0.0	34,3	0.5	0,1	0,0		35.0	
PHF	0.75 0	0 000	0 600	0 300	0 000		0 618	0 778	0 821	0 618	0 375	0 000	9	0 729	0 659	0 944	0 000	0 000	0 000	-	0 913	0 000	0 883	0 625	0 250	0 000	-	0 880	0 879
Lights	12	0	24	6	0		42	27	91	83	2	0	÷.	203	29	339	0	0	0	1.9	368	0	327	5	1	0	-	333	946
% Lights	100 0		100 0	100 0	+	4	100 0	96.4	98,9	98 8	66.7		2	98 1	100 0	96.6	-	~	×	2	96.8	•	98.5	100 0	100 0		-	98,5	97,8
Buses	0	0	0	0	0		0	0	0	0	0	0	-	0	0	3	0	0	0		3	0	3	0	0	0	110	3	6
% Buses	0.0		0.0	0.0		10	0.0	0.0	0,0	0,0	0.0		-	0.0	0,0	0,9	+				8,0		0.9	0.0	0.0		- U.L.	0.9	0.6
Trucks	0	0	0	0	0		0	1	1	1	1	0	19	4	0	9	0	0	0		9	0	2	0	0	0	-7-	2	15
% Trucks	0.0		0.0	0.0		+	0.0	3.6	1.1	1.2	33.3	-	14	1.9	0.0	2.6	-	-		- 14	24		0.6	0.0	0_0		1.4	0.6	1.6
Bicycles on Crosswalk		•	۲		-	0		-	•		-		0			•				0		-		*			0		
% Bicycles on Crosswalk	-	*		-	+	0 0		+	÷	÷	2	*	0.0	•		-	-	-	•	00	•		•	*		*	0 0	.4	
Pedestrian S	-	-		(*)		6		•				-	6	-			-		•	4		•	•	-	•		8		
% Pedestnan	•	*			•	100 0	•	•		6		•	100 0	-		ik.	*		*	100 0		•			•		100 O	•	+

Kingston, NY Washington Ave & Main St Wednesday, May 8, 2019 Location: 41,931166, -74.022173

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Washington Ave & Main St Site Code: Start Date: 05/08/2019 Page No: 9

Kingston, NY Wall St & Pearl St Wednesday, May 8, 2019 Location: 41,931461, -74,018805

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Wall St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 1

.

.

Turning Movement Data

			Pearl St					Pearl St					Wall St			Wa	ll St	
			Eastbound					Westbound	1	12:00		N	Iorindoun	a	4.85	5000	Arm	Int
Start Time	Left	Thru	U-Turn	Peds	App Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	Peds	Total	Peds	Total	Total
7:00 AM	7	9	0	0	16	4	1	0	0	5	0	10	1	0	11	1.29	0	32
7:15 AM	7	26	0	1	33	10	2	0	2	12	2	17	3	0	22	Z	0	67
7:30 AM	2	31	0	0	33	9	5	0	0	14	4	22	1	0	27	1	0	74
7:45 AM	10	40	0	1	50	10	1	0	2	11	2	35	4	14	41	0	0	102
Haudu Tatal	26	106	0	2	132	33	9	0	4	42	8	84	9	1	101	4	0	275
RIOD AM	15	40	0	0	55	18	5	0	6	23	3	33	26	0	62	4	0	140
B:UU AIVI	10	40	0	0	42	11	6	0	1	17	2	31	5	0	38	0	0	97
B 30 AM	15	36	0	2	51	20	4	0	0	24	1	24	В	1	33	0	0	108
0 JU AIVI	10	55	0	2	73	14	17	0	2	31	4	47	10	2	61	3	0	165
8 45 AM	18	35	0	2	7.5	62	32	0	P	95	10	135	49	3	194	7	0	510
Houny Total	34	42	0	4	59	20	21	0	0	41	5	30	5	1	40	3	0	139
9:00 AM	15	43	0		42	10	10	0		38	3	28	4	0	35	1	0	115
9:15 AM	11	31	0	- 4-	42	19	13	0	0	20	1	26	2	0	32	2	0	92
9:30 AM	6	25	0	- 1	31	10	13	0	0	50	2	20	6	2	35	-	0	132
9:45 AM	9	38	0	4	47	27	23	0	-0	169	15	110	17	2	142	10	0	478
Hourly Total	41	137	0	12	1/8	82	/6	0	1	100	15	110	2	4	142	10	* 0	109
10:00 AM	13	34	0	4	47	24	15	0	2	39	4	10	3	1	20	2	0	03
10:15 AM	8	26	0	3	34	19	10	0	3	29	4	23	3	4	30	2	0	100
10:30 AM	7	37	0	4	44	30	18	0	3	48	2	24	4	2	30	2	0	100
10:45 AM	14	30	0	4	44	19	10	0	2	29	2	30	3	0	35	6	0	400
Hourly Total	42	127	0	15	169	92	53	0	10	145	12	93	13	4	118	Ь	0	432
11:00 AM	15	25	0	2	40	36	20	0	2	56	3	25	5	1	33	1	0	129
11:15 AM	6	37	0	2	43	26	17	0	1	43	8	27	9	1	44	3	0	130
11:30 AM	7	33	0	4	40	30	17	0	5	47	6	27	4	-2	37	0	0	124
11:45 AM	9	31	0	5	40	38	17	0	11	55	5	24	2	5	31	Z	0	126
Houriy Total	37	126	0	13	163	130	71	0	19	201	22	103	20	9	145	6	0	509
12:00 PM	5	35	0	3	40	22	18	0	2	40	7	40	3	0	50	4	0	130
12:15 PM	6	28	0	0	34	26	16	0	0	42	5	36	7	2	48	6	0	124
12:30 PM	6	34	0	0	40	18	20	0	0 -	38	8	33	0	2	41	3	0	119
12:45 PM	7	37	0	\overline{T}	44	28	21	0	4	49	2	23	3	T	28	1	0	121
Hourly Total	24	134	0	10	158	94	75	0	6	169	22	132	13	5	167	14	0	494
1:00 PM	8	44	0	2	52	28	9	0	5	37	5	31	2	4	38	1 1	0	127
1:15 PM	7	41	0	3	48	17	15	0	5	32	4	24	6	0	34	5	0	114
1:30 PM	11	26	0	4	37	24	8	0	7	32	4	23	0	-2	27	2	0	96
1:45 PM	9	31	0	2	40	25	22	0	6	47	3	28	4	0	35	2	0	122
Hourly Total	35	142	0	11	177	94	54	0	21	148	16	106	12	7	134	13	0	459
2:00 PM	6	37	0	3	43	24	16	0	3	40	4	42	5	2	51	5	0	134
2:15 PM	11	37	0	4	48	28	16	0	6	44	9	40	3	2	52	4	0	144
2 30 PM	5	37	0	2	42	20	15	0	3	35	7	32	2	3	41	2	0	118
2 45 PM	в	38	0	2	46	34	15	0	1	49	-5	28	7	5_	40	0	0	135
Hourly Total	30	149	0	11	179	106	62	0	13	168	25	142	17	10	184	11	0	531
3:00 PM	15	32	0	E	47	27	29	0	3	56	14	48	18	11	80	1	0	183
3-15 PM	9	33	0	2	42	23	13	0	7	36	8	45	2	3	55	-4	0	133
3:30 PM	14	43	0	3	57	27	13	0	3	40	7	34	9	5	50	2	0	147
3:45 PM	12	39	0	6	51	27	10	0	4	37	10	43	3	2	56	3	0	144
Hourty Total	50	147	0	16	197	104	65	0	17	169	39	170	32	21	241	10	0	607
A DO PM	9	42	0	E	51	26	17	0	0	43	10	28	7	0	45	0	0	139
4:15 PM	5	29	0	6	34	26	9	0	2	35	13	26	4	2	43	Z	0	112
4.10 PM	0	40	0	8	49	25	12	0	5	37	8	38	5	0	51	1	0	137
4 30 PW	0	20	0	4	40	31	11	0	2	42	9	30	5	2	44	0	0	126
4 40 PW	0	32	0	26	474	109	40	0	0	157	40	122	21	4	183	3	0	514
Houriy Total	31	143	0	20	E1	100	43	0	5	56	14	23	10	3	47	1	0	154
5:00 PM	1	44	0	4	51	44	12	0	0	22	3	20	4	0	35	2	0	117
5:15 PM	8	41	0	2	49	20	5	0	4	20	4	20	2	1	44	2	0	147
5:30 PM	11	53	0	2	64	30	9	0	4	27	4	30	4	R	14	2	0	133
5:45 PM	12	40	0	2	52	21	16	0	21	31	0	32	4	10	170	13	0	551
Hourly Total	38	178	0	10	216	123	42	0	30	165	29	121	20	12	20	10	0	06
6:00 PM	6	27	0	0	33	27	7	0	2	34	10	18	1	1	29	2	0	74
6:15 PM	6	24	0	0	30	13	6	0	. 1	19	6	19	U	0	20		0	02
6:30 PM	2	25	0	ĩ	27	34	7	0	0	41	5	19	1	2	25	0	0	33
6:45 PM	5	27	0	1	32	18	4	0	1	22	4	17	2	1	23	1	0	040
Hourly Total	19	103	0	2	122	92	24	0	4	116	25	73	4	4	102	4	0	540
Grand Total	427	1659	0	132	2086	1121	612	0	149	1733	263	1391	227	83	1881	101	0	5/00

Approach %	20.5	79.5	0.0			64 7	35.3	0,0			14.0	74.0	12.1				4	4
Total %	7.5	29.1	0.0	*	36_6	19.7	10.7	0.0		30.4	4.6	24.4	4.0		33.0		0.0	
Lights	411	1605	0		2016	1096	604	0	-	1700	255	1354	225	~	1834		0	5550
% Lights	96.3	96.7		(*)	96,6	97.8	98.7			98,1	97.0	97.3	99.1		97.5		-	97.4
Buses	11	38	0	-	49	9	2	0		11	2	15	1		18		0	78
% Buses	2.6	2.3			2.3	0.8	0.3			0.6	0.8	1.1	0.4	-	1.0	2		1.4
Trucks	5	16	0	-	21	16	6	0		22	6	22	1		29	-	0	72
% Trucks	1.2	1.0			10	1.4	1.0	-	- A:	1.3	2.3	1.6	0.4		1.5			1.3
Bicycles on Crosswalk			•	4	•			14/	3	÷			•	1	*	5	•	
% Bicycles on Crosswalk	-			30	5		4	*	2 0		•	•		12		50	•	*
Pedestrians				128			34		146					62		96	•	
% Pedestrians				97 0					98 0			-		98 8	42	95 0		-

www.18 184 I

Kingston, NY Wall St & Pearl St Wednesday, May 8, 2019 Location: 41,931461, -74_018805

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Wall St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 4

.

7

Turning Movement Peak Hour Data (8:30 AM)

	1		Pearl St					Pearl St					Wall St			Wa	III SI	
			Eastbound	ł				Westbound	d			1	Vorthboun	d		South	bound	
Start Time	Left	Thru	U-Tum	Peds	App Tolai	Thru	Right	U-Tum	Peds	App. Total	Left	Thru	Right	Peds	App Total	Peds	App. Total	Int. Total
8 30 AM	15	36	0	2	51	20	4	0	0	24	1	24	8	1	33	0	0	108
8:45 AM	18	55	0	2	73	14	17	0	2	31	4	47	10	2	61	3	0	165
9.00 AM	15	43	0	5	58	20	21	0	0	41	5	30	5	1	40	3	0	139
9:15 AM	11	31	0	2	42	19	19	0	4	38	3	28	4	0	35	1	0	115
Total	59	165	0	11	224	73	61	0	6	134	13	129	27	4	169	7	0	527
Approach %	26.3	73.7	0.0			54.5	45.5	0.0			7.7	76.3	16.0			-	à	-
Total %	11.2	31.3	0.0		42 5	13.9	11.6	0.0	-	25.4	2.5	24.5	5.1		32.1		0.0	
PHF	0.819	0.750	0.000	-	0.767	0.913	0.726	0.000	-	0.817	0.650	0.686	0.675	1	0.693	1	0.000	0.798
Linhts	59	163	0	~	222	72	58	0	k	130	12	127	27	-	166		0	518
% Liphts	100.0	98.8		-	99.1	98.6	95.1		-	97.0	92.3	98.4	100.0		98.2	· · ·		98 3
Buses	0	2	0	~	2	0	0	0	-	0	0	1	0		1		0	3
% Buses	0.0	12	-	14	0.9	0.0	0.0		18.	0.0	0.0	0.8	0.0	-	0.6			0.6
Trucks	0	0	0	-	0	1	3	0		4	1	1	0		2	+	0	6
% Trucks	0.0	0.0		- 1e.	0.0	1.4	4.9			3.0	7.7	0.8	0.0		1.2	-		1.1
Bicycles on Crosswalk				D	•	+		÷	0			•		1		0		-
% Bicycles on Crosswalk			•	0.0	+		•		0.0					25 0	-	00		*
Pedestrians		-		11		-			6	-				3		5		-
% Pedestrians		-		100 0				•.	100.0					75 0	•	100 0		-

Kingston, NY Wall St & Pearl St Wednesday, May 8, 2019 Location: 41,931461, -74.018805

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Wall St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 5

Turning Movement Peak Hour Data Plot (8:30 AM)

184

X

Kingston, NY Wall St & Pearl St Wednesday, May 8, 2019 Location: 41,931461, -74.018805

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Wali St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 8

i.

î

Turning Movement Peak Hour Data (3:00 PM)

	1		Pearl St					Pearl St			1		Wall St			Wa	II St	
			Easlbound					Westbound	d			I	Vorthboun	d		South	bound	
Start Time	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Peds	App. Total	Int. Total
3:00 PM	15	32	0	5	47	27	29	0	3	56	14	48	18	11	80	1	0	183
3:15 PM	9	33	0	2	42	23	13	0	7	36	8	45	2	3	55	4	0	133
3:30 PM	14	43	0	3	57	27	13	0	3	40	7	34	9	5	50	_2	0	147
3.45 PM	12	39	0	6	51	27	10	0	4	37	10	43	3	2	56	3	0	144
Total	50	147	0	16	197	104	65	0	17	169	39	170	32	21	241	10	0	607
Approach %	25.4	74.6	0.0			61.5	38.5	0.0	-		16.2	70.5	13.3				+	
Total %	82	24.2	0.0	-	32.5	17.1	10.7	0.0	-	27.8	6.4	28.0	5.3		39.7		0.0	
PHF	0.833	0.855	0.000		0.864	0.963	0.560	0.000	-	0.754	0.696	0.885	0.444		0.753		0.000	0.829
Lights	43	137	0		180	103	64	0	-	167	38	168	32	- i -	238	-	0	585
% Liphts	86.0	93.2			91.4	99.0	98.5			98.8	97.4	98.8	100.0		98.8	7		96.4
Ruses	7	9	0		16	0	1	0		1	0	1	0	-	1	1 +	0	18
% Burger	14.0	6.1	-		8.1	0.0	1.5			0.6	0.0	0.6	0.0	100	0.4			3.0
Toucks	0	1	0		1	1	0	0		1	1	1	0		2	+	0	4
% Trucks	0.0	0.7			0.5	1.0	0,0			0.6	2.6	0.6	0.0		0.8			0.7
Bicycles on Crosswalk			÷	0					1					0		0	*	
% Bicycles on Crosswalk		4	•	0.0	+			•	59			•		0.0	- 11	0.0	-	-
Pedestrians				16	-				16		-			21		- 1.0		
% Pedestrians			*	100 0					94 1	*				100 0		100 0	•	

Kingston, NY Wall St & Pearl St Wednesday, May 8, 2019 Location: 41,931461, -74,018805

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Wall St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 9

Turning Movement Peak Hour Data Plot (3:00 PM)

Kingston, NY Fair St & Pearl St Wednesday, May 8, 2019 Location: 41,93196, -74,017497

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Fair St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 1

Turning Movement Data

	ľ		Pea	ırl St					Pearl St	•••••		Fai	r St			Fa	ir St			1
			East	bound				1	Westboun	d		North	bound			Sout	nbound			
Start Time	Thru	Right	Right on Red	U-Tum	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App Total	Int Total
7:00 AM	11	0	1	0	1	12	0	4	0	0	4	0	0	7	7	0	1	0	15	31
7:15 AM	23	2	3	0	0	28	0	10	0	1	10	0	0	5	8	0	0	0	13	51
7:30 AM	30	2	0	0	3	32	2	13	0	Ť	15	0	0	11	20	3	0	0	34	81
7:45 AM	41	0	1	0	1	42	1	9	0	2	10	1	0	11	9	0	2	1	22	74
Hourly Total	105	4	5	0	5	114	3	36	0	4	39	1	0	34	44	3	3	1	84	237
8:00 AM	53	6	0	0	1	59	2	21	0	1	23	0	0	16	19	3	0	1	38	120
8:15 AM	37	3	0	0	2	40	4	15	0	2	19	1	0	16	21	1	0	C	38	97
8.30 AM	34	3	1	0	1	38	2	27	0	2	29	1	0	18	11	3	D	0	32	99
8 45 AM	60	6	0	0	2	66	7	31	0	6	38	a.	0	16	15	4	1	2	36	140
Haurby Total	194	18	1	0	6	203	15	94	0	11	109	3	0	66	66	11	1	3	144	456
9:00 AM	40	2	0	0	3	42	6	36	0	4	42	1	0	24	15	3	1	1	43	127
9:00 AM	34	3	0	0	5	37	3	42	0	2	45	0	0	18	22	4	0	2	44	126
9.15 AM	29	1	0	0	0	29	4	21	0	4	25	0	0	27	21	4	0	-	52	106
9 30 AM	20	1	0	0	3	38	8	48	0	0	56	3	0	25	18	2	0	1	45	139
9.45 Alvi	120	7	0	0	20	146	21	147	0	10	168	4	0	94	76	13	1	5	184	498
	139	- / E	4	0	11	36	2	36	0	3	39		0	21	15	3	1	5	40	115
10:00 AM	30	5	1	0	0	34	7	24	0	3	31	2	0	33	13	4	1	1	51	116
10:15 AW	20	5	4	0	0	42	2	44	0	-	47		0	20	19	2	1	0	42	132
10:30 AM	30	4	1	0	2	40	7	27	0	10	34	7	0	30	22	3	0	3	55	127
10 45 AM	34	3	4	0	27	151	20	101	0	20	151	12	0	104	69	12	3	9	188	490
Houny Total	130	17	4	0	21 6	20	20	E4	0	20	63	12	0	41	10	3	1	2	55	147
11:00 AM	24	4	1	0	6	29	9	04	0	0	63	12	0	27	16	4	1	1	58	149
11:15 AM	33	6	0	1	5	40	0	40	0	5	46	3	0	20	10	4	0	3	52	141
11:30 AM	39	3	1	0	5	43	D	40	0	2	40	3	0	29	20		1	-	52	141
11:45 AM	35	2	0	0	1	37	2	49	0	00	014	- 24	0	197	20	12	2	6	218	678
Hourly Total	131	15	2	1	23	149	23	188	0	20	211	21	0	137	00	13	3	7	62	145
12:00 PM	36	3	1	0	í .	40	2	41	0	14	43	0	0	20	29	2	3	5	62	193
12:15 PM	39	1	1	0	4	41	3	34	0	4	3/	2	0	33	19	0	0	2	53	144
12:30 PM	32	3	0	0	1	35	5	36	0		41	U	0	35	21	0	0	3	60	144
12:45 PM	38	0	1	0	11	39	1	4/	0	10	48		0	33	15	4	4	47	00	143 580
Hourly Total	145	7	3	0	23	155	11	158	0	29	169	5	0	129	90	12	0		239	160
1:00 PM	47	4	1	0	3	52	9	38	0	10	4/	3	0	36	25	3	0	3	04	103
1:15 PM	42	0	0	0	5	42	5	28	0	6	33	- T-	0	32	31	1	0	0	64	139
1 30 PM	29	4	0	0	T	33	5	25	0	6	30	. 3	0	35	23	3	1	1	62	125
1 45 PM	31	6	1	0	3	38	3	42	0	9	45	4	0	32	20	2	0	0	54	13/
Hourty Total	149	14	2	0	18	165	22	133	0	31	155	11	0	135	99	9	1	7	244	564
2:00 PM	40	4	1	0	4	45	10	42	0	13	52	2	0	30	23	4	2	2	59	156
2:15 PM	36	6	1	0	7	43	7	38	0	6	45	1	0	23	20	8	0	2	51	139
2.30 PM	37	2	0	0	6	39	7	34	0	5	41	0	0	33	28	1	0	1	62	142
2:45 PM	35	5	0	0	4	40	7	38	0	5	45	2	0	31	32	2	1	5	66	151
Hourly Total	148	17	2	0	21	167	31	152	0	29	183	5	0	117	103	15	3	12	238	588
3:00 PM	52	6	2	0	6	60	3	53	0	4	56	1	0	40	18	4	0	1	62	178
3:15 PM	27	3	2	0	3	32	6	32	0	1	38	4	0	33	27	2	0	1	62	132
3 30 PM	45	4	1	0	5	50	6	31	0	8	37	4	0	28	18	6	1	7	53	140
3.45 PM	37	3	1	0	3	41	2	29	0	5	31	3	0	30	32	3	1	2	66	138
Hourly Total	161	16	6	0	17	183	17	145	0	18	162	12	0	131	95	15	2	11	243	588
4:00 PM	53	4	2	0	6	59	6	40	0	1	46	1	0	27	28	5	3	0	63	168
4:15 PM	27	2	0	0	4	29	9	35	0	6	44	2	0	30	21	2	0	_1	53	126
4 30 PM	33	5	5	0	2	43	6	32	0	10	38	2	0	32	37	5	0	0	74	155
4.45 PM	35	6	2	0	5	43	3	37	0	3	40	3	0	29	30	5	0	1	64	147
Hourly Total	148	17	9	0	17	174	24	144	0	20	168	8	0	118	116	17	3	2	254	596
5:00 PM	43	3	0	٥	3	46	6	50	0	10	56	5	0	44	51	6	1	2	102	204
5:15 PM	44	3	0	0	3	47	7	28	0	6	35	5	0	32	22	0	0	0	54	136
5:30 PM	47	9	0	0	0	56	2	34	0	3	36	0	0	26	31	2	2	0	61	153
5.45 PM	38	2	1	0	7	41	3	34	0	9	37	5	0	20	27	3	0	2	50	128
Hourly Total	172	17	1	0	13	190	18	146	0	30	164	15	0	122	131	11	3	4	267	621
6:00 PM	34	2	1	0	0	37	4	33	0	2	37	0	0	21	24	4	1	0	50	124
6:15 PM	24	0	0	0	4	24	2	15	0	1	17	0	0	9	9	3	3	0	24	65
6:30 PM	20	0	0	0	1	20	2	35	0	5	37	2	0	10	12	2	1	0	25	82
6 45 PM	28	2	0	0	4	30	5	21	0	5	26	1	0	25	19	1	0	2	45	101
Hourly Total	106	4	1	0	9	111	13	104	0	13	117	3	0	65	64	10	5	2	144	372
Grand Total	1718	153	36	1	199	1908	218	1578	0	235	1796	100	0	1252	1018	141	36	81	2447	6151

Approach %	90.0	8,0	1.9	0.1			12.1	87.9	0.0	4				51.2	41.6	5.8	1.5		•	•
Total %	27.9	2.5	0.6	0.0	1.2	31.0	3.5	25.7	0.0	- E:	29.2		0.0	20.4	16.6	2.3	0.6		39.8	
Lights	1669	148	33	1	+	1851	216	1550	0		1766		0	1205	993	139	35		2372	5989
% Lights	97.1	96.7	91.7	100.0		97.0	99.1	98.2		-	98.3		-	96.2	97.5	98.6	97.2	+.	96.9	97.4
Buses	31	4	3	D	14	38	0	9	0	*	9		0	35	8	1	0		44	91
% Buses	1.8	2.6	8.3	0.0	+-	2.0	0.0	0.6		-	0.5	4	-	2.8	0.8	0.7	0.0		1.8	1.5
Trucks	18	1	0	0		19	2	19	0	-	21		0	12	17	1	1	-	31	71
% Trucks	1.0	0.7	0.0	0.0		1.0	0.9	1.2		4	1.2	4		1.0	1.7	0.7	2,8		1.3	1.2
Bicycles on Crosswalk	-	-	•		5	÷			(4) (4)	з	-	3	4	-		•		0	•	
% Bicycles on Crosswalk		÷	-	4	2 5	*	-	+	*	13		30	-				*	00	-	
Pedestrians		-	-		194		-	÷.		232	-	97		÷.			*	81		
A Padastrians					97 5				+	98 7		97 0	÷	-		-		100 0		

Kingston, NY Fair St & Pearl St Wednesday, May 8, 2019 Location: 41,93196, -74,017497

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Fair St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (8:45 AM)

			Pea	irl St					Pearl St			Fa	iir St			Fa	ir St			
	1		East	bound				,	Westboun	d		North	bound			South	bound			
Start Time	Thru	Right	Right on Red	U-Turn	Peds	App. Total	Left	Thru	U-Tum	Peds	App. Total	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Tolal	Int. Total
8:45 AM	60	6	0	0	2	66	7	31	0	6	38	1	0	16	15	4	1	2	36	140
9:00 AM	40	2	0	0	З	42	6	36	0	4	42	1	0	24	15	3	1	1	43	127
9:15 AM	34	3	0	0	5	37	3	42	0	2	45	0	0	18	22	4	0	2	44	128
9:30 AM	28	1	0	0	9	29	4	21	0	4	25	0	0	27	21	4	0	3	52	106
Total	162	12	0	0	19	174	20	130	0	16	150	2	0	85	73	15	2	6	175	499
Approach %	93.1	69	0.0	0.0	1	-	13.3	86.7	0.0	1		1		48.6	41.7	8.6	1.1	-		
Total %	32.5	24	0.0	0.0		34.9	4.0	26.1	0.0	1.6	30.1		0.0	17.0	14.6	3.0	0.4		35.1	
PHF	0.675	0.500	0.000	0.000		0.659	0.714	0 774	0.000		0.833	1 -	0.000	0.787	0.830	0.938	0.500	-	0.841	0.891
Lights	160	12	D	0		172	20	128	0	- 6-	148		0	83	71	15	1		170	490
% Lights	98 B	100.0		+		98.9	100.0	98.5		-	98 7	1	-	97.6	97.3	100.0	50.0	14	97.1	98.2
Buses	2	0	0	0		2	0	0	0		0	-	0	2	2	0	0	-	4	6
% Buses	1.2	0.0	+			1.1	0.0	0.0			00			2.4	2.7	0.0	0.0	. 5	2.3	1.2
Trucks	0	0	0	0		0	0	2	0	- 4	2	-	0	0	0	0	1		1	3
% Trucks	0.0	0.0				0.0	0.0	1,5		-	13		+	0.0	0.0	0.0	50 0		0.6	0.6
Bicycles on Crosswalk			•	•	1				÷	0		1						0		•
% Bicycles on Crosswalk	1			•	53					0.0	-	50 0						0 0	•	4
Pedestrians					18				-	16	-	1					-	6		
% Pedestrians			÷.		94 7	-	-		-	100.0		50 0						100 0		

Kingston, NY Fair St & Pearl St Wednesday, May 8, 2019 Location: 41.93196, -74,017497

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Fair St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 5

Turning Movement Peak Hour Data Plot (8:45 AM)

Kingston, NY Fair St & Pearl St Wednesday, May 8, 2019 Location: 41,93196, -74,017497

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Fair St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (4:30 PM)

			Pea	nd St				,	Pearl St	d		Fa	ir St			Fai South	ir Sl Ibound			
Start Time	Thru	Right	Right on Red	U-Tum	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	Арр То ія	Int Total
4:30 PM	33	5	5	0	2	43	6	32	0	10	38	2	0	32	37	5	0	0	74	155
4 45 PM	35	6	2	0	5	43	3	37	0	3	40	3	0	29	30	5	0	1	64	147
5:00 PM	43	3	0	0	3	46	6	50	0	10	56	5	0	44	51	6	1	2	102	204
5:15 PM	44	3	0	0	3	47	7	28	0	8	35	5	0	32	22	0	0	0	54	136
Total	155	17	7	0	13	179	22	147	0	31	169	15	0	137	140	16	1	3	294	642
Approach %	86.6	9.5	3.9	0.0	+		13.0	87.0	0.0					46.6	47.6	5.4	0.3	-		-
Total %	24.1	26	1.1	0.0	-	27.9	3.4	22.9	0.0	-	26.3	11	0.0	21.3	21.8	2.5	0.2		45.8	
PHF	0.881	0.708	0.350	0.000	-	0.952	0.786	0.735	0.000	-	0.754		0.000	0.778	0.686	0.667	0.250	-	0.721	0.787
Lights	153	17	7	0		177	22	145	0		167		0	134	140	16	1		291	635
% Lights	98.7	100.0	100.0		- ÷	98.9	100.0	98.6	•	~	98.8		17	97.8	100 0	100.0	100.0		99.0	98.9
Buses	1	0	0	0	i.	1	0	0	0	- 10	0	1	0	3	0	0	0		3	4
% Buses	0.6	0.0	0.0			0.6	0.0	0.0		6	0.0		•	2.2	0.0	0.0	0.0	12	1.0	0.6
Trucks	1	0	0	0	+	1	0	2	D		2	4	0	0	0	0	0		0	3
% Trucks	0.6	0.0	0.0	14	-	0.6	0.0	1.4	4		1.2			0.0	0_0	0.0	0.0		0.0	0.5
Bicycles on Crosswalk			-	: 2	0	(4)	4			0		0	•	-		•		0	•	
% Bicycles on Crosswalk					0.0		-		+	0.0	-	00			•			0 0		
Pedestrians					13		-		-	31	-	15						3	-	
% Pedestrians		-			100.0		1.4	-	-	100.0		100 0				۰.		100 0		

Kingston, NY Fair St & Pearl St Wednesday, May 8, 2019 Location: 41.93196, -74.017497

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Fair St & Pearl St Site Code: Start Date: 05/08/2019 Page No: 9

Kingston, NY Clinton Ave & James St Wednesday, May 8, 2019 Location: 41,931108, -74,013891

7 0 0 10 34 8 18 14 12 0

Houriy Total 11

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Clinton Ave & St James St Site Code: Start Date: 05/08/2019 Page No: 1

74 251

Turning Movement Data St James St Clinton Ave Clinton Ave St James St Westbound Northbound Southbound Fastbound Righ t on Red Start Time Righ t on Red App. Tota Righ l on App. Tota App. Tota Int U-Ped Righ t on U-Tum App. Tota Ped s Righ U-Ped Righ Righ Ped Righ 11. Left Thru Left Thru Left Thru Tola Left Thru Turn Turn Turn s s Red Rec з 7:00 AM Ω 7:15 AM 7:30 AM з 7:45 AM З Hourly Total 8:00 AM з 8:15 AM 8 30 AM 8:45 AM з в Hourly Total з 9:00 AM Ο 9:15 AM з 9:30 AM з 9:45 AM з З Hourly Total 10:00 AM 10:15 AM 10:30 AM 10 45 AM з Hourly Total 11:00 AM 11:15 AM 11:30 AM Ω 11 45 AM Hourly Total 12:00 PM З З 12:15 PM З 12 30 PM з 12 45 PM Hourly Total 1:00 PM 1:15 PM 1:30 PM З 1:45 PM Hourly Total C G 2:00 PM 37 117 з 2:15 PM 2:30 PM 2:45 PM З Hourly Total 3:00 PM 3:15 PM 3:30 PM 3:45 PM Hourly Total з 4:00 PM 4:15 PM З 39 118 4 30 PM Ω 4:45 PM G З Hourly Total 51 153 з 5:00 PM з з 5.15 PM 5:30 PM 5:45 PM 143 479 в Hourly Total 6:00 PM 6:15 PM Э 15 53 6 30 PM З 6 45 PM

9 52 7 77 5 2 0 4 91 4 62 8 0 0 4

Grand Total	142	364	94	52	0	103	652	108	190	233	143	2	77	676	124	1514	76	22	0	70	1736	111	907	72	22	1	62	1113	4177
Approach %	21.8	55 8	14.4	8,0	0.0		+	16.0	28 1	34 5	21.2	0.3			7_1	87.2	4_4	1.3	0.0		•	10.0	81.5	65	20	0.1	-		
Total %	3.4	B.7	2.3	12	0_0		15.6	2.6	4.5	5.6	3.4	0.0		16.2	3.0	36,2	1.8	0.5	0.0		41.6	2.7	21.7	1.7	0.5	0.0		26.6	
Lights	139	353	93	52	0		637	105	183	227	136	2		653	116	1428	71	22	0		1637	110	859	72	21	1	+	1063	3990
% Lights	97.9	97.0	98.9	100 0			97.7	97.2	96.3	97.4	95.1	100 0	-	96,6	93.5	94.3	93.4	100 0	-	-	94.3	99.1	94.7	100 0	95 5	100 0	-	95.5	95.5
Buses	0	4	1	0	0		5	2	3	1	4	0		10	3	58	4	0	0		65	0	32	0	0	0	3	32	112
% Buses	0.0	1.1	1.1	0.0		4	0.8	1.9	1.6	0.4	2.8	0,0	+	1.5	24	3.8	5.3	0.0			3.7	0.0	3.5	0.0	0.0	0.0	-	2.9	2.7
Trucks	3	7	0	0	0		10	1	4	5	3	0	1	13	5	28	1	0	0	-	34	1	16	0	1	0		18	75
% Trucks	2.1	1.9	0.0	0.0			1.5	0.9	2.1	21	2_1	0_0		1.9	4.0	1.8	1.3	0,0			2.0	0.9	1.8	0.0	4.5	0.0		1.6	1.8
Bicycles on Crosswalk	-			•		0			*	+			1					4	-	1	-	+	•	•	-		3	*	-
% Bicycles on Crosswalk						00		(e)	*	•			13				•		•	14		•		•		•	48	-	•
Pedestrian s	+		,			103		-	•			4	76	-	34			*		69					•		59	-	-
% Pedestrian 5						100 0	•		•			4	98 7				+			98 6		•				•	95 2	•	

Kingston, NY Clinton Ave & James St Wednesday, May 8, 2019 Location: 41,931108, -74,013891

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Clinton Ave & St James St Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (8:45 AM)

			SI Ei	James astbou	s St nd					SI W	James estbou	s St Ind					CI No	inton A orthbou	Ave Und					Cli So	inton A uthbou	ve Ind			
Slart Time	Left	Thru	Righ 1	Righ t on Red	U- Tum	Ped 5	App Tota	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App Tota	Left	Thru	Righ l	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App Tota	Int. Tota
8:45 AM	4	8	1	0	0	1	13	3	6	3	5	1	0	18	2	41	0	1	0	2	44	5	9	1	0	0	0	15	90
9:00 AM	3	5	3	0	0	2	11	1	6	4	3	0	1	14	1	25	2	1	0	0	29	1	15	1	1	0	1	18	72
9:15 AM	1	8	0	0	0	0	9	1	1	2	3	0	0	7	3	29	3	0	0	1	35	3	9	1	0	0	0	13	64
9:30 AM	1	7	2	2	0	1	12	1	3	5	3	0	2	12	2	33	1	1	0	1	37	2	14	1	2	0	0	19	80
Total	9	28	6	2	0	4	45	6	16	14	14	1	3	51	8	128	6	3	0	4	145	11	47	4	3	0	1	65	306
Approach %	20.0	62.2	13.3	4,4	0,0	÷	•	11.8	31.4	27.5	27.5	2,0	+		5,5	88.3	4.1	2.1	0,0	-		16_9	72.3	6.2	4.6	0.0	4	•	-
Total %	2.9	92	2.0	0.7	0.0	1.0	14.7	2.0	5,2	4,6	4.6	0.3	÷	16.7	2.6	41.8	2.0	1.0	0.0		47.4	3.6	15.4	1.3	1.0	0.0	-	21.2	
PHF	0.56 3	0 875	0 500	0 250	0 000		0.865	0 500	0 667	0 700	0 700	0 250		0 708	0 667	0 780	0 500	0 750	0 000		0 824	0 550	0 783	1 000	0 375	0 000	æ	0 855	0 850
Lights	9	27	6	2	0		44	6	16	13	13	1		49	7	122	6	3	0	+	138	11	43	4	3	0	- († 1	61	292
% Lights	100. 0	96.4	100 0	100 0			97.8	100 0	100 D	92.9	92.9	100 0		96.1	87.5	95.3	100 0	100 0			95.2	100 0	91.5	100 0	100 0		4	93,8	95,4
Buses	0	0	0	0	0		0	0	0	0	0	0		0	0	5	0	0	0	1	5	0	2	0	0	0		2	7
% Buses	0.0	0.0	0.0	0.0		-	0.0	0.0	00	0.0	0.0	0.0		0,0	0.0	3,9	0.0	0,0	-	-	3,4	0.0	4.3	0.0	0.0		10.1	3.1	2.3
Trucks	0	1	0	0	0	10	1	0	0	1	1	0	-1:	2	1	1	0	0	0	-	2	0	2	0	0	0		2	7
% Trucks	0_0	3.6	0.0	0.0		100	2.2	0.0	0.0	7.1	7.1	0.0		3.9	12.5	0.8	0.0	0.0			1.4	0.0	4.3	0.0	0.0		14.1	3,1	2.3
Bicycles on Crosswalk				•		0							0		-		-			0	•						0		
% Bicycles on Crosswalk			*	+	14	0.0	14					•	00	•	10	•				0 0							0 0	4	•
Pedestrian 5				-	-	4		•	-	-	-	-	3	-				•	•	4	+	-			+		1	•	•
% Pedestrian			-	-	4	100 0	-	÷		~		•	100 0	-	-	•			•	100 0				•			100.0	4	

Kingston, NY Clinton Ave & James St Wednesday, May 8, 2019 Location: 41.931108, -74.013891

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & St James St Site Code: Start Date: 05/08/2019 Page No: 5

Kingston, NY Clinton Ave & James St Wednesday, May 8, 2019 Location: 41,931108, -74,013891

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Clinton Ave & St James St Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (4:15 PM)

			SI	James	SI			1		SI	James	St					CI	inton A	we					Cli So	inton A uthbou	ve Ind			
Start Time	Left	Thru	Righ	Righ I on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ	Righ Lon Red	U- Turn	Ped s	App. Tota I	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App. Tota	Int. Tota
4:15 PM	3	5	0	1	0	6	9	2	2	7	7	0	1	18	5	48	1	1	0	2	55	4	27	2	0	0	1	33	115
4 30 PM	3	12	3	2	0	4	20	1	7	5	6	1	0	20	4	30	2	3	0	3	39	3	33	1	1	1	0	39	118
4 45 PM	5	12	0	3	0	2	20	1	4	8	1	0	1	14	5	32	0	0	0	1	37	6	21	0	2	0	0	29	100
5:00 PM	4	24	3	2	0	4	33	3	6	7	7	0	1	23	3	41	0	2	0	2	46	4	43	1	3	0	1	51	153
Total	15	53	6	8	0	16	82	7	19	27	21	1	3	75	17	151	3	6	0	8	177	17	124	4	6	1	2	152	486
Approach %	18,3	64 6	7,3	9.8	0.0	-	- 4	9.3	25.3	36.0	28.0	1.3	9		9.6	85 3	1.7	3.4	0,0	-		11.2	81,6	2.6	3.9	07	-		
Total %	3.1	10.9	1.2	1.6	0.0	4	16.9	1.4	3.9	5.6	4.3	0.2	- 2	15.4	3.5	31.1	0,6	1.2	0,0	-	36.4	35	25.5	0.8	1.2	0.2	-	31.3	
PHF	0.75 0	0 552	0 500	0 667	0 000	(L)	D 621	0 583	0 679	0 844	0 750	0 250	-	0 815	0 850	0 786	0 375	0 500	0 000	-	0 805	0 708	0 721	0 500	0 500	0 250	-	0 745	0 794
Lights	15	53	6	8	0		82	7	19	26	20	1	4	73	16	149	3	6	0		174	17	122	4	6	1		150	479
% Lights	100 0	100.0	100 0	100 0	•	÷	100 0	100 0	100 0	96,3	95.2	100 0		97,3	94,1	98 7	100 0	100 0	-	- A.,	98 3	100 0	98.4	100 0	100 0	100 0		98.7	98.6
Buses	0	0	0	0	0	4	0	0	0	0	1	0		1	0	1	0	0	0	1	1	0	0	0	0	0		0	2
% Buses	0.0	0.0	0,0	0.0		- 6	0.0	0.0	0.0	0,0	4.6	0.0		1.3	0.0	0.7	0,0	0,0		3	0.6	0.0	0.0	0.0	0.0	0.0		0.0	0.4
Trucks	0	0	0	0	0	4	0	0	0	1	0	0		1	1	1	0	0	0	4	2	0	2	0	0	0		2	5
% Trucks	0.0	0.0	0.0	0.0		÷	0.0	0.0	0.0	3.7	0.0	0.0		1.3	5.9	0.7	0.0	0.0		- 4	1.1	0_0	1.6	0.0	0.0	0.0	' 8	1.3	1.0
Bicycles on Crosswalk		•	٠	+	4	ø		-	•	*	•	•	¢	-	•	-	-			0	91		•			4	0	•	
% Bicycles on Crosswalk					•	çó	+	-	•	۲	•		0.0	•		-			•	00			4	4		- 14	0.0	•	•
Pedestrian S	-	*	4			16	•			•			3		•	-	-		-	8	•	•		-	•		2		
% Pedestrian s	•				•	105 5	-	-				•	100.0						•	100 C	-		•	(A.	4		100 C		•

Kingston, NY Clinton Ave & James St Wednesday, May 8, 2019 Location: 41.931108, -74.013891

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & St James St Site Code: Start Date: 05/08/2019 Page No: 9

Kingston, NY Clinton Ave & Franklin St Wednesday, May 8, 2019 Location: 41.928862, -74.011753

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Franklin St Site Code: Start Date: 05/08/2019 Page No: 1

Turning Movement Data

			Fr	ranklin astbou	St					Fi	anklin estbou	St und	•				Cli No	nlon A rlhbou	ve					Cli Sol	nton A ulhbou	ve und			
Start Time	Left	Thru	Righ	Righ t on	U-	Ped	App. Tota	Left	Thru	Righ	Righ t on	U- Turn	Ped	App. Tota	Left	Thru	Righ	Righ 1 on	U- Tum	Ped	App. Tola	Lefi	Thru	Righ	Righ Lon	U- Tum	Ped s	App Tota	Int Tota
7:00 AM	1	2	0	Red	0	3	1	0	5	3	Red	0	2	B	0	12	3	0 Red	0	0	15	2	11	1	0	0	4	14	40
7:15 AM	1	B	2	3	0	10	14	1	6	5	2	0	4	14	0	22	1	_1	0	5	24	5	7	0	0	0	6	12	64
7:30 AM	3	6	1	0	0	1	12	0	8	4	4	0	0	16	0	23	1	1	0	0	25	2	18	2	1	0	0	23	76
7:45 AM	3	7	2	3	0	0	15	0	10	7	1	0	2	18	1	17	1	1	0	0	20	3	10	0	0	0	7	13	66
Hourly Total	8	25	5	6	0	14	44	1	29	19	7	0	8	56	1	74	6	3	0	5	84	12	46	3	1	0	11	62	246
8 00 AM	1	12	5	4	0	0	22	2	10	3	1	0	0	16	2	19	1	0	0	1	22	3	22	2	0	0	0	27	87
8:15 AM	2	13	2	2	0	0	19	1	11	2	1	0	2	15	2	24	1	1	0	0	28	3	15	3	1	0	9	22	84
8 30 AM	2	15	2	3	0	2	22	2	11	1	2	0	0	16	4	20	2	0	0	4	26	3	14	3	0	0	2	12	RR.
8 45 AM	4	13	10	1	0	2	28	0	11	6	1	0	1	18	0	26	3	2	0	7	106	10	62	8	1	0	13	81	343
Hourly Total	9	53	19	10	0	4	91	0	43	12	1	0	1	13	1	21	4	0	0	1	26	1	19	2	0	0	2	22	79
9:00 AM	2	7	5	0	0	3	15	0	9	4	1	0	0	14	2	24	3	0	0	0	29	2	8	2	0	0	2	12	70
9.15 AM	4	17	3	2	0	0	26	2	2	5	0	0	0	9	2	21	0	0	0	2	23	6	12	2	0	0	3	20	78
9:45 AM	3	10	1	1	1	2	16	3	6	0	0	0	0	9	1	21	2	1	0	0	25	3	19	4	0	0	2	26	76
Hourly Total	11	47	10	6	1	6	75	5	26	12	2	0	1	45	6	87	9	1	0	3	103	12	58	10	0	0	9	80	303
10:00 AM	1	9	2	2	0	1	14	5	9	2	0	0	1	16	0	10	1	0	0	3	11	4	22	0	1	0	2	27	68
10:15 AM	1	16	2	0	0	0	19	1	10	4	0	0	1	15	0	21	2	1	0	2	24	3	15	2	0	0	0	20	78
10:30 AM	1	16	2	2	0	1	21	1	6	2	0	0	2	9	1	18	1	1	0	0	21	4	17	3	0	0	2	24	75
10:45 AM	0	7	4	1	0	1	12	1	8	4	0	0	1	13	0	24	1	1	0	0	26	9	18	3	1	0	1	31	82
Hourly Total	3	48	10	5	0	3	66	8	33	12	0	0	5	53	1	73	5	3	0	5	82	20	12	0	2	0	0	22	70
11:00 AM	1	10	0	3	0	0	14	2	4	1	1	0	0	8	3	23	2	0	0	0	12	3	17	3	0	0	0	23	56
11:15 AM	2	11	2	0	0	1	15	1	4	2	2	0	1	12	1	29	2	0	0	1	32	3	20	0	1	0	0	24	81
11:30 AM	1	10	2	1	0	1	7	3	6	0	0	0	3	9	0	23	2	1	0	3	26	5	22	2	0	0	1	29	71
House Total	5	36	4	4	0	2	49	7	20	4	4	0	7	35	4	84	7	1	0	5	96	14	74	7	3	0	1	98	278
12:00 PM	3	11		1	0	0	15	1	12	2	0	0	1	15	1	17	0	3	0	0	21	3	15	4	1	0	3	23	74
12:15 PM	2	5	0	0	0	0	7	4	8	2	0	0	0	14	1	13	2	1	0	0	17	1	28	1	0	0	3	30	68
12:30 PM	1	5	3	3	0	0	12	4	4	4	1	0	4	13	1	17	2	0	0	2	20	3	18	4	0	0	0	25	70
12 45 PM	2	14	3	1	0	0	20	4	4	4	0	0	2	12	1	24	2	1	0	1	28	3	13	5	1	0	2	22	82
Hourly Total	8	35	6	5	0	0	54	13	28	12	1	0	7	54	4	71	6	5	0	3	86	10	74	14	2	0	8	100	294
1:00 PM	0	9	2	2	0	0	13	2	11	3	2	0	2	18	0	16	2	1	0	3	19	4	21	1	0	0	5	26	76
1:15 PM	0	15	0	1	0	1	16	2	9	2	4	0	0	17	0	15	1	1	0	1	17	6	20	1	0	0	0	27	11
1:30 PM	3	14	3	3	0	1	23	5	8	2	2	0	3	17	0	14	0	1	0	1	15	5	23	4	1	0	-	33	88
1:45 PM	1	14	4	1	0	1	20	2	12	4	1	0	2	19	2	11	4	1	0	6	60	18	85	11	3	0	10	117	329
Hourly Total	4	52	9	7	0	3	12	11	40	4	9	0	3	18	1	24	3	0	0	4	28	7	12	4	0	0	9	23	85
2:00 PM	3	10	1	1	0	3	10		10	2	5	0	5	21	2	27	2	0	0	2	31	0	33	3	0	0	1	36	98
2.15 PM	2	14	2	1	0	6	19	1	16	1	1	0	4	19	1	28	5	2	0	6	36	9	21	1	0	0	5	31	105
2.50 PM	0	19	4	1	0	2	24	2	14	3	5	0	1	24	3	35	2	2	0	6	42	4	16	0	0	0	9	20	110
Hourly Total	6	49	9	5	0	14	69	13	48	10	11	0	13	82	7	114	12	4	0	18	137	20	82	8	0	0	24	110	398
3:00 PM	2	21	9	5	0	1	37	3	12	2	3	0	0	20	4	37	6	0	0	6	47	2	25	3	1	0	5	31	135
3:15 PM	4	14	1	1	0	3	20	3	9	6	4	0	2	22	4	21	3	0	0	11	28	6	27	3	0	0	45	36	106
3:30 PM	0	9	1	4	0	1	14	3	10	2	9	0	ì	24	1	29	3	0	0	3	33	7	32	4	1	0	13	44	115
3 45 PM	4	9	1	4	0	4	18	4	12	5	8	0	15	29	3	40	1	1	0	2	45	5	23	3	0	0	6	31	123
Hourly Total	10	53	12	14	0	9	89	13	43	15	24	0	18	95	12	127	13	1	0	22	153	20	107	13	2	0	2	142	4/9
4 00 PM	2	20	0	4	0	2	26	8	14	7	6	0	1	35	2	23	1	2	0	0	28	0	20	3	2	0	1	37	120
4:15 PM	4	18	3	2	0	1	27	6	14	5	2	0	0	32	1	19	0	2	0	2	24	4	33	2	0	0	3	39	113
4 30 PM	2	15	4	1	0	0	14	3	10	7	1	0	0	22	10	22	0	1	0	1	23	3	24	1	1	0	2	29	88
4 45 PM	0	12	8	8	0	3	89	22	55	25	17	0	1	119	4	83	2	В	0	6	97	21	110	9	3	0	8	143	448
5:00 PM	2	16	1	3	0	4	22	1	15	5	4	0	0	25	1	24	1	1	0	3	27	4	45	8	1	0	3	58	132
5:15 PM	5	14	1	4	0	0	24	4	10	5	1	0	14	20	1	18	0	1	0	2	20	4	30	3	D	0	3	37	101
5:30 PM	1	7	1	4	0	4	13	2	13	7	1	0	0	23	3	25	7	1	0	2	36	2	24	4	1	0	1	31	103
5:45 PM	1	14	2	5	0	3	22	5	12	3	2	0	0	22	3	15	2	1	0	2	21	3	22	2	0	0	0	27	92
Hourly Total	9	51	5	16	0	11	81	12	50	20	8	0	14	90	8	82	10	4	0	9	104	13	121	17	2	0	7	153	428
6:00 PM	3	12	1	1	0	0	17	0	11	1	0	0	1	12	0	16	4	0	0	4	20	6	16	0	2	0	0	24	73
6:15 PM	3	11	2	1	0	5	17	3	8	4	0	0	2	15	2	11	1	1	0	0	15	5	22	3	1	0	1	31	18
6:30 PM	1	9	3	1	0	0	14	5	9	1	0	0	5	15	3	12	1	1	0	3	1/	2	14	1	3	0	3	20	87
6:45 PM	1	11	1	0	0	0	13	4	12	8	0	0	1	24	3	20	2	0	0	4	25	4	18	2	7	0	4	100	304
Hourly Total	8	43	7	3	0	5	61	12	40	14	0	0	g	66	18	29	8	4	0		11	1.17	70	0	1	0	0	.00	1004

								-																					
Grand Total	89	557	104	89	1	74	840	122	455	166	88	0	93	831	65	999	92	38	0	100	1194	187	961	114	26	0	173	1288	4153
Approach %	10,6	66.3	12.4	10.6	0.1	1		14.7	54.8	20.0	10.6	0.0	-	-	5.4	83.7	7.7	3.2	0.0	2	*	14,5	74.6	8.9	2.0	0.0		•	. +
Total %	2.1	13.4	2.5	2.1	0.0		20.2	2.9	11.0	4.0	2.1	0.0		20.0	1.6	24.1	2.2	0,9	0.0		28 8	4.5	23,1	2.7	0,6	0.0	-	31.0	
Lights	83	550	100	84	1		818	119	447	158	87	0		811	63	929	90	38	0		1120	185	913	114	25	0	-	1237	3986
% Lights	93.3	98.7	96.2	94.4	100 0		97.4	97.5	98.2	95.2	98.9		14	97.6	96.9	93.0	97.8	100.0		+	93.8	98.9	95.0	100 0	96.2	-		96,0	96.0
Buses	4	1	2	5	0		12	2	4	5	1	0		12	1	50	0	0	0	14	51	1	32	0	1	0		34	109
% Buses	4.5	0.2	19	5.6	0.0		1.4	1.6	0.9	3,0	1.1		4	1.4	1.5	5.0	0.0	0.0	14		4.3	0.5	33	0.0	3.8			2.6	2.6
Trucks	2	6	2	0	0		10	1	4	3	0	0	-	8	1	20	2	0	D	4	23	1	16	0	0	0		17	58
% Trucks	2.2	1.1	1.9	0.0	0.0		1.2	0.8	0.9	1.8	0.0			1.0	1,5	2.0	2.2	0.0		.4.	1.9	0.5	1.7	0.0	0.0			1.3	1.4
Bicycles on Crosswalk					+	1			e.	÷		•	8				•	4		1			•				1	•	
% Bicycles on Crosswalk						14						+	86			•	÷.	9		10	•	-	•	•	•	•	06	•	*
Pedestrian 5						73	+	-		•		•	85			•				99	•						172		
% Pedestnan	+					98 6			-				91 4			+	÷		•	99 0			-		÷.	•	99 4		•

Kingston, NY Clinton Ave & Franklin St Wednesday, May 8, 2019 Location: 41,928662, -74,011753

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Clinton Ave & Franklin St Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (8:00 AM)

			Fr	anklin	St					Fr	anklin	St					CI	inton A	Ave					CI	inton A	ve			
			E	astbou	nď					W	estbou	Ind					No	orthbou	und					So	uthbou	ind			
Start Time	Left	Thru	Righ t	Righ 1 on Red	U- Turn	Ped s	App Tota	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App Tota	Left	Thru	Righ (Righ t on Red	U- Tum	Ped s	App Tota I	Int. Tota I
8:00 AM	1	12	5	4	0	0	22	2	10	З	1	0	0	16	2	19	1	0	0	1	22	3	22	2	0	0	0	27	87
8:15 AM	2	13	2	2	0	0	19	1	11	2	1	0	2	15	2	24	1	1	0	0	28	3	15	3	1	0	9	22	84
8:30 AM	2	15	2	3	0	2	22	2	11	1	2	0	0	16	4	20	2	0	0	4	26	3	14	3	0	0	2	20	84
8 45 AM	4	13	10	1	0	2	28	0	11	6	1	0	1	18	0	26	3	1	0	2	30	1	11	0	0	0	2	12	88
Total	9	53	19	10	0	4	91	5	43	12	5	0	3	65	8	89	7	2	0	7	106	10	62	8	1	0	13	81	343
Approach %	9,9	58 2	20 9	11.0	0,0	+	-	7.7	66.2	18,5	7,7	0,0	14		7.5	84_0	6.6	1.9	0,0	4		12,3	76.5	9,9	1,2	0.0	1		
Total %	2.6	15.5	5.5	2.9	0.0	4	26.5	1.5	12 5	3 5	1,5	0.0	4	19.0	2.3	25,9	2,0	0,6	0,0		30.9	2.9	18_1	2.3	0.3	0.0	4	23,6	-
PHF	0.56 3	0 883	0 475	0 625	0 000	- 4.5	0 813	0 625	0 977	0 500	0 625	0 000	÷	0 903	0 500	0 856	0 583	0 500	0 000		0 883	0 833	0 705	0 667	0 250	0 000	9	0 750	0 974
Lights	8	53	18	9	0	- 47	88	5	43	11	5	0	· · · ·	64	7	80	7	2	0	-	96	10	57	8	1	0	-	76	324
% Lights	88.9	100 0	94 7	90 0		. 9	96.7	100 0	100 D	91.7	100 0		- 14	98.5	87.5	89.9	100 0	100 0			90.6	100 0	91,9	100 0	100 0	-		93,8	94.5
Buses	1	Ο	1	1	0		3	0	0	1	0	0	.1.	1	1	7	0	0	0		8	0	3	0	0	0		3	15
% Buses	11.1	0.0	5.3	10.0		- 14	3.3	0.0	0,0	8,3	0,0			1,5	12.5	7,9	0,0	0.0	-		7.5	0.0	4.8	0.0	0.0		-	3.7	4.4
Trucks	0	0	0	0	0		0	0	0	0	0	0		0	0	2	0	0	0		2	0	2	0	0	0	- 04	2	4
% Trucks	0.0	0.0	0.0	0.0			0,0	0.0	0.0	0.0	0.0		4	0,0	0.0	2.2	0.0	0.0		~	1.9	0.0	3.2	0_0	0.0	4		2.5	1.2
Bicycles on Crosswalk		-1	•			¢			*		•	÷	0			-		-		0		-	-	.+		•	0		
% Bicycles on Crosswalk	•		۲	۲	•	0.0		i.		•			00	•	-	4	-	3	4	0.0			(4)	24)	÷.	.÷.	0.0		
Pedestrian s	-	1	-			4		•		-			3	-				*		T							13	-	+
% Pedestrian		÷	•	۲	•	100.0	-	÷		-			100.0	-	•		4	4	•	120.5			24	24		4	100.0	÷	-

Kingston, NY Clinton Ave & Franklin St Wednesday, May 8, 2019 Location: 41,928862, -74,011753

Ccatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Franklin St Site Code: Start Date: 05/08/2019 Page No: 5

Kingston, NY Clinton Ave & Franklin St Wednesday, May 8, 2019 Location: 41,928862, -74,011753

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Clinton Ave & Franklin St Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (3:30 PM)

			Fi	ranklin astbou	St nd					Fr W	anklin estbou	St					CI No	inton A orthbou	∖ve und					Cli So	nton A uthbou	ve Ind			
Start Time	Left	Thru	Righ t	Righ Lon Red	U- Turn	Ped s	App Tota	Left	Thru	Righ I	Righ t on Red	U- Tum	Ped s	App. Tota	Left	Thru	Righ t	Righ Lon Red	U- Tum	Ped s	App. Tota I	Left	Thru	Righ 1	Righ t on Red	U- Turn	Ped s	App. Tota	Int Tota
3:30 PM	0	9	1	4	0	1	14	3	10	2	9	0	1	24	1	29	3	0	0	3	33	7	32	4	1	0	13	44	115
3:45 PM	4	9	1	4	0	4	18	4	12	5	8	0	15	29	3	40	1	1	0	2	45	5	23	3	0	0	8	31	123
4:00 PM	2	20	0	4	0	2	26	в	14	7	6	0	1	35	2	23	1	2	0	0	28	5	28	3	2	0	2	38	127
4:15 PM	4	18	3	2	0	1	27	6	14	5	7	0	0	32	1	19	1	3	0	3	24	9	25	3	0	0	1	37	120
Total	10	56	5	14	0	8	85	21	50	19	30	0	17	120	7	111	6	6	0	8	130	26	108	13	3	0	24	150	485
Approach %	11.8	65.9	5.9	16_5	0_0			17_5	41.7	15 8	25.0	0.0			5.4	85.4	4.6	4.6	0.0	-	-	17.3	72.0	87	2.0	0.0	4		•
Tolal %	2.1	11.5	1.0	29	0.0	*	17.5	4.3	10.3	3.9	6.2	0_0		24.7	1.4	22.9	1.2	1.2	0.0		26.8	5.4	22.3	2.7	0,6	0.0	245	30.9	
PHF	0.62 5	0 700	0 417	0 875	0 000		0 787	0 656	0 893	0 679	0 833	0 000		D 857	0 583	D 694	0 500	0 500	0 000		0 722	0 722	0 844	0 813	0 375	D 000	1	0 852	0 955
Lights	8	55	4	13	0		80	20	49	18	30	0		117	7	109	6	6	0		128	26	105	13	3	0	191	147	4/2
% Lights	80.0	98.2	80_0	92.9			94_1	95.2	98 0	94.7	100 0		-	97.5	100 0	98.2	100 0	100 0		-	98.5	100 0	97.2	100 0	100 0			98.0	97.3
Buses	2	1	1	1	0		5	1	0	0	0	0		1	0	2	0	0	0		2	0	2	0	0	0	- 4-	2	10
% Buses	20.0	1.8	20.0	7.1			59	4.8	0.0	0.0	0_0		-	0.8	0.0	1.8	0,0	0,0			1.5	0.0	1.9	0.0	0.0		. 2	1.3	2.1
Trucks	0	0	0	0	0	1	0	0	1	1	0	0		2	0	0	0	0	0	-	0	0	1	0	0	0	4	1	3
% Trucks	0.0	0.0	0.0	0.0			0.0	0.0	2.0	5.3	0.0			1.7	0.0	0.0	0.0	0.0	100		0.0	0.0	0.9	0.0	0.0	•		0.7	0.6
Bicycles on Crosswalk						0							3				-			0	•		÷	•	-	•	1	÷	
% Bicycles on Crosswalk		*		÷	141	00		-			(*)	16	17 6					5	(6)	0.0	1			-	-	•	42	•	•
Pedestrian 5		•	•	*	÷	8	•	-		÷		•	14	-		-	-			8	•						23	-	
% Pedestnan s	4	*	18	*	-	100.0	•	-	1			10	82 4		•		(*)	(*)		100.0	4	-				-	95 8	-	•

Kingston, NY Clinton Ave & Franklin St Wednesday, May 8, 2019 Location: 41,928862, -74,011753

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Franklin St Site Code: Start Date: 05/08/2019 Page No: 9

Turning Movement Peak Hour Data Plot (3:30 PM)

184 Baker Rd

Kingston, NY Clinton Ave & Henry St Wednesday, May 8, 2019 Location: 41,92755, -74,010551

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Henry St Site Code: Start Date: 05/08/2019 Page No: 1

Turning Movement Data Clinton Ave Henry St Clinton Ave Henry St Southbound Westbound Northbound Eastbound Righ 1 on Red Righ t on Red Righ Lon Start Time App. Tota Int. Tota Righ I on U-Ped s App. Tota U. Ped App. Tota Righ LI-Ped s App. Tota Righ U-Ped Righ Righ Left Thru Left Thru Left Thru Left Thru s Tum Turn Turn Tum s Red Red 7:00 AM Π 7.15 AM 7:30 AM 7:45 AM з Hourly Total З 8:00 AM Ω 8:15 AM a 8 30 AM З З з 8 45 AM î Hourly Total 9:00 AM Û 9:15 AM ΰ 9:30 AM з 9:45 AM Q Ο Hourty Total 10:00 AM 10:15 AM з 10:30 AM з 10.45 AM з З Hourly Total 11:00 AM 11:15 AM 11 30 AM Ð Π Π 11.45 AM з Hourly Total 12:00 PM C 12:15 PM D 12:30 PM 12:45 PM Houriy Total n 1:00 PM 1:15 PM 1:30 PM 1.45 PM g Hourly Total 2:00 PM 2:15 PM 2:30 PM З З 2.45 PM Hourly Total 3:00 PM 3:15 PM 3.30 PM З з 3:45 PM Hourly Total з 4:00 PM 4:15 PM Ω 4 30 PM 4:45 PM D 157 453 Hourly Total 45 128 5 00 PM 5:15 PM 5.30 PM з 5:45 PM Hourly Total 6:00 PM 6:15 PM З 6.30 PM з 6 45 PM

43 21 50 14 3 0 3 88 11 61 16

Hourly Total

3 28 8 4 0

5 91 17 67 5

0 8

90 312

Grand Total	61	578	112	62	0	49	813	193	688	115	70	0	69	1086	146	932	205	53	2	110	1338	239	933	62	16	3	80	1253	4470
Approach %	7.5	71.1	13.8	7.6	0.0		•	18_1	64.5	10,8	6.6	0,0			10.9	69.7	15.3	4,0	0,1	$\mathcal{A}^{(i)}$	~	19.1	74.5	4,9	1.3	0.2	+		
Total %	1.4	12.9	2.5	1.4	0.0	-	18.2	4.3	15.4	2.6	1,6	0.0		23.8	3.3	20.9	4.6	1.2	0.0	- 195	29.9	5.3	20.9	1.4	0.4	0.1	2	28.0	
Lights	61	554	110	62	0		787	177	661	108	67	0		1013	139	868	182	48	2	4	1239	221	891	60	15	3		1190	4229
% Lights	100. 0	95.8	98.2	100 0	-		96.8	91.7	96.1	93.9	95.7		÷.	95.0	95.2	93.1	88.8	90.6	100 0	4	92.6	92.5	95.5	96.8	93.8	100 0	•	95.0	94.6
Buses	0	13	2	0	0	-	15	5	11	3	3	0	4	22	0	43	5	2	0	-	50	16	24	2	0	0	÷4.	42	129
% Buses	0.0	2.2	1.8	0.0			1.8	2.6	1.6	2.6	4.3			2,1	0.0	4.6	2.4	3.8	0.0		3.7	6.7	2.6	3.2	0,0	0.0		3.4	2.9
Trucks	0	11	0	0	0	+	11	11	16	4	0	0	÷.,	31	7	21	18	3	0		49	2	18	0	1	0		21	112
% Trucks	0.0	1.9	0.0	0.0		- 4-	1.4	5.7	2.3	3.5	0.0			2,9	4.8	2.3	8,8	5.7	0.0	*	3.7	0.8	1.9	0.0	6.3	0,0		17	2.5
Bicycles on Crosswalk	+	÷	-	•		2	•	*	•	÷	÷	+	2	•		•	•		•	8			-	-	•		6	•	•
% Bicycles on Crosswalk	-				•	4 1			-				29	•			•	*	÷	73		•	9	9		•	75	-	
Pedestrian s	(2)	(4)	-	-		47		-	•				67			*				102				•			74		
% Pedestrian						95 9							97 1				-	•	•	92 7	•		4	4	-	•	92 5	-	•

Kingston, NY Clinton Ave & Henry St Wednesday, May 8, 2019 Location: 41,92755, -74,010551

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995

Count Name: Clinton Ave & Henry St Site Code: Start Date: 05/08/2019 Page No: 4

Turning Movement Peak Hour Data (8:15 AM)

			F	lenry s	St					H	lenry S	St .					CI	inton A	Ave					Cli	nton A	ve			
Start Time	Left	Thru	Ea Righ 1	Righ ton Red	nd U- Turn	Ped s	App. Tota Í	Left	Thru	W Righ 1	Righ I on Red	U- Turn	Ped s	App. Tota	Left	Thru	Righ l	Righ t on Red	una U- Turn	Ped s	App. Tola I	Left	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota	Int. Tota
B:15 AM	0	13	3	3	0	0	19	3	15	1	4	0	0	23	2	24	6	0	0	9	32	4	10	1	4	0	6	19	93
8 30 AM	0	16	2	1	0	0	19	2	29	1	1	0	3	33	3	25	7	1	0	8	36	5	16	4	0	0	9	25	113
8 45 AM	5	21	3	2	0	1	31	6	21	1	0	0	1	28	6	26	4	3	0	11	39	8	14	2	0	0	4	24	122
9:00 AM	1	14	2	3	0	0	20	6	18	3	0	0	0	27	1	18	5	2	0	9	26	1	19	3	1	0	0	24	97
Total	6	64	10	9	0	1	89	17	83	6	5	0	4	111	12	93	22	6	0	37	133	18	59	10	5	0	19	92	425
Approach %	6.7	71.9	11.2	10.1	0,0		+	15.3	74.8	5.4	4.5	0.0			9.0	69.9	16,5	4.5	0.0	4		19,6	64,1	10_9	5,4	0,0	-		
Total %	1.4	15.1	2.4	2.1	0.0		20.9	4.0	19.5	1.4	1.2	0.0		26.1	2.8	21.9	5,2	1.4	0,0	- 1	31,3	4.2	13,9	2.4	1,2	0,0	-	21,6	
PHF	0.30 0	0 762	0 833	0 750	0 000		0 718	0 708	0 716	0 500	0 313	0 000		0 841	0 500	0 894	0 786	0 500	0 000		0 853	0 563	0 776	0 625	0 313	0 000	-	0 920	0 871
Lights	6	61	10	9	0	4	86	16	82	6	4	0		108	11	84	22	5	0		122	16	56	10	4	0	2	86	402
% Lights	100, 0	95,3	100 0	100 0	-		96,6	94.1	98.8	100 0	80,0	-	ă.	97 3	91.7	90.3	100 0	83.3			91.7	88.9	94.9	100 0	80.0	1		93.5	94.6
Buses	0	2	0	0	0	4	2	0	0	0	1	0		1	0	7	0	1	0		8	2	1	0	0	0		3	14
% Buses	0.0	3.1	0.0	0.0	•		2.2	0.0	0,0	0.0	20.0			0,9	0.0	7.5	0,0	16.7			6.0	11.1	1.7	0_0	0.0		->	3.3	3.3
Trucks	0	1	0	0	0	à.	1	1	1	0	0	0		2	1	2	0	0	0		3	0	2	0	1	0	1	3	9
% Trucks	0.0	1.6	0.0	0.0			1.1	5,9	1.2	0.0	0.0			1.8	8.3	2.2	0.0	0,0			2.3	0.0	3.4	0.0	20.0			3.3	2.1
Bicycles on Crosswalk	-			-	-	0						-	0				-	40		2	•			•	•	•	0		
% Bicycles on Crosswalk	-			•		0 0					-		00	•		-	-	-	*	54	-		•	•			00		
Pedestrian s					-	1		-		÷.			4	-			-			35			•	•	•		19		
% Pedestrian s				•	(÷.)	100.0	•	*		-	-	•	100-2	-	-	•	•	•	•	94 6	•		•		141		100 0		•

Kingston, NY Clinton Ave & Henry St Wednesday, May 8, 2019 Location: 41,92755, -74,010551

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Henry St Site Code: Start Date: 05/08/2019 Page No: 5

Kingston, NY Clinton Ave & Henry St Wednesday, May 8, 2019 Location: 41,92755, -74,010551

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Henry St Site Code: Start Date: 05/08/2019 Page No: 8

Turning Movement Peak Hour Data (3:00 PM)

			F E	lenry S astbou	St nd				Ĩ	+ W	lenry S estbou	St Ind					CI	inton A orthbou	Ave und					Cli So	nton A uthbou	ve Ind			
Start Time	Left	Thru	Righ t	Righ t on Red	U- Turn	Ped s	App. Tola	Lefi	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App. Tota	Lefl	Thru	Righ I	Righ t on Red	U- Turn	Ped s	App Tota	Lefl	Thru	Righ t	Righ t on Red	U- Tum	Ped s	App Tota	Int. Tota
3:00 PM	2	27	4	6	0	1	39	5	26	2	з	0	0	36	4	40	3	2	0	4	49	12	24	3	1	0	11	40	164
3:15 PM	3	18	4	1	0	1	26	5	19	2	4	0	2	30	3	20	6	2	0	6	31	7	23	1	1	0	6	32	119
3:30 PM	1	8	1	3	0	0	13	5	17	2	2	0	3	26	2	27	4	3	0	2	36	9	25	0	1	0	G	35	110
3:45 PM	0	12	1	4	0	0	17	11	17	5	З	0	2	36	3	37	5	1	0	1	46	9	20	0	2	0	2	31	130
Total	6	65	10	14	0	2	95	26	79	11	12	0	7	128	12	124	18	8	0	13	162	37	92	4	5	0	26	138	523
Approach %	6.3	68 4	10 5	14.7	0.0	10		20.3	61.7	8,6	9,4	0,0	E.	+	7.4	76.5	11.1	4.9	0.0	-		26.8	66.7	2.9	3,6	0,0	-	-	•
Total %	1,1	12.4	1.9	2.7	0.0	4	18.2	5,0	15.1	2.1	2.3	0.0	- 2	24.5	2.3	23.7	3.4	1.5	0.0		31.0	7.1	17.6	0.8	1.0	0.0	2	26.4	
PHF	0.50 0	0 602	0 625	0 583	0 000	- A.	0 609	0 591	0 760	D 550	0 750	0 000	à.	0 889	0 750	0 775	0 750	0 667	0 000	2	0 827	0 771	0 920	0 333	0 625	0 000	8	D 863	0 797
Lights	6	63	9	14	0		92	22	72	10	11	0		115	12	117	17	7	0	1.0	153	33	86	4	5	0		128	488
% Lights	100 0	96 9	90 0	100 0	+		96.8	84.6	91.1	90,9	91,7	•	4	89,8	100 0	94.4	94.4	87 5	-		94.4	89.2	93.5	100 0	100 0	•		92.8	93.3
Buses	0	1	1	0	0	100	2	3	4	1	1	0		9	0	7	1	1	0		9	3	6	0	0	0	+	9	29
% Buses	0.0	1.5	10.0	0,0		1.	2,1	11.5	5.1	9,1	8,3			7.0	0.0	5.6	5,6	12,5			5.6	8,1	6.5	0.0	0_0		-	6.5	5.5
Trucks	0	1	0	0	0		1	1	3	0	0	0		4	0	0	0	0	0		0	1	0	0	0	0	-	1	8
% Trucks	0.0	1.5	0.0	0.0		-	1.1	3.8	3.8	0.0	0.0			3,1	0.0	0.0	0.0	0.0		- 4	0,0	2.7	0_0	0_0	0.0		1.0	0.7	1.1
Bicycles on Crosswalk	100	•	•	•	÷	O		-		4	-		0	-		•	-	-	•	0				•			1	•	
% Bicycles on Crosswalk					÷	00	•	-	4		÷.		0 0	•					•	0 0	•			•	+	ă.	5.6	•	
Pedestrian	-		- 21	-	-	2						-	7	+		-	-			13		-					27		•
% Pedestrian s					•	100.0			-		۲	•	100 C		-		•	•	•	100.0	4	(4)	4		•	4	96 4	•	

www.TSTData.com 184 Baker Rd

Kingston, NY Clinton Ave & Henry St Wednesday, May 8, 2019 Location: 41,92755, -74.010551

Coatesville, Pennsylvania, United States 19320 610-466-1469 Serving Transportation Professionals Since 1995 Count Name: Clinton Ave & Henry St Site Code: Start Date: 05/08/2019 Page No: 9

Attachment J Accident Summary

Traffic Signal Removal Assessment City of Kingston, New York

STUI	OY NO.: 118	-064			ROUTE	NO. o	r STRE	ET NAI	ME: VAF	RIOUS		COUNTY: ULSTER MUNICIPALITY: C/O KINGSTON	
P.I.N	•				AT INT	RSEC		/ітн /	OR BET	WEEN: VARIOUS		BY: MDN	
INVE	NTORY NO. NO. OF MO 36	DNTHS	LIGHT CO	ONDITIO	NS (LC)			RO/ 1. S	ADWAY	CHARACTER (RC)	ROADWAY SURFACE CONDITION (RSC)	DATE: 06/19/2019 WEATHER (WEA) 1. Clear	
Begin I End Da	Date: 6/1/20 hte: 5/31/20	015)18	2. Dawn 3. Dusk 4. Dark F 5. Dark F	Road Lig Road Unl	nted lighted			2. S 3. S 4. C 5. C 6. C	Straight Straight Curve & Curve & Curve at	& Grade at Hillcrest Level Grade Hillcrest	1. Dry 2. Wet 3. Muddy 4. Snow/Ice 5. Slush 10. Other	2. Cloudy 3. Rain 4. Snow 5. Sleet/Hail/Freezing Rain 6. Fog/Smog/Smoke 10. Other	
NO	CASE	DATE	TIME	# OF VEH	SEV	LC	RC	RSC	WEA	CONTRIB FACTORS		DESCRIPTION	INTERSECTION
68	35924626	9/30/2015	16:32	1	NR	1	1	1	1	69, YY	BICYCLIST	The operator of vehicle 1 was making a right hand turn on to clinton avenue when the bicyclist was making a right turn as well. The truck struck the cyclist and knocked her off of her bike. She denied medical attention at the scene and went back home	Clinton-Franklin
164	36148450	3/19/2016	13:13	2	NR	1	1	1	1	17, 19, YY	OVERTAKING	Vehicle 1 was stopped at the light at franklin and clinton, intending to go straight, southwest, on franklin. Vehicle 2 passed vehicle 1 on the driver's side, hitting the front quarter panel, and tearing the front bumper cover off the car. The operator of vehicle 1 tried to get vehicle 2's license plate but was unable to catch it. This officer responded to the corner of Pine and St. James where the owner of vehicle 1 stopped and called in the accident.	Clinton-Franklin
161	36429512	10/12/2016	12:29	2	NR	1	1	1	1	13, ҮҮ	OVERTAKING (PARKED)	Witness reported a grey Toyota Solara operated by a black male struck vehicle 1 and left the scene. Officers were able to locate a grey Toyota Solara on Green Street. The operator of vehicle 2 after investigation, admitted to being the operator of the vehicle and leaving the scene of the accident WITNESS 1 SORIANO, PEDRO V 14 SOUTH PINE STREET KINGSTON NY 12401 Tickets Issued: DENNIS S THOMAS Driver of vehicle number (2) tickets: Ticket Number: K123668Z2D Violation: 5091 Ticket Number: K123668ZCK Violation: 1128A Ticket Number: K123668ZK2 Violation: 5112A4;	Clinton-Franklin
72	37069031	1/4/2018	09:14	2	PDO	1	1	4	4	04, 66, YY	REAR END	Both vehicle 1 and vehicle 2 traveling in easterly direction on Clinton Ave. Vehicle 1 was stopped at red light on Clinton Ave. at Franklin St when he was struck in rear by Vehicle 2 traveling behind vehicle 1. Vehicle 2 then left scene and was located several blocks from the accident scene. Operator vehicle 2 stated he was in fact driving vehicle 2 at time of accident and that he did not have a license. Subsequent UTT's issued. No injuries reported at this time.	Clinton-Franklin
203	37398019	9/29/2017	19:49	1	INJURY	4	1	1	1	13, 17, YY	BICYCLIST	Bicycle Operator stated he did not stop as he entered the intersection, and he did not have the green light to proceed through. No damage to vehicle. Bicycle Operator stated he had a sore shoulder. EMS was requested. He refused medical attention.	Clinton-Franklin
249	35980102	11/21/2015	15:33	4	NR	1	1	1	1	04, 17, YY	RIGHT ANGLE	V2 was traveling south on Henry street and stated she had a green light at the intersection of clinton ave. V2 was traveling west on Clinton ave. and failed to stop at red light at intersection of Henry Street. V1 struck V2 in the intersection of Henry street at Clinton ave. V3 was a witness vehicle that was stopped at red light facing east on clinton ave at henry street. who also stated that V1 passed the red light PLEASANT VALLEY NY 12569 8459028395	Clinton-Henry
320	36012965	11/23/2015	16:00	2	PDO	z	z	z	Z	хх	UNKNOWN		Clinton-Henry

65	36571930	1/17/2017	09:53	2	NR	1	1	1	2	07, YY	LEFT TURN (WITH OTHER CAR)	V-1 AND V-2 WERE BOTH STOPPED FOR A SOLID RED TRAFFIC LIGHT ON CLINTON AVENUE AT HENRY STREET. BOTH VEHICLES WERE FACING EACH OTHER AND ACROSS THE INTERSECTION FROM EACH OTHER. THE TRAFFIC LIGHT TURNED A SOLID GREEN . V-1 PROCEEDED STRAIGHT ON CLINTON AVENUE . V-2 FAILED TO VIELD TO V-1 GOING STRAIGHT AND MADE A LEFT TURN ONTO HENRY STREET. THE TWO VEHICLES COLLIDED IN THE INTERSECTION.	Clinton-Henry
247	37260159	4/27/2018	16:08	2	INJURY	1	1	2	3	04 <i>,</i> YY	RIGHT ANGLE		Clinton-Henry
110	35911800	10/7/2015	10:20	1	INJURY	1	1	1	2	04, 14, YY	BICYCLIST	V-1 WAS STOPPED AT A SOLID RED LIGHT ON ST. JAMES STREET AT CLINTON AVENUE. OPERATOR OF V-1 WAS ATTEMPTING TO MAKE A RIGHT TURN ON RED FROM ST. JAMES STREET ONTO CLINTON AVENUE. V-2, THE BICYCLIST, WAS TRAVELING ON THE LEFT SIDE OF THE ROAD AGAINST TRAFFIC ON CLINTON AVENUE APPROACHING ST. JAMES STREET. THE OPERATOR OF V-1 CHECKED FOR APPROACHING TRAFFIC TO HIS LEFT ON CLINTON AVENUE. WHEN HE DIDN'T SEE ANY TRAFFIC APPROACHING FROM HIS LEFT HE STARTED TO MAKE HIS RIGHT TURN ON RED. V-2 WAS CROSSING IN FRONT OF V-1 FROM V-1'S RIGHT. V-1 BUMPED V- 2. THE RIDER OF .V-2 WAS KNOCKED TO THE GROUND AND SUFFERED ROAD RASH TO HIS RIGHT ELBOW AREA	Clinton-St James
30	36224798	5/23/2016	10:59	2	PDO	1	1	1	1	04, 17, YY	RIGHT ANGLE	OPERATOR OF V-1 STATED THAT THE TRAFFIC LIGHT HAD JUST TURNED GREEN AS HE WAS APPROACHING ST JAMES ST ON CLINTON AVE. V-1 ENTERED THE INTERSECTION AND V-2, WHICH WAS TRAVELING ON ST JAMES ST, ENTERED THE INTERSECTION AND WAS CROSSING IN FRONT OF V-1, V-1 WAS UNABLE TO STOP FOR V-2 AND V-2 WAS STRUCK IN THE LEFT REAR TIRE AREA BY V-1. OPERATOR OF V-2 STATED THAT SHE WAS FOLLOWING A LINE OF CARS AND SHE THOUGHT THAT HER LIGHT WAS GREEN. WHEN SHE ENTERED THE INTERSECTION SHE WAS STRUCK BY V-1. THE WITNESS STATED THAT SHE HEARD THE CRASH AND LOOKED AT THE VEHICLES THAT WERE INVOLVED. WHERE SHE WAS SHE COULD SEE THE TRAFFIC LIGHT FACING ST JAMES ST AND FACING CLINTON AVE. SHE STATED THAT THE TRAFFIC LIGHT FACING THE DIRECTION THAT V-1 WAS COMING FROM WAS A GREEN SIGNAL AND THE TRAFFIC LIGHT IN THE DIRECTION THAT V-2 WAS COMING FROM WAS A RED SIGNAL	Clinton-St James
207	36255730	6/10/2016	09:41	2	NR	1	1	1	1	07, YY	LEFT TURN (AGAINST OTHER CAR)	vehicle #1 proceeding thru intersection having right of way, when vehicle #2 attempted to make left turn from clinton avenue onto saint james street and struck vehicle #1 causing minor damage to both vehicles. no injuries were observed or reported to this report writer who was on accident scene.	Clinton-St James
111	36928380	10/12/2017	14:40	2	NR	1	1	1	1	04, YY	REAR END	both vehicles traveling in northerly direction on Clinton Ave. Vehicle 1 was stopped at red light on Clinton Ave. at St. James St. Vehicle 2 traveling behind vehicle 1 stopping for light struck vehicle 1 in rear. No injuries reported at this time.	Clinton-St James
69	37284645	5/10/2018	15:00	2	PDO	1	1	1	2	04, 17, YY	RIGHT ANGLE	ON THE ABOVE DATE, TIME, AND LOCATION, VEHICLE 1 WAS TRAVELING WEST ON ST JAMES ST APPROACHING CLINTON AVE. HE STATES HE LOOKED AWAY AND DIDNT SEE THE TRAFFIC SIGNAL TURN RED AND DROVE THROUGH THE INTERSECTION. VEHICLE 2 WAS TRAVELING SOUTH ON CLINTON AVE AND DROVE THROUGH THE INTERSECTION OF CLINTON AVE AS VEHICLE 1 RAN THE RED LIGHT AND THEY COLLIDED AT A RIGHT ANGLE. NO INJURIES REPORTED AT SCENE.	Clinton-St James
61	35879009	9/10/2015	12:12	2	NR	1	1	1	1	04, YY	RIGHT ANGLE (BACKING)	Driver of Veh 1 was backing on Pearl St attempting to enter a parking lot, Veh 2 was traveling on Pearl St and attempted to make a left into the same parking lot. The left rear portion of Veh 1 struck the front left portion of Veh 2. No injuries reported on scene	Fair-Pearl
276	36075502	1/19/2016	11:22	3	PDO	1	1	1	1	18, 62, YY	PARKED	Vehicle #1 was traveling Southwest on Pearl St. and turned left onto Fair St. Vehicle #1 struck the left rear bumper of Vehicle #2 and pushed Vehicle #2 into the trailer hitch on the rear of Vehicle #3. Vehicle #2 and #3 were both legally parked at the curb on Fair St. facing Southeast. Driver #1 states he was affected by the sun's glare as he made the turn and turned too wide.	Fair-Pearl

196	36255688	5/31/2016	17:16	2	PDO	1	1	1	1	17, 18, YY	RIGHT TURN (WITH OTHER CAR)		Fair-Pearl
242	36337265	8/11/2016	07:54	2	NR	1	1	1	1	03, 17, YY	OVERTAKING (BACKING)	Vehicle 1 made a right turn from Pearl St onto Fair St, traveling the wrong way on a one way street. Driver of vehicle 1 then realized he was traveling the wrong way on a one street. Vehicle 1 then backed up and struck vehicle 2, which was stopped at the traffic signal on Fair St at Pearl St. Driver of vehicle 1 stated that he was following directions on his gps prior to the accident. No injuries were reported at the scene.	Fair-Pearl
316	36612792	2/10/2017	18:02	2	INJURY	4	1	5	2	09, 66, YY	REAR END	V2 stopped at the red light on Fair St at Pearl St and was struck from behind by V1. The registered owners of both vehicles were the operators and the passenger in V2 complained of neck pain. The passenger in V2 declined medical attention at the scene and stated she was not going to go to the hospital at the time when she left the scene still in V2.	Fair-Pearl
233	36771597	6/13/2017	11:47	1	INJURY	1	1	1	1	07, YY	PEDESTRIAN	Vehicle # 1 was on Fair st , attempting to make a left turn onto Pearl St. ,on a green light. Pedestrian was crossing Pearl st heading to Fair st. , in a marked crosswalk with no signal. Driver # 1 states she thought that pedestrian bent over in the crosswalk to pick something up, thats why she didn't see her. Pedestrian states that she did not bend over to pick anything up. Vehicle # 1 struck pedestrian at low speed, in the crosswalk. No damage to vehicle # 1.	Fair-Pearl
317	36908848	9/27/2017	13:45	2	NR	1	1	1	1	29, YY	RIGHT ANGLE (PARKED)	vehicle #1 parked unoccupied when operator of vehicle #2 states he was exiting and struck vehicle #1 causing damage to both vehicles. no injuries observed or reported to this report writer on accident scene.	Fair-Pearl
275	37260158	4/23/2018	11:52	2	NR	1	1	1	1	62, YY	REAR END (PARKED)	Vehicle #1 parked unoccupied, when operator of vehicle #2 was backing and had the glare of the sun in his eyes and vehicles made contact. No damage to vehicle #1, minor damage to vehicle #1. No injuries observed or reported to this report writer on scene.	Fair-Pearl
150	37260167	4/27/2018	16:13	2	NR	1	1	2	3	13, 69, YY	OVERTAKING	Vehicle 1 was traveling east on Pearl Street. The operator attempted to make a left turn onto Fair Street from Pearl Street. He realized it was a one-way street and corrected back onto Pearl Street resulting in a collision with Vehicle 2, which was also east on Pearl Street. The operator of Vehicle 1 states he checked his mirrors prior to going back onto Pearl Street but they were fogged due to the rain.	Fair-Pearl
98	37299731	5/14/2018	08:25	2	NR	1	1	1	2	63, ҮҮ	LEFT TURN (AGAINST OTHER CAR)	Both vehicle #1 and vehicle #2 on Fair Street which is a one way street. Both drivers in disagreement as to who was at fault, driver vehicle #1 states she was going straight on Fair street thru light when struck by vehicle #2, vehicle #2 states he was on left side of road attempting to make left turn when vehicle #1 struck his vehicle. There are no designated lane markings at this intersection. no injuries were reported or observed by this report writer who was on accident scene.	Fair-Pearl
8	35817668	7/25/2015	16:28	2	INJURY	1	1	1	1	04, YY	REAR END	Operator of vehicle one was stopped in traffic as well as vehicle two. Operator of vehicle one thought vehicle two was proceeding into the intersection and struck vehicle two in the rear.	Wall-Pearl
100	35903200	9/25/2015	11:03	2	NR	1	1	1	1	04, YY	REAR END	Vehicle 2 was stopped in traffic on Pearl St and was struck from behind by vehicle 1. Vehicle 1 then left the scene for unknown reason(s) last seen traveling south on Green St. Vehicle 1 was later located. Driver of vehicle 1 stated that he left the scene because he knew his drivers license was suspended.	Wall-Pearl
238	36003266	12/5/2015	19:12	2	INJURY	4	1	1	1	07, 17, YY	RIGHT ANGLE	V1's registered owner and operator was stopped at the red light at the intersection of Wall and Pearl Street, then proceeded to disregard the red light and continue on Wall Street. As a result of failing to observe V2 coming through the green light on Pearl and Wall street, V2 struck V1. The impact of the collision pushed V1 into Central Hudson Utility Pole. Central Hudson staff reports no damage to pole. V1's operator complaining of neck pain on scene, transported to Kingston Hospital for further evaluation.	Wall-Pearl

195	36291085	7/2/2016	11:29	2	INJURY	1	1	1	1	04 <i>,</i> YY	REAR END		Wall-Pearl
243	36452867	10/28/2016	13:14	2	INJURY	1	1	1	1	17, YY	LEFT TURN (WITH OTHER CAR)	V-1 WAS TRAVELING STRAIGHT ON PEARL STREET AND HAD A SOLID GREEN TRAFFIC LIGHT. V- 2 WAS ATTEMPTING TO MAKE A LEFT TURN FROM WALL STREET ONTO PEARL STREET AND HAD A SOLID RED TRAFFIC LIGHT. V-2 PASSED THE SOLID RED TRAFFIC LIGHT AND ENTERED THE INTERSECTION IN THE PATH OF V-1 AND WAS STRUCK BY V-1.	Wall-Pearl
97	36872463	8/30/2017	13:18	2	INJURY	1	1	1	1	04, 69, YY	REAR END	Vehicle 2 was stopped at the traffic signal on Pearl St at Wall St. The light turned green, and vehicle 2 began to move. Vehicle 2 was then struck from behind by vehicle 1. Driver of vehicle 1 stated that he did not see vehicle 2 due to the apparatus on the front of the truck.	Wall-Pearl
311	36877372	9/4/2017	15:39	2	NR	1	1	1	1	04, YY	REAR END	Operator of V1 stated that she thought the light was green, and she reached down to grab something in her car. At which time her vehicle came into contact with V2.	Wall-Pearl
60	36979231	11/12/2017	15:23	2	INJURY	1	1	1	1	04, 05, YY	REAR END	Vehicle 2 was stopped at the red light on Pearl Street at Wall Street. Vehicle 1 rear-ended Vehicle 2. Vehicle 1 backed up in an attempt to flee the scene, struck a tree, and then traveled on Pearl Street toward Washington Avenue. Witnesses state the operator was a white female.	Wall-Pearl
272	36348671	8/6/2016	18:10	2	NR	1	1	1	1	04 <i>,</i> YY	RIGHT ANGLE	ON THE ABOVE DATE, TIME, AND LOCATION, VEHICLE 1 WAS TRAVELING NORTH ON WASHINGTON AVE AND APPROACHED LINDERMAN AVE. VEHICLE 2 WAS TRAVELING WEST ON LINDERMAN AVE AND APPROACHED WASHINGTON AVE. V2 STATES THAT HE STOPPED AT THE FLASHING RED LIGHT AND PROCEEDED THROUGH THE INTERSECTION AND V1 DIDNT STOP AT THE FLASHING RED. V1 STATED THE SAME AND HE STRUCK V2 AT A RIGHT ANGLE. NO INJURIES REPORTED ON SCENE.	Washington-Linderman
271	36500120	11/29/2016	07:53	2	INJURY	1	1	2	3	07, YY	LEFT TURN (WITH OTHER CAR)	Vehicle 1 was traveling east on Washington Ave. Vehicle 2 was traveling west on Washington Ave. Both vehicles stopped at the flashing red traffic signal on Washington Ave at Linderman Ave. Vehicle 1 was attempting to make a left turn from Washington Ave onto Linderman Ave, vehicle 2 was going straight through the intersection. Both vehicles entered the intersection at the same time, when collision occurred.	Washington-Linderman
6	36825171	7/21/2017	17:20	2	PDO	1	1	1	2	07, YY	OVERTAKING		Washington-Linderman
143	36909558	9/30/2017	19:43	2	PDO	4	1	1	2	04, 17, YY	RIGHT ANGLE	ON THE ABOVE DATE, TIME, AND LOCATION, VEHICLE 1 WAS TRAVELING EAST ON LINDERMAN AVE AND CAME TO THE TRAFFIC SIGNAL AT WASHINGTON AVE. VEHICLE 2 WAS TRAVELING NORTH ON WASHINGTON AVE AND HAD THE GREEN LIGHT AT LINDERMAN AVE AND DROVE THROUGH THE INTERSECTION. OPERATOR OF VEHICLE 1 STATED THAT HE DID NOT STOP AT THE RED LIGHT AND WENT THROUGH THE INTERSECTION CAUSING A COLLISION WITH VEHICLE 2. NO INJURIES REPORTED ON SCENE. ALL PARTIES SIGNED OFF ON MEDICAL ATTENTION WITH THE AMBULANCE.	Washington-Linderman
94	36970921	11/3/2017	08:03	2	PDO	1	1	1	2	09, YY	REAR END	Vehicle # 1 was stopped in traffic on Washinton Ave at the intersection of Linderman Ave. Vehicle # 2 was behind vehicle # 1 in traffic. Vehicle # 2 thought vehicle # 1 was moving and began to move also , crashing into the rear of vehicle # 1.	Washington-Linderman
93	37095323	1/17/2018	09:37	1	PDO	1	1	4	4	66, YY	SIGN POST	Vehicle # 1 was attempting to make a right turn from Washington Ave onto Linderman Ave. Vehicle # 1 slid on icy roads and crashed into a sign post and then into a fence.	Washington-Linderman
4	35859337	7/31/2015	17:42	2	INJURY	1	1	1	1	04, 60, YY	UNKNOWN		Washington-Main
139	36011597	12/10/2015	17:20	2	NR	5	1	1	1	04, YY	OVERTAKING (PARKED)	Veh 1 legally parked. Mirror struck by unknown vehicle which continued on.	Washington-Main
138	36452873	11/2/2016	18:40	2	NR	4	1	1	2	04, YY	REAR END	ON THE ABOVE DATE, TIME, AND LOCATION, VEHICLE 2 WAS STOPPED IN TRAFFIC ON WASHINGTON AVE AT MAIN ST. VEHICLE 1 WAS TRAVELING DOWN WASHINGTON AVE AND TURNED HIS HEAD AND WHEN HE LOOKED BACK HE SAW TRAFFIC STOPPED AND DIDNT STOP IN TIME AND REAR ENDED VEHICLE 2. NO DAMAGE SEEN ON VEHICLE 2. NO INJURIES	Washington-Main
188	36974086	11/9/2017	14:44	2	PDO	1	1	1	2	04, YY	OVERTAKING (PARKED)	vehicle #1 parked unoccupied when vehicle #2 approaching intersection side swiped vehicle # 1 causing damage to both vehicles. Perry's towing responded for vehicle #2 at owners request.	Washington-Main

57	36255718	6/11/2016	10:09	2	NR	1	1	2	3	04, 09, YY	REAR END	V2 was stopped in traffic facing north west on Washington Ave. V1 was traveling straight ahead on Washington Ave directly behind V2. V1's front end struck V2's rear end causing damage to both vehicles.	Washington-Main
3	37170693	2/27/2018	08:48	2	NR	1	1	1	1	04, YY	OVERTAKING (PARKED)	Vehicle 1 was traveling east on Washington Ave. Vehicle 1 then struck the drivers side view mirror of vehicle 2, which was legally parked and unattended at curb on Washington Ave.	Washington-Main
237	35764416	6/16/2015	13:47	2	NR	1	1	1	2	13, YY	OVERTAKING	Vehicle # 2 was behind a tow truck that was picking up a car on Pearl st @ Washington ave. Driver # 2 states that when the light turned green he started to go around the tow truck. Vehicle # 1 states that he thought the vehicles infront of him were parked with the tow truck and proceeded to pass them on the left. Vehicle # 1 caused vehicle # 2 to crash into the front passenger side of vehicle # 1. Witness states that vehicle # 1 was behind her at the light and did pass several cars on the left.	Washington-Pearl
146	36147341	3/23/2016	15:26	2	PDO	1	1	1	2	04, YY	REAR END	ON THE ABOVE DATE, TIME, AND LOCATION, VEHICLE 2 WAS TRAVELING SOUTH ON WASHINGTON AVE AND STOPPED AT THE RED LIGHT AT PEARL ST. VEHICLE 1 WAS TRAVELING SOUTH ON WASHINGTON AVE AND BENT DOWN TO PICK SOMETHING UP AND WHEN SHE LOOKED UP SHE SAW TRAFFIC STOPPED AND REAR ENDED VEHICLE 2. NO INJURIES REPORTED ON SCENE.	Washington-Pearl

Attachment K Signal Warrant Analysis

Traffic Signal Removal Assessment City of Kingston, New York

Calculated By:	
Calculated Date:	
Checked By:	
Checked Date:	

Project:	Kingston Tr	affic Signa	l Warrants																
Intersection	Washingtor	n Ave/Linde	erman Ave																
Date:	7/30/2019																		
Analyst:	MDN																		
/ indijeti	7	1	1																
	Salaat va		ofiguration														-	-	+
	Select yo	our lane col	ninguration														<u> </u>	<u> </u>	
	14.5	C. 4. 4	- 4																
	Main 1	, Side 1	<u> </u>																
											arrant 1								arrant
			3	1			100% (a)			80% (b)			100%(a	a)			80%(t
							500				400				750				60
							150				120				75				6
							1								1				
																	<u> </u>	<u> </u>	
																	<u> </u>	<u> </u>	
	Ado	d your volu	mes																
Hour	Washingtor	Linderma	n Linderman	n			Cond	ition A											Condi
Beginning	NB/SB	EB	WB		1(00%			80	0%			10)0%			80	0%	
				Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overal	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overa
12:00 AM	_]	1	1	main		002	01010	main			0.0.0			002	01010	main		002	0.0.0
12.00 AN	-																<u> </u>	<u> </u>	
1:00 AM	_																<u> </u>	<u> </u>	
2:00 AM	_																		
3:00 AM																			
4:00 AM								-			K								
5:00 AM	_																		-
6.00 AM																			1
7:00 AM	456	18	54					V				-							
7.00 AM	407	40	70														<u> </u>	V	
8:00 AM	487	41	70					Ť									<u> </u>	Ť.	
9:00 AM	392	35	50																
10:00 AM	343	24	56																
11:00 AM	349	38	44																
12:00 PM	443	28	52					Y											
1:00 PM	418	35	54					Y											
2:00 PM	542	38	95	Y				Y	-					Y				Y	-
3:00 PM	622	31	90	V V				V						Ŷ		V	-	V	1
4:00 PM	595	25	100					V						v		-	-		
4.00 FIV	565	33	100					I V						I V			<u> </u>		
5:00 PM	554	44	88	ř		1	_	ř						ř V			<u> </u>	ř V	
6:00 PM	354	36	81									-		Y			<u> </u>	Y	_
7:00 PM	_																		
8:00 PM																			
9:00 PM																			
10:00 PM	_																		
11.00 PM	-																		
		Hours M	at				0				0				٥				1
		Demuined		-			0				0				0		<u> </u>	<u> </u>	
		Required		-			8				8	-			8		<u> </u>	<u> </u>	8
		Warrant	Met?				NO				NO				NO				NO
NOTES:		1		1		1	1	1	1	1	1	1	1	1	1	1	1	1	1
(a) Basic m	ninimum hour	lv volume		·	1	1			·	·	1	L	1	1	1		+	+	1
(b) Used to	r combinatio	n of Condit	tions A and E	S after o	decuped	trial of	ther rem	nedial m	ASSURA		1			1	1		+	+	1
									casures		ulation of		n 10.00	10			+	+	
(c) way be	used when t	ne major-s	reer speed e	exceeds	40 mpl	n or in ai	isolated	a commi		па рорі	ulation of		an 10,00		I	L .	<u> </u>	<u> </u>	
(d) May be	used for con	npination o	T Conditions	A and E	s atter a	aequate	trial of o	ther rem	nedial m	easures	when th	ie major	street s	speed ex	ceeds 4	u mph c	<u>ir in an i</u>	solated (commu
																	<u> </u>	<u> </u>	
Reference:	Federal Ma	nual on Ur	niform Traffic	Control	Device	s for Stre	eets and	Highwa	ys (MUT	CD), 20	009 Editi	on							
	New York S	State Suppl	lement to the	MUTC	D														
Checked:	AMM, KWV	V on 10/21	/2016				1								1				1
				1		1			1				1		1		1	1	1

Calculated By:
Calculated Date:
Checked By:
Checked Date:

Project:	Kingston Tra	ffic Signal W	/arrants																
Intersection	Washington	Ave/Pearl S	t																
Date:	7/30/2019			-															-
Analyst:																-		-	-
/ maryot.		1															+		-
-	Coloct vo	ur long ganfi	guration													-		-	-
	Select you	in lane conn	guration	_															-
-	Main 1.6	ide 1 🗸	4													<u> </u>	<u> </u>	<u> </u>	
	Widili 1, 3	side i 🔹	1																
											arrant 1								arrant
			3				100% (a)			80% (b)			100%(a	a)			80%(b
							500				400				750				600
							150				120				75				60
															1				
																-			-
																			-
	bbA	vourvolum	05														+		-
Llaur	Mashington	Deerl Ct	Deerl Ct				Cana	itian A									<u> </u>	+	Condit
Hour	washington	Pearl St	Pearl St			0.001	Cond	Ition A		.			10	<u> </u>					Condi
Beginning	NB/SB	EB	WB		10	0%			8	0%			10	0%			80	J%	
				Main	SS 1	SS 2	Overal	Main	SS 1	SS 2	Overal	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overa
12:00 AM																			
1:00 AM	_																		
2.00 AM	-									K									-
2:00 AM	-											-						-	-
3.00 AM	-											-					+	<u> </u>	-
4:00 AM	_																<u> </u>		
5:00 AM																	<u> </u>	<u> </u>	
6:00 AM												-					<u> </u>		
7:00 AM	517	130	43	Y				Y	Y		1		Y				Y		
8:00 AM	596	155	77	Y	Y		1	Y	Y		1		Y	Y			Y	Y	
9:00 AM	505	74	89	Y				Y						Y			Y	Y	
10:00 AM	445	89	103					Y					Y	Y			Y	Y	
11:00 AM	442	51	146					Y		Y	1			Y				Y	
12:00 PM	520	74	128	Y				Y		Y	1			Y			Y	Y	
1:00 PM	490	93	106					Y					Y	Y			Y	Y	
2.00 PM	626	89	128	Y				Y		Y	1		Y	Y		Y	Y	Y	1
3:00 PM	705	100	140	v.				· V		v.	1	-	v	v v		· V	v v	v v	1
4:00 PM	659	00	155			V	1	V		v	1		v	v		v	V	V	1
5:00 PM	671	04	164			v				V	1		v	v		V	V		1
5.00 FM	071	34	104					- 1		I V	1		<u> </u>						
6:00 PM	394	12	129							ř		-		Ť			ř	Y	-
7:00 PM	_											-							
8:00 PM	_											_					<u> </u>		_
9:00 PM	_																		
10:00 PM																			
11:00 PM																			
		Hours Met					3				8				0				4
		Required					8				8				8				8
		Warrant M	et?				No				No				No				No
						1	1						1	1			-		
																	+		-
	1				-	-	+	-	-					-		───	<u>+</u>	+	+
NOTES				-	-	1	+	-	-			-	-		-	ł	+	+	+
NOTES:	<u> </u>											L							
(a) Basic m	inimum hourly	volume.								1	1		1	L	1	 	<u> </u>	<u> </u>	+
(b) Used fo	r combination	of Conditior	ns A and B	after ade	equate t	rial of ot	her reme	edial me	asures.			<u> </u>					<u> </u>	<u> </u>	
(c) May be	used when the	e major-stre	et speed ex	kceeds 4	10 mph	or in an	isolated	commu	nity with	a popul	ation of	less thai	n 10,000).					
(d) May be	used for comb	oination of C	onditions A	and B a	after ade	equate t	rial of oth	ner reme	edial me	asures v	when the	e major s	street sp	eed exc	eeds 40	mph or	in an is	olated co	ommun
													<u> </u>			1		1	
Reference:	Federal Man	ual on Unifo	rm Traffic (Control D	Devices	for Stree	ets and I	lighwav	s (MUT	D), 200	9 Editio	n	1		1	1	1	1	1
	New York Sta	ate Supplem	nent to the	MUTCD					Ù										1
Checked:	AMM, KWW	on 10/21/20)16		1			1	1			1				1	1		1
			-	1	1	1.	+	1	L .	1	1	1	1		1	1	+	+	+

Calculated By:
Calculated Date:
Checked By:
Checked Date:

-				_															
Project:	Kingston Tr	affic Signal	Warrants																
Intersection	Washingtor	n Ave/Main \$	Street																
Date:	8/7/2019																		
Analyst:	MPF			-															
	7																	1	
	Select vo	ur lane cont	figuration																
	00.000,90		4															-	
	Main 1	, Side 1 🔍 🔻	· 1																
			- '								arrant 1								arrant
							1000/ (000/ /b				1000/ (c			+	0.00/ /h
]				100% (a)			00% (D)			100%(2	a <u>)</u>			00%(D
							500	-			400				/50				600
-							150				120				/5				60
												-							
	Add	d your volun	nes																
Hour	Washington	Main St	Main St				Cond	ition A											Condit
Beginning	NB/SB	EB	WB		10	0%			80)%			10	0%			80)%	
				Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overa
12.00 AM			1																
1:00 AM	-																		
2:00 AM	-									\mathbf{K}									
2.00 AM	-																	+	
3:00 AM	_							-										+	
4:00 AM	_																		
5:00 AM																			
6:00 AM	_																	<u> </u>	
7:00 AM	500	33	74	Y				Y										Y	
8:00 AM	578	40	73	Y				Y										Y	
9:00 AM	504	37	97	Y				Y						Y				Y	
10:00 AM	485	33	103					Y						Y				Y	
11:00 AM	465	30	105					Y						Y				Y	
12:00 PM	518	37	124	Y				Y		Y	1			Y				Y	
1:00 PM	502	31	110	Y				Y						Y				Y	
2:00 PM	631	32	149	Ý				Ý		Y	1			Ŷ		Y		Y	1
3:00 PM	723	25	150	Y		Y	1	Y		Y	1			Ŷ		Y		Y	1
4:00 PM	668	20	184	v v		Y.	1	Ý		v	1			Ý		Ý		Y Y	1
5:00 PM	570	45	202	×.		Ý	1	V V		v	1			Ý				Y Y	
6:00 PM	206	27	112			<u> </u>	<u> </u>							V				V	
7:00 PM	550	57	115															+ '	
7.00 FIVI	-																		
8:00 PM	_																		
9:00 PM	_															L	+	+	+
10:00 PM	_							-											
11:00 PM	1																		
		Hours Met	t				3				5				0				3
		Required					8				8				8				8
		Warrant M	let?				No				No				No				No
					1	1					1			1	1	1	1	1	
NOTES:											1							1	
(a) Basic m	ninimum hour	ly volume.										L			1			1	
(b) Used fo	r combination	n of Conditio	ons A and F	after a	dequate	trial of o	ther rem	nedial m	easures		1				1		1	1	
(c) May be	used when the	ne maior-str	reet speed a	anceede	40 mph	or in an	isolater	comm	inity with		lation of	less the	an 10.00	0	1	1	1	1	1
(d) May be	used for com	hination of	Conditions	A and P	after or		trial of or	ther rem			when th	o maior	street c	need ov	coode 4	0 mph c	r in an i	L hoted	COMMUN
(u) way be			CONULIONS	n anu B	anerac	equale				asules	when m	e major	SUBELS	peeu ex	Leeus 4		n in an i	SUIALEU	
Deference	Endorol Ma		form Troffic	Control	Doviora	for Star	l oto or d	Liebure										+	+
Relefence:	New Yer's C				Devices	SIUL SUE	eis and	nignwa	ys (IVIU I	сы), 20 Г	ວອ ແຕເດ	ווכ						+	+
Ohardaad	INEW YORK S	tate Supple	ement to the	WUTCL	ر ۱														
Checked:	AMM, KWV	v on 10/21/2	2016															 	-
naston Sian	als\comps\tr	ffic\Fed sig	nal warrant	-Washi	ington-N	lain		1.	of 1										

Project:___

Calculated By:	
Calculated Date:	
Checked By:	
Checked Date:	

Project:	Kingston Tr	affic Signal	Warrants																
Intersection	Pearl St/Wa	all St																	
Data:	6/10/2010																-		
Dale.	0/19/2019															<u> </u>			
Analyst:	MDN	1	1																
	Select yo	ur lane con	figuration																
		I	4																
	Main 1	, Side 1 🔍 🤜	· 1													-			
			- '													<u> </u>			
			-								arrant					Ļ			arrant
			3				100% (a)			80% (b)			100%(a	a)			80%(b
							500				400				750				600
							150				120				75				60
															1				
																		-	
	Ado	d your volun	nes																
Hour	Pearl St	Wall St	Side				Cond	ition A											Condit
Beginning	EB/M/B	NB	Street 2		10	0%			8(<u>0%</u>			10	0%			8/	0%	
Deginning	LD/WD	ND	Olicerz	Main	00.4	00.0	0	Main	00.4			Main	00.4	0.0	0	Main		1000	0
				Main	551	SS 2	Overall	Main	551	552	Overal	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overa
12:00 AM																			
1:00 AM	_																		
2.00 AM	-																	-	
2.00 / 111	-																	-	
3:00 AM	_																		
4:00 AM											K								
5:00 AM																			
6.00 AM																			
7:00 AM	174	101											V				V		
7.00 AN	1/4	101							N/				I V						
8:00 AM	316	194			Y				Ý				Y				Y		
9:00 AM	336	142							Y				Y				Y		
10:00 AM	314	118											Y				Y		
11.00 AM	364	145							Y				Y				Y		
12:00 PM	327	167			V				v				· V				v	+	1
12.00 1 10	005	107											I V						
1:00 PM	325	134							Y				Y				Ŷ		
2:00 PM	347	184			Y				Y				Y				Y		
3:00 PM	366	241			Y				Y				Y				Y		
4:00 PM	331	183			Y				Y				Y				Y		
5.00 PM	381	170			Y				Y				Y				Y		
6:00 DM	220	100			<u> </u>		_						V				V		
0.00 PIVI	230	102											T				1		
7:00 PM	_																		
8:00 PM																			
9:00 PM																			
10.00 PM	-																		
11:00 PM	-																-		
11.00110											-					<u> </u>		<u> </u>	-
		Hours Me	t				0				0				0				0
		Required					8				8				8				8
		Warrant M	let?				No				No				No				No
						1													
	-					1	1			1	1		1	1	1	1	+	+	1
				-			+										 	+	+
NOTES:	<u> </u>						<u> </u>												1
(a) Basic m	inimum hour	ly volume.																	
(b) Used for	r combinatio	n of Conditio	ons A and F	3 after ac	dequate	trial of c	other rem	nedial m	easures	5.			1	1	1	1	1	1	1
(c) May be	used when t	he major-st	reet speed	avcoode	40 mph	or in ar	isolated	comm	unity with	h a noni	lation of	lass the	an 10.00	0	1	1	1	1	1
		no major-sti	Canditian	Antickeus	-to mpr	lo ni di	trial of				anation 0	1005 1116			 	0			
(d) May be	usea for con	ination of	Conditions	A and B	atter ac	requate	trial of of	mer rem	ieaiai m	easures	wnen th	e major	street s	heeq ex	ceeds 4	<u>u mph o</u>	r in an is	solated (commu
	1			1									1	1		<u> </u>		\vdash	
Reference:	Federal Ma	nual on Uni	form Traffic	Control	Devices	s for Stre	ets and	Highwa	ys (MUT	rcd), 20	009 Editi	on							
	New York S	State Supple	ement to the)											1	1	1	
Checked [.]	AMM KW/V	V on 10/21/	2016			1				1	1		1	1		1	t	<u> </u>	1
checked.	,, ,,			+		+	+			+	+				+	<u> </u>	<u>+</u>	<u> </u>	+
	1	1	1	1	i .		1		1	1	1	i i	1	1	1		1	1	1

Calculated By:
Calculated Date:
Checked By:
Checked Date:

Project:	Kingston Tr	affic Signal	Warrants																
Intersection	Fair St/Pea	rl St																	
Date:	8/2/2019																		
Analyst:	MPF																		-
		1	1															-	-
	Select vo	ur lane con	figuration														-		-
-	Ocicci yo		Ingulation 4														-	-	-
	Main 1	Side 1	4																-
	Wall 1	, side i	1																-
			_								arrant 1								arrant
			3				100% (a)			80% (b)			_100%(a	a)			80%(t
							500				400				750				60
							150				120				75				6
	Ado	d vour volun	nes																-
Hour	Pearl St	Side	Fair St				Cond	ition A		1									Condi
Reginning	EDAND	Stroot 1	SP SP		10	100/	Cond		0/	10 /			10	09/				0%	Contai
Deginning	ED/WD	Slieet I	30	Main	00.4	00.0	0	Main	00 4	J /0		Main	10	0 /0	0	Main	00	J /0	0
]			Main	551	SS 2	Overall	Main	SS 1	552	Overall	Main	551	SS 2	Overall	Main	SS 1	SS 2	Overa
12:00 AM	_																		
1:00 AM																			
2:00 AM																			
3:00 AM																			
4:00 AM																			-
5:00 AM	-																-		-
6:00 AM																			-
7:00 AM	153	0	84											v			-	V	-
7.00 AM	100	0	04											I V					-
8:00 AM	312	0	144			V				Y				ř V				Y Y	-
9:00 AM	314	0	184			Ŷ				Y				Y				Y	
10:00 AM	302	0	188			Y				Y				Y				Y	
11:00 AM	359	0	218			<u> </u>				Y				Y				Y	
12:00 PM	324	0	239			Y				Y				Y				Y	
1:00 PM	320	0	244			Y				Y				Y				Y	
2:00 PM	350	0	238			Y			- -	Y				Y				Y	
3:00 PM	345	0	243			Y				Y				Y				Y	
4:00 PM	342	0	254			Y				Y				Y				Y	
5:00 PM	354	0	267			Y				Y				Y				Y	
6:00 PM	228	0	144							Y				Y			1	Y	
7:00 PM		Ũ												•				<u> </u>	-
8:00 PM	_																-	-	-
0:00 PM	_																-	-	-
10:00 PM	-																	<u> </u>	
10:00 PM	_																	<u> </u>	
11:00 PM											-							<u> </u>	_
		Hours Me	t				0				0				0				0
		Required					8				8				8			<u> </u>	8
		Warrant M	let?				No				No				No				No
											1								1
NOTES:										1	1						1		
(a) Basic mi	inimum hour	lv volume	I		1					·							1	1	1
(h) Llead for	r combinatio	n of Conditiv		after of	dequato	trial of o	ther reg	nedial m	Aasuree		1						+	+	
(c) May be		no major et	reat speed		10 met				unity with	h a nor	l Ilation of	loss the	n 10.00	0			+	+	+
(c) way be t	used when th	ie major-Sti	Canalitia		40 mpr	i or in an	trial of			n a popu		iess the	aii 10,00	v.		0	 		
(a) May be	used for com	noination of	Conditions	A and B	after ad	aequate	trial of o	ther rem	iedial m	easures	when th	e major	street s	peed ex	ceeds 4	u mph c	r in an is	solated (<u>commu</u>
	-	L		Ļ	L	I	L	L					L		L		<u> </u>	<u> </u>	
Reference:	Federal Ma	nual on Uni	torm Traffic	Control	Devices	s for Stre	ets and	Highwa	ys (MUT	CD), 20	09 Editio	on	L		L		<u> </u>	<u> </u>	1
	New York S	tate Supple	ement to the	MUTCI	D														
Checked:	AMM, KWV	/ on 10/21/2	2016																
acton Sign		ffic/Ead sid	nal warrant	-Eair-D	aarl			1.	of 1										

Calculated By:
Calculated Date:
Checked By:
Checked Date:

Project:	Kingston Tra	ffic Signal V	Varrants																
Intersection	Clinton Ave/	St. James St.	St																
Doto:	0/22/2010																-	-	
Dale.	0/22/2019																		
Analyst:	MPF																		
	Select vo	ur lane conf	figuration																
		1	1																
	Main 1	Side 1 👻	4														-	-	-
	Widin 1, .	side i 🔹	1																
											arrant 1								arrant
			3				100% (a)			80% (b)			100%(a	a)			80%(b
							500	-			400	Í			750	/			600
							450				400				- 100		-	-	000
							150				120				/5				60
																			-
	۸dd	luourvolum															-	-	-
	Add	i your volum	les																-
Hour	Clinton	St. James S	St. James S				Cond	ition A											Condit
Beainnina	NB/SB	EB	WB		10	0%			80)%			10	0%			80)%	
-5 5				Main	SS 1	55.2	Overall	Main	SS 1	55.2	Overall	Main	SS 1	SS 2	Overall	Main	SS 1	55.2	Overa
		1		Iviali	331	33 Z	Overall	Iviali i	331	33 Z	Overall	Iviairi	331	33 Z	Overall	IVIAIIT	331	33 Z	Overa
12:00 AM	_																		
1:00 AM																			
2.00 AM	-																		
0.00 414	-															-	-	-	-
3:00 AIVI	_															-			
4:00 AM	_																		
5:00 AM																			
6.00 AM																			
7:00 AM	176	20	20																
7.00 Alvi	170	30	20																
8:00 AM	199	50	40																
9:00 AM	202	43	38																
10:00 AM	192	58	54																
11:00 AM	226	55	18														-	-	
10:00 DM	220	50	70											V				V	
12:00 PIVI	204	51	78											Y				Y	
1:00 PM	221	44	77											Y				Y	
2:00 PM	289	70	50														Y		
3.00 PM	341	62	69														Y	Y	
4:00 PM	317	64	68														v	v	
4.00 F IVI	317	04	00													-		I	-
5:00 PM	316	91	72										Ŷ				Ŷ	Ŷ	
6:00 PM	165	34	52																
7:00 PM																			
8.00 PM	-																		
0.00 PM	-																		
9.00 PIVI	-																		
10:00 PM	_																		
11:00 PM																			
		Hours Me	t				0	Γ	I		0				0	T	Γ	Γ	0
		Poquirod	1	-			0				0				0	-	-	-	0
-		Required					0				0				0	-	-	-	0
		warrant w	let?				INO				INO				INO				INO
																	1	1	1
	1	1	1			1	1				1		1	1	1	1	t	t	t
NOTES											-						+	+	+
NUTES:	I	I	I			1	I				1	L			1		<u> </u>	<u> </u>	4
(a) Basic m	inimum hourly	/ volume.																	
(b) Used for	r combination	of Condition	ns A and B	after ade	equate t	rial of ot	her reme	edial me	asures.								1	1	
(c) May be	used when the	e major-stre	et speed ex	(ceeds /	10 mph	or in an	isolated	commu	hity with		ation of	ass that	10 000	,)	1	1	1	1	1
(c) way be	useu when the	e major-stre	set speed es		io mpri o	orman	solated	commu	inty with	a popul		ess indi	110,000	,.	L	L	<u>. </u>	<u> </u>	I
(d) May be	used for comb	pination of C	onditions A	and B a	atter ade	equate ti	ial of oth	ner reme	dial me	asures v	when the	major s	street sp	eed exc	eeds 40	mph or	in an iso	plated co	ommun
			1														1	1	1
Reference:	Federal Man	ual on Unifo	orm Traffic C	Control D	Devices	for Stree	ets and H	lighwav	s (MUTC	D), 200	09 Editio	า					1	1	1
	New York St	ate Suppler	ment to the			1		5	,,	,,				1	1		1	1	1
Chookod		on 10/21/2	016			+					1		1	1	1	1	+	+	+
Checked:	AIVIIVI, AVVVV	01110/21/20	010			I					-				I				+
	1	La	1		I	1	1	I .	L .	1	1	1	1	1	1	1	1	1	1

Calculated By:
Calculated Date:
Checked By:
Checked Date:

				-	1	-	1								1				
Project:	Kingston Tr	affic Signal	Warrants																
Intersection	Clinton Ave	/Franklin St																	
Date:	8/22/2019																		
Analyst:	MPF																		
		1	1																-
	Select vo	ur lane con	figuration																
	Main 1	Side 1	- 4														<u> </u>		
		, side i															<u> </u>		
			_				<u> </u>				arrant 1				<u> </u>				arrant
			3	1			100% (a)			80% (b)			100%(a	a)			80%(b
							500				400				750				600
							150				120				75				60
							1]				
																			-
																	-	-	+
	Ad	d your yolun																	
	Au			. —													<u> </u>		0 10
Hour	Clinton	Franklin St	Franklin St	t			Cond	ition A											Condit
Beginning	NB/SB	EB	WB		10)0%			80)%			10	0%			80	ጋ%	
				Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overa
12:00 AM																			1
1:00 AM	-																-	-	+
2:00 AM	_																		
2.00 Alvi	_																<u> </u>		
3:00 AM	_																		
4:00 AM	_										K								
5:00 AM																			
6:00 AM																			
7.00 AM	146	44	56																-
8:00 AM	187	01	65										v				v	V	
0:00 AM	107	74	45														V		-
9:00 AM	183	74	45														ř.		
10:00 AM	184	66	53														Y		
11:00 AM	194	49	35																
12:00 PM	186	54	54																
1:00 PM	186	72	71														Y	Y	
2:00 PM	247	69	82											Y			Y	Y	
3:00 PM	295	89	95										Y	Y			Y	Y	
4:00 PM	240	80	110										v	Ý			v	v v	+
5:00 PM	257	81	90										v	v			v	v	
0.00 PM	201	01	30				_	-									V	I V	
6:00 PM	169	61	66					-									Ť	ř	
7:00 PM	_																		
8:00 PM	_																		
9:00 PM																			
10:00 PM																			
11:00 PM	-																		
		Hours Met	•				0				0				0			-	0
		Poquirod	-				0				0				0				0
		Required		-			0				0				0		<u> </u>		0
		warrant w	et?				INO				NO				INO		<u> </u>		INO
NOTES:																			
(a) Basic m	ninimum hou	lv volume		1		1	1				1	L	<u> </u>	<u> </u>	1		+	1	+
(b) Llood fo	r combinatio	n of Conditio	one A and F	after of	dequata	trial of a	ther ro~	nedial m	00000000		1				1		+	1	+
(b) Used IO									easures		detien of	laaa dhii	10.00				+	+	+
(c) May be	usea when t	ne major-str	eet speed	exceeds	40 mpr	i or in ar	solated		unity with	i a popu	liation of	less that	an 10,00	<i>.</i> .	I	L .	Ļ	<u> </u>	1
(d) May be	used for con	nbination of	Conditions	A and B	after ad	dequate	trial of o	ther rem	edial me	easures	when th	e major	street s	peed ex	ceeds 4	0 mph c	r in an is	solated	commu
		<u> </u>																	
Reference:	Federal Ma	nual on Uni	form Traffic	Control	Devices	s for Stre	ets and	Highwa	ys (MUT	CD), 20	009 Editio	on							
	New York S	State Supple	ment to the	MUTCI	C														
Checked:	AMM, KWV	V on 10/21/2	2016	1			1	1	1		1				1	1	1	1	1
					-						1						1	1	+
naston Sign	als\comps\tr	affic\Fed sig	hal warrant	e-Clintor	1-Frankl	ih	1	1.	5f 1	1	1	1	1	1	1	1			

Project:___

Calculated By:_	
Calculated Date:_	
Checked By:_	
Checked Date:	

Project:	Kingston Tr	affic Signal	Warrants																	
Intersection	Clinton Ave	/Henry Stree	ət																	
Date:	8/5/2019																			
Analyst:	MPF																			
	Select yo	ur lane conf	iguration																	
			4																	
	Main 1,	Side 1 🔍 🔻	1																	
											arrant 1									arrant 1
			3				100% (a)			80% (h)	56%	(d)			100%(a)			80%(h)
							500	~/			400	280	(~ /			750	·/			600
							150				120	84				75				000
							150	-			120	04				75				00
																		<u> </u>		
																			<u> </u>	
	A .1.																			
	Add	l your volum	nes									<u> </u>						<u> </u>	<u> </u>	
Hour	Clinton Ave	Henry St	Henry St				C	ondition	A											Conditio
Beginning	NB/SB	EB	WB		10	0%			8	0%		56%		10	0%			80)%	
				Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overall	Overa	Main	SS 1	SS 2	Overall	Main	SS 1	SS 2	Overall
12:00 AM																				
1:00 AM	-																			
2.00 AM	-																			
2:00 AM	-												Ţ.							
3.00 AM	-																		<u> </u>	
4:00 AM	-																			
5:00 AM																		<u> </u>	<u> </u>	
6:00 AM																				
7:00 AM	156	60	63															Y	Y	
8:00 AM	229	79	105											Y	Y			Y	Y	
9:00 AM	191	64	83												Y			Y	Y	
10:00 AM	188	48	60																Y	
11:00 AM	188	56	64																Y	
12:00 PM	222	62	63															Y	Y	
1:00 PM	297	65	81												Y			Y	Y	
2:00 PM	245	89	102											Y	Y			Y	Y	
3.00 PM	300	95	128							Y		1		Y	Y			Y	Y	
4:00 PM	266	76	109											Ŷ	Ŷ			Ŷ	Ŷ	
5:00 PM	258	69	120							V				•	Ý			Ý	· V	
6:00 PM	180	43	88								1							· ·	v	
7:00 PM	100	45	00																	
7.00 FM	-																		<u> </u>	
8:00 PM	-																			
9:00 PM	-																	<u> </u>		
10:00 PM	-																	<u> </u>	 	
11:00 PM										<u> </u>								<u> </u>	<u> </u>	
		Hours Met					0				0	1				0				0
		Required					8				8	8				8				8
		Warrant M	et?				No				No	No				No				No
							1													
							1													
NOTES:					1		1													
(a) Basic m	inimum hour	lv volume			1		1					L								
(b) Used for	r combination	of Conditic	ns A and P	after a	dequate	trial of o	other rem	edial m	asures		1							<u> </u>		
(c) May be	used when the	no major-etr	eet speed o		40 mph	or in or			nity with		lation of	lace th	an 10 0	0						
(d) May be	used for ear	binotion of	Conditions	A and F		loquete	trial of of	bor rom			when the	uoos (II	r ofreet	ou.	l l	10 mnh -	or in or		000000	aita a site
(u) way be	used for com	TO NUISING IN	CONDITIONS	A and E	aner ac	equate	uiai 01 01	ner rem	eulai me	easures	when the	= maj0	sueets	speea ex	ceeus 4	to mpn c	n in an i	solated	commur	nty with
Defense	E a da val 114-		a ma Traff' -	Canterl	Davia	fan Cr	-	l linda a const				<u> </u>						<u> </u>		
Reierence:	recerai Mai	uai on Unit		Control	Devices	IOF STR	ets and	riignwa	ys (IVIU I	U), 20	UA Editio	11						<u> </u>		
	New York S	tate Supple	ment to the	MUIC														<u> </u>	<u> </u>	
Checked:	AMM, KWW	/ on 10/21/2	:016	L		L				L	L		L					<u> </u>		
Kingston S		s\traffic\Eed	signal warr	ants-Cl	inton-Ho	00/			1 of 1											

Attachment L Level of Service Calculations

Traffic Signal Removal Assessment City of Kingston, New York

LOS Definitions

The following is an excerpt from the <u>Highway Capacity Manual, 6th Edition</u> (HCM).

Level of Service for Signalized Intersections

Level of Service (LOS) can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control delay *and* volume-to-capacity (v/c) ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure of driver discomfort and fuel consumption. The v/c ratio quantifies the degree to which a phase's capacity is utilized by a lane group. The following paragraphs describe each LOS.

LOS A describes operations with a control delay of 10 s/veh or less and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

LOS B describes operations with control delay between 10 and 20 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LOS C describes operations with control delay between 20 and 35 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

LOS D describes operations with control delay between 35 and 55 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E describes operations with control delay between 55 and 80 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

LOS F describes operations with control delay exceeding 80 s/veh or a v/c ratio greater than 1.0. This level is typically assigned when the v/c ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

A lane group can incur a delay less than 80 s/veh when the v/c ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and v/c ratio are considered when lane group LOS is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 s/veh represents failure from a delay perspective).

Average control delay and queue length at roundabout controlled intersections are calculated using SIDRA Intersection. The physical geometry such as entry lane width and approach flare, and traffic volume at the roundabout are factors that influence the intersection's performance. The average delay reported using SIDRA Intersection is based on the signalized HCM Method of Delay for Level-of-Service.
Level of Service Criteria for Unsignalized Intersections

Level of service (LOS) for Two-Way Stop-Controlled (TWSC) intersections is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement) as well as major-street left turns by using criteria given in Exhibit 20-2. LOS is not defined for the intersection as a whole or for major-street approaches for three primary reasons: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehicles; and (c) the resulting low delay can mask important LOS deficiencies for minor movements. LOS F is assigned to the movement if the volume-to-capacity (v/c) ratio for the movement exceeds 1.0, regardless of the control delay.

The LOS criteria for TWSC intersections are somewhat different from the criteria used in Chapter 18 for signalized intersections, primarily because user perceptions differ among transportation facility types. The expectation is that a signalized intersection is designed to carry higher traffic volumes and will present greater delay than an unsignalized intersection. Unsignalized intersections are also associated with more uncertainty for users, as delays are less predictable than they are at signals, which can reduce users' delay tolerance.

The LOS criteria for All-Way Stop-Controlled (AWSC) intersections are given in Exhibit 21-8. LOS F is assigned if the v/c ratio of a lane exceeds 1.0, regardless of the control delay. For assessment of LOS at the approach and intersection levels, LOS is based solely on control delay.

LOS by Volume-t	o-Capacity Ratio
v/c <u><</u> 1.0	v/c <u>></u> 1.0
A	F
В	F
C	F
D	F
E	F
F	F
	LOS by Volume-t v/c ≤ 1.0 A B C D E F

Exhibits 20-2/21-8: Level-of-Service Criteria for Stop Controlled Intersections

	۶	→	*	4	+	*	*	1	1	5	Ļ	1
Movement	EBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			44	
Traffic Volume (veh/h)	13	23	13	3	27	37	11	212	0	16	260	15
Future Volume (veh/h)	13	23	13	3	27	37	11	212	0	16	260	15
Initial $O(Ob)$ veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A nhT)	0.99		1.00	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus Adi	1 00	1.00	1.00	1.00	1.00	0.88	1.00	0.89	1.00	1.00	1.00	0.89
Work Zone On Approach	1.00	No			No			No			No	
Adi Sat Flow, veh/h/ln	1841	1841	1841	1884	1884	1884	1806	1806	1806	1853	1853	1853
Adj Elow Rate veh/h	15	27	9	4	32	33	13	249	0	19	306	17
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Porcent Heavy Veh %	4	4	4	6	6	6	11	11	11	8	8	8
Cap yeh/h	192	320	93	69	249	235	74	759	0	79	727	39
Arrive On Green	0.32	0.32	0.32	0.32	0.32	0.32	0.48	0.48	0.00	0.48	0.48	0.48
Sat Flow, yeb/b	361	991	290	23	771	728	27	1569	0	36	1502	80
	51	0	0	69	0	0	262	0	0	342	0	0
Grp Set Elevi(a) veh/h/h	1642	0	0	1522	0	0	1596	0	0	1619	0	0
	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Q Serve(Q_s), s	1.2	0.0	0.0	2.0	0.0	0.0	54	0.0	0.0	8.4	0.0	0.0
Cycle Q Clear (g_c), s	0.20	0.0	0.0	0.06	0,0	0.48	0.05	0.0	0.00	0.06		0.05
Prop In Lane	605	0	0.10	552	0	0.40	833	0	0	845	0	0
Lane Grp Cap(c), ven/n	000	0.00	0 00	0.12	0.00	0.00	0.31	0.00	0.00	0.40	0.00	0.00
	0.00	0.00	0.00	552	0.00	0.00	833	0.00	0	845	0	0
Avail Cap(c_a), ven/ii	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1 00	1 00	1 00	1.00	1.00
	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Upstream Filter(I)	14.6	0.00	0.00	1/ 0	0.00	0.00	9.7	0.00	0.0	10.4	0.0	0.0
Uniform Delay (d), s/ven	14.0	0.0	0.0	0.5	0.0	0.0	1.0	0.0	0.0	14	0.0	0.0
Incr Delay (d2), s/ven	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(03),s/ven	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	29	0.0	0.0
%ile BackOfQ(50%),Ven/in	0.5	0.0	0.0	0.7	0.0	0.0	2.1	0.0	0.0	2.0	0.0	0.0
Unsig. Movement Delay, s/ven	110	0.0	0.0	15 4	0.0	0.0	10.6	0.0	0.0	11 9	0.0	0.0
LnGrp Delay(d),s/veh	14.9	0.0	0.0	13.4	0.0	0.0	10.0 D	0.0	0.0	B	Δ	Δ
LnGrp LOS	В	A	A	В	A	A	D	262			342	
Approach Vol, veh/h		51			69			10.6			11 0	
Approach Delay, s/veh		14.9			15.4			10.0 D			II.J	
Approach LOS		В			В			В			U	
Timer - Assigned Phs		2	1-	4	1	6	See. de	8	-	in	E.M.	
Phs Duration (G+Y+Rc), s		36.0		26.0		36.0		26.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		30.0		20.0		30.0		20.0				
Max Q Clear Time (q c+l1), s		7.4		3.2		10.4		4.0				
Green Ext Time (p_c), s		1.5		0.2		2.0		0.2				
Intersection Summary	1		Ser.						-	1	24	4
HCM 6th Ctrl Delay			12.0									
HCM 6th LOS			В									

Intersection

Int De	lay,	s/	veh
--------	------	----	-----

Movement EBL EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations + <t< th=""><th>Int Delay, s/veh</th><th>2.9</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Int Delay, s/veh	2.9											
Lane Configurations Image: April 1 and Configuration in the image: Aprilet and C	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h 13 23 13 3 27 37 11 212 0 16 260 15 Future Vol, veh/h 13 23 13 3 27 37 11 212 0 16 260 15 Conflicting Peds, #/hr 0 0 1 0 4 0 0 1 4 0 0 Sign Control Stop Stop Stop Stop Stop Stop Stop Free Free </td <td>Lane Configurations</td> <td></td> <td>4</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>4</td> <td></td>	Lane Configurations		4			4			4			4	
Future Vol, veh/h 13 23 13 3 27 37 11 212 0 16 260 15 Conflicting Peds, #/hr 0 0 0 1 0 4 0 0 1 4 0 0 Sign Control Stop Stop Stop Stop Stop Stop Stop Free Free <t< td=""><td>Traffic Vol, veh/h</td><td>13</td><td>23</td><td>13</td><td>3</td><td>27</td><td>37</td><td>11</td><td>212</td><td>0</td><td>16</td><td>260</td><td>15</td></t<>	Traffic Vol, veh/h	13	23	13	3	27	37	11	212	0	16	260	15
Conflicting Peds, #/hr 0 0 1 0 4 0 0 1 4 0 0 Sign Control Stop Stop Stop Stop Stop Stop Stop Free Fre	Future Vol, veh/h	13	23	13	3	27	37	11	212	0	16	260	15
Sign Control Stop Stop Stop Stop Stop Stop Stop Stop Stop Free	Conflicting Peds, #/hr	0	0	0	1	0	4	0	0	1	4	0	0
RT Channelized - - None - - None None -	Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
Storage Length - 0 - - 0 - - 0 - - 0 0	RT Channelized		-	None	-	-	None	-	-	None	-	-	None
Veh in Median Storage, # - 0 - - 0 10 10 <td< td=""><td>Storage Length</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>•</td><td>-</td><td>-</td><td>*</td><td>-</td><td>-</td></td<>	Storage Length	-	-	-		-		•	-	-	*	-	-
Grade, % - 0 1 0 1 0 1 0 1 0 1 0<	Veh in Median Storage	,# -	0	-	-	0		-	0	-	-	0	-
Peak Hour Factor 85	Grade, %	-	0	-	0-1	0	-	-	0			0	-
Heavy Vehicles, % 0 4 0 0 6 11 0 11 0 6 8 0	Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Mumt Flow 15 27 15 4 32 44 13 249 0 19 306 18	Heavy Vehicles, %	0	4	0	0	6	11	0	11	0	6	8	0
VIVIAL FIOW 15 27 15 4 52 44 15 245 6 15 666 16	Mvmt Flow	15	27	15	4	32	44	13	249	0	19	306	18

Major/Minor	Minor2		N	linor1	1		Major1		I	Major2			
Conflicting Flow All	670	632	316	654	641	257	324	0	0	253	0	0	
Stage 1	353	353		279	279	-	•	-	-	100	-	-	
Stage 2	317	279	-	375	362	-	-	10	-				
Critical Hdwy	7.1	6.54	6.2	7.1	6.56	6.31	4.1	-	-	4.16	-	7	
Critical Hdwy Stg 1	6.1	5.54		6.1	5.56	-		-			*		
Critical Hdwy Stg 2	6.1	5.54	-	6.1	5.56	-			-			-	
Follow-up Hdwy	3.5	4.036	3.3	3.5	4.054	3.399	2.2	-	-	2.254			
Pot Cap-1 Maneuver	373	395	729	383	388	760	1247		-	1289		-	
Stage 1	668	627		732	673		-						
Stage 2	698	676	-	650	618	-		•		-		-	
Platoon blocked, %													
Mov Cap-1 Maneuver	320	382	728	345	375	753	1247			1283	-		
Mov Cap-2 Maneuver	320	382		345	375								
Stage 1	660	616	-	720	662	9 4				-	-		
Stage 2	616	665	-	597	607	14	-						
					7								

Approach	EB	WB	NB	SB	
HCM Control Delay, s	15.1	13.2	0.4	0.4	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1247	-	-	413	516	1283	-	
HCM Lane V/C Ratio	0.01	-		0.14	0.153	0.015	-	*
HCM Control Delay (s)	7.9	0	-	15.1	13.2	7.8	0	-
HCM Lane LOS	A	А		С	В	А	А	1
HCM 95th %tile Q(veh)	0	-	-	0.5	0.5	0		-

HCM 6th AWSC Kingston Signals; 118-064

Intersection Delay, s/veh 10.4 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SET	SBR
Lane Configurations		42			4			4			(
Traffic Vol. veh/h	13	23	13	3	27	37	11	212	0	16	260	15
Future Vol. veh/h	13	23	13	3	27	37	11	212	0	16	260	15
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles, %	0	4	0	0	6	11	0	11	0	6	8	0
Mymt Flow	15	27	15	4	32	44	13	249	0	19	306	18
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB	incepter-	1	WB		36	NB	-	2	SB	1	
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.9			8.7			10.1			11.3		
HCM LOS	А			А			В			В		

	1101	mmi d	AN (D)	ODI d	
Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	27%	4%	5%	
Vol Thru, %	95%	47%	40%	89%	
Vol Right, %	0%	27%	55%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	223	49	67	291	
LT Vol	11	13	3	16	
Through Vol	212	23	27	260	
RT Vol	0	13	37	15	
Lane Flow Rate	262	58	79	342	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.338	0.085	0.11	0.44	
Departure Headway (Hd)	4.644	5.286	5.036	4.626	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	771	673	706	777	
Service Time	2.693	3.359	3.107	2.672	
HCM Lane V/C Ratio	0.34	0.086	0.112	0.44	
HCM Control Delay	10.1	8.9	8.7	11.3	
HCM Lane LOS	В	А	А	В	
HCM 95th-tile Q	1.5	0.3	0.4	2.3	

	1	-	7	4	+	×	1	Ť	1	4	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4			4	
Traffic Volume (veh/h)	17	21	5	9	51	31	20	265	6	15	297	16
Future Volume (veh/h)	17	21	5	9	51	31	20	265	6	15	297	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00		0.99	0.99		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.89	1.00	1.00	0.89
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1961	1961	1961	1914	1914	1914	1961	1961	1961
Adj Flow Rate, veh/h	18	22	4	9	53	22	21	276	5	16	309	15
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	0	0	0	1	1	1	4	4	4	1	1	1
Cap, veh/h	263	300	48	88	364	138	86	771	13	76	781	37
Arrive On Green	0.32	0.32	0.32	0.32	0.32	0.32	0.48	0.48	0.48	0.48	0.48	0.48
Sat Flow, veh/h	561	930	149	74	1129	427	49	1594	28	30	1613	76
Grp Volume(v), veh/h	44	0	0	84	0	0	302	0	0	340	0	0
Grp Sat Flow(s), veh/h/ln	1640	0	0	1631	0	0	1671	0	0	1719	0	0
Q Serve(a s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(q c), s	1.0	0.0	0.0	2.2	0.0	0.0	6.9	0.0	0.0	7.8	0.0	0.0
Prop In Lane	0.41		0.09	0.11		0.26	0.07		0.02	0.05		0.04
Lane Grp Cap(c), veh/h	611	0	0	590	0	0	871	0	0	893	0	0
V/C Ratio(X)	0.07	0.00	0.00	0.14	0.00	0.00	0.35	0.00	0.00	0.38	0.00	0.00
Avail Cap(c a), veh/h	611	0	0	590	0	• 0	871	0	0	893	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	14.6	0.0	0.0	15.0	0.0	0.0	10.0	0.0	0.0	10.3	0.0	0.0
Incr Delay (d2), s/veh	0.2	0.0	0.0	0.5	0.0	0.0	1.1	0.0	0.0	1.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	0.0	0.9	0.0	0.0	2.5	0.0	0.0	2.8	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	14.8	0.0	0.0	15.5	0.0	0.0	11.1	0.0	0.0	11.5	0.0	0.0
LnGrp LOS	В	А	A	В	А	A	В	А	A	В	A	A
Approach Vol, veh/h		44			84			302			340	
Approach Delay, s/veh		14.8			15.5			11.1			11.5	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2		4	-	6	2.1	8				
Phs Duration (G+Y+Rc), s		36.0		26.0		36.0		26.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		30.0		20.0		30.0		20.0				
Max Q Clear Time (g_c+l1), s		8.9		3.0		9.8		4.2				
Green Ext Time (p_c), s		1.8		0.1		2.0		0.3				
Intersection Summary		1.1.1	1 1 20				and a second	hille				1-1-1
HCM 6th Ctrl Delay			12.0									
HCM 6th LOS			В									

the second		
nto	1000	non
	10-11-1 D	
	1000	
1000000000	ALC: NO DECISION OF	

Int Delay, s/veh	3.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	and the second
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	17	21	5	9	51	31	20	265	6	15	297	16	
Future Vol, veh/h	17	21	5	9	51	31	20	265	6	15	297	16	
Conflicting Peds, #/hr	0	0	4	0	0	1	0	0	3	0	0	1	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-			-	-		-	-	-		-	
Veh in Median Storage,	# -	0		•	0	-	•	0	-	-	0	4	
Grade, %	-	0		-	0	-	-	0	-	-	0		
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	2	0	2	2	1	2	2	4	2	2	1	2	
Mvmt Flow	18	22	5	9	53	32	21	276	6	16	309	17	

Major/Minor	Minor2			Minor1			Major1			N	Aajor2		- 15	
Conflicting Flow All	716	678	323	691	683	283	327	0		0	285	0	0	
Stage 1	351	351	-	324	324	-	-	-		14	-	-		
Stage 2	365	327		367	359	-	-	-	•	-		-		
Critical Hdwy	7.12	6.5	6.22	7.12	6.51	6.22	4.12				4.12	-	+	
Critical Hdwy Stg 1	6.12	5.5	-	6.12	5.51	-								
Critical Hdwy Stg 2	6.12	5.5	-	6.12	5.51	-	-	10		-				
Follow-up Hdwy	3.518	4	3.318	3.518	4.009	3.318	2.218			-	2.218		*	
Pot Cap-1 Maneuver	345	377	718	359	373	756	1233			-	1277	-	-	
Stage 1	666	636		688	651		-			+		141		
Stage 2	654	651	-	653	629	-	-	-	1					
Platoon blocked, %													•	
Mov Cap-1 Maneuver	284	362	714	328	358	753	1232	-		-	1273			
Mov Cap-2 Maneuver	284	362		328	358	-	-				A n ti		2.00	
Stage 1	652	626	-	672	636	-	-	37						
Stage 2	562	636	-	613	619	-	-	22	•					

Approach	EB	WB	NB	SB	
HCM Control Delay, s	17	15.7	0.5	0.4	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1W	/BLn1	SBL	SBT	SBR	
Capacity (veh/h)	1232	-	-	344	431	1273			
HCM Lane V/C Ratio	0.017	-	÷.	0.13	0.22	0.012	-	(*)	
HCM Control Delay (s)	8	0	-	17	15:7	7.9	0	-	
HCM Lane LOS	А	А		С	С	А	А		
HCM 95th %tile Q(veh)	0.1	-		0.4	0.8	0	-		

HCM 6th AWSC Kingston Signals; 118-064

Intersection

Intersection Delay, s/veh Intersection LOS

h 10.7

В

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4>	
17	21	5	9	51	31	20	265	6	15	297	16
17	21	5	9	51	31	20	265	6	15	297	16
0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
2	0	2	2	1	2	2	4	2	2	1	2
18	22	5	9	53	32	21	276	6	16	309	17
0	1	0	0	1	0	0	1	0	0	1	0
EB	TT 5		WB			NB			SB	1-2-1	
WB			EB			SB			NB		
1			1			1			1		
SB			NB			EB			WB		
1			1			1			1		
NB			SB			WB			EB		
1			1			1			1		
9.1			9.2			10.8			11.3		
А			А			В			В		
	EBL 17 17 0.96 2 18 0 EB WB 1 SB 1 SB 1 NB 1 9.1 A	EBL EBT 17 21 17 21 17 21 0.96 0.96 2 0 18 22 0 1 EB WB 1 SB 1 1 NB 1 9.1 A	EBL EBT EBR 17 21 5 17 21 5 17 21 5 0.96 0.96 0.96 2 0 2 18 22 5 0 1 0 EB WB 1 0 SB 1 1 NB 1 9.1 9.1 A	EBL EBT EBR WBL	EBL EBT EBR WBL WBT ↑ ↑ ↑ ↑ 17 21 5 9 51 17 21 5 9 51 17 21 5 9 51 0.96 0.96 0.96 0.96 0.96 2 0 2 2 1 18 22 5 9 53 0 1 0 0 1 EB WB EB 1 1 1 1 SB NB SB 1 1 1 1 1 9.1 9.2 4 4	EBL EBT EBR WBL WBT WBR ♣ ♣ ♣ ♣ 17 21 5 9 51 31 17 21 5 9 51 31 17 21 5 9 51 31 0.96 0.96 0.96 0.96 0.96 0.96 2 0 2 2 1 2 18 22 5 9 53 32 0 1 0 0 1 0 EB WB EB WB EB 1 1 1 SB NB SB 1 1 NB SB SB 1 1 9.1 9.2 4 A	EBL EBT EBR WBL WBT WBR NBL 17 21 5 9 51 31 20 17 21 5 9 51 31 20 17 21 5 9 51 31 20 0.96 0.96 0.96 0.96 0.96 0.96 0.96 2 0 2 2 1 2 2 18 22 5 9 53 32 21 0 1 0 0 1 0 0 EB WB EB SB SB MB 1 1 1 1 1 1 SB NB EB SB WB EB MB 1 1 1 1 1 1 1 NB SB WB 1 1 1 1 9.1 9.2 10.8 8 8 8	EBL EBT EBR WBL WBT WBR NBL NBT ♣ ♣ ♣ ♣ ♣ ♣ ♣ 17 21 5 9 51 31 20 265 17 21 5 9 51 31 20 265 0.96 0.96 0.96 0.96 0.96 0.96 0.96 2 0 2 2 1 2 2 4 18 22 5 9 53 32 21 276 0 1 0 0 1 0 0 1 EB WB EB SB SB SB 1 1 1 1 1 NB SB NB EB 1 1 1 1 1 1 NB SB WB 1 1 1 1 1 1 9.1 9.2 10.8 B	EBL EBT EBR WBL WBT WBR NBL NBT NBR 17 21 5 9 51 31 20 265 6 17 21 5 9 51 31 20 265 6 17 21 5 9 51 31 20 265 6 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 2 0 2 2 1 2 2 4 2 18 22 5 9 53 32 21 276 6 0 1 0 0 1 0 0 1 0 EB WB EB SB SB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 17 21 5 9 51 31 20 265 6 15 17 21 5 9 51 31 20 265 6 15 0.96	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 17 21 5 9 51 31 20 265 6 15 297 17 21 5 9 51 31 20 265 6 15 297 0.96 <t< td=""></t<>

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	7%	40%	10%	5%	
Vol Thru, %	91%	49%	56%	91%	
Vol Right, %	2%	12%	34%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	291	43	91	328	
LT Vol	20	17	9	15	
Through Vol	265	21	51	297	
RT Vol	6	5	31	16	
Lane Flow Rate	303	45	95	342	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.395	0.069	0.139	0.439	
Departure Headway (Hd)	4.692	5.557	5.275	4.63	
Convergence, Y/N	Yes	Yes	Yes	Yes	6
Сар	764	638	674	772	
Service Time	2.746	3.648	3.356	2.683	3
HCM Lane V/C Ratio	0.397	0.071	0.141	0.443	
HCM Control Delay	10.8	9.1	9.2	11.3	3
HCM Lane LOS	В	А	А	В	3
HCM 95th-tile Q	1.9	0.2	0.5	2.3	3

	۶	-	*	4	+	*	1	Ť	1	4	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	d of the late		4>			4	
Traffic Volume (veh/h)	20	90	40	4	41	31	9	247	24	63	249	12
Future Volume (veh/h)	20	90	40	4	41	31	9	247	24	63	249	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adi Sat Flow, veh/h/ln	1870	1870	1870	1781	1781	1781	1752	1752	1752	1796	1796	1796
Adi Flow Rate, veh/h	22	100	40	4	46	32	10	274	27	70	277	12
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	8	8	8	10	10	10	7	7	7
Cap, veh/h	85	314	113	55	260	170	58	814	78	184	690	28
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	118	1194	430	21	986	645	18	1546	149	243	1312	54
Grp Volume(v), veh/h	162	0	0	82	0	0	311	0	0	359	0	0
Grp Sat Flow(s).veh/h/ln	1742	0	0	1652	0	0	1712	0	0	1608	0	0
Q Serve(a s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0
Cycle Q Clear(g c), s	5.6	0.0	0.0	2.9	0.0	0.0	7.9	0.0	0.0	9.2	0.0	0.0
Prop In Lane	0.14		0.25	0.05		0.39	0.03		0.09	0.19		0.03
Lane Grp Cap(c), veh/h	512	0	0	484	0	0	950	0	0	903	0	0
V/C Ratio(X)	0.32	0.00	0.00	0.17	0.00	0.00	0.33	0.00	0.00	0.40	0.00	0.00
Avail Cap(c a), veh/h	512	0	0	484	0	0	950	0	0	903	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.7	0.0	0.0	21.7	0.0	0.0	10.4	0.0	0.0	10.7	0.0	0.0
Incr Delay (d2), s/veh	1.6	0.0	0.0	0.8	0.0	0.0	0.9	0.0	0.0	1.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	0.0	0.0	1.2	0.0	0.0	2.9	0.0	0.0	3.5	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	24.3	0.0	0.0	22.5	0.0	0.0	11.3	0.0	0.0	12.0	0.0	0.0
LnGrp LOS	С	А	A	С	А	A	В	A	А	В	А	A
Approach Vol. veh/h		162			82			311			359	
Approach Delay, s/veh		24.3			22.5			11.3			12.0	
Approach LOS		С			С			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		28.0		48.0		28.0		48.0				
Change Period (Y+Rc), s		8.0		8.0		8.0		8.0				
Max Green Setting (Gmax), s		20.0		40.0		20.0		40.0				
Max Q Clear Time (g_c+l1), s		7.6		11.2		4.9		9.9				
Green Ext Time (p_c), s		0.6		2.5		0.3		2.0				
Intersection Summary		11		6.18			the second		1	95	- 22	
HCM 6th Ctrl Delay			14.9									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

6.5

Intersection

Int Delay, s/veh

Movement EBL EB	T EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	•		4			4			4	
Traffic Vol, veh/h 20 9	0 40	4	41	31	9	247	24	63	249	12
Future Vol, veh/h 20 9	0 40	4	41	31	9	247	24	63	249	12
Conflicting Peds, #/hr 0	0 1	0	0	2	0	0	0	0	0	1
Sign Control Stop Sto	p Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized -	- None	-	4	None	-		None	-	-	None
Storage Length -			-	-	-		•			
Veh in Median Storage, # -	0 -	-	0	-	-	0	-	-	0	-
Grade, % -	0 -	-	0	-	-	0	-	-	0	-
Peak Hour Factor 90 9	0 90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, % 2	2 2	2	8	2	2	10	2	2	7	2
Mvmt Flow 22 10	0 44	4	46	34	10	274	27	70	277	13

Major/Minor	Minor2	10 S	1	Minor1			Major1	1. Br	I	Major2	-		
Conflicting Flow All	775	746	286	805	739	290	291	0	0	301	0	0	
Stage 1	425	425	-	308	308	-	-			-	14	-	
Stage 2	350	321	-	497	431	*			-	•			
Critical Hdwy	7.12	6.52	6.22	7.12	6.58	6.22	4.12	-		4.12		-	
Critical Hdwy Stg 1	6.12	5.52		6.12	5.58			100 C.	-	100		÷.	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.58	-	-				-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.072	3.318	2.218	-	-	2.218	•	100	
Pot Cap-1 Maneuver	315	342	753	301	338	749	1271		-	1260	-		
Stage 1	607	586	-	702	650				/-			2 4 94	
Stage 2	666	652		555	573		-					181	
Platoon blocked, %											-		
Mov Cap-1 Maneuver	251	316	752	202	313	748	1270	-	-	1260		-	
Mov Cap-2 Maneuver	251	316		202	313	-	-	1.00		1.00		365	
Stage 1	601	547	-	696	644	-	-		v.e.		-		
Stage 2	584	646	-	398	535	-	-	. +	0.41				

Approach	EB	WB	NB	SB	
HCM Control Delay, s	23.4	16.6	0.3	1.6	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1270			359	395	1260	-		
HCM Lane V/C Ratio	0.008	-	9	0.464	0.214	0.056	-		
HCM Control Delay (s)	7.9	0	÷.	23.4	16.6	8	0	-	
HCM Lane LOS	А	А		С	С	A	A		
HCM 95th %tile Q(veh)	0	-	-	2.4	0.8	0.2	-		

Contraction of the Processing		
Intersection		
Intersection Delay, s/veh	12.2	
Intersection LOS	В	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol. veh/h	20	90	40	4	41	31	9	247	24	63	249	12
Future Vol, veh/h	20	90	40	4	41	31	9	247	24	63	249	12
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	8	2	2	10	2	2	7	2
Mymt Flow	22	100	44	4	46	34	10	274	27	70	277	13
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB		12	WB			NB	0.1		SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.7			9.7			12.2			13.5		
HCM LOS	В			А			В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	13%	5%	19%	
Vol Thru, %	88%	60%	54%	77%	0
Vol Right, %	9%	27%	41%	4%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	280	150	76	324	4
LT Vol	9	20	4	63	3
Through Vol	247	90	41	249	9
RT Vol	24	40	31	12	2
Lane Flow Rate	311	167	84	360)
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.444	0.263	0.135	0.514	4
Departure Headway (Hd)	5.143	5.673	5.751	5.135	5
Convergence, Y/N	Yes	Yes	Yes	Yes	5
Сар	700	632	622	702	2
Service Time	3.179	3.717	3.802	3.169	9
HCM Lane V/C Ratio	0.444	0.264	0.135	0.513	3
HCM Control Delay	12.2	10.7	9.7	13.5	5
HCM Lane LOS	В	В	А	В	3
HCM 95th-tile Q	2.3	1.1	0.5	3	3

	۶	-	7	4	-	*	1	†	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4 2			4	
Traffic Volume (veh/h)	5	60	22	21	90	65	15	316	15	48	321	12
Future Volume (veh/h)	5	60	22	21	90	65	15	316	15	48	321	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adi Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1856	1856	1856	1870	1870	1870
Adi Flow Rate, veh/h	6	69	23	24	103	72	17	363	17	55	369	14
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh. %	1	1	1	1	1	1	3	3	3	2	2	2
Cap. veh/h	59	352	111	81	261	164	66	897	41	128	810	29
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	33	1337	420	107	992	623	31	1705	78	142	1539	56
Grn Volume(v) veh/h	98	0	0	199	0	0	397	0	0	438	0	0
Grp Sat Flow(s) veh/h/ln	1790	0	0	1723	0	0	1814	0	0	1737	0	0
Q Serve(q, s) s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(q, c), s	3.2	0.0	0.0	7.1	0.0	0.0	9.9	0.0	0.0	11.1	0.0	0.0
Prop In Lane	0.06		0.23	0.12		0.36	0.04		0.04	0.13		0.03
I ane Grp Cap(c), veh/h	521	0	0	507	0	0	1004	0	0	967	0	0
V/C Ratio(X)	0.19	0.00	0.00	0.39	0.00	0.00	0.40	0.00	0.00	0.45	0.00	0.00
Avail Cap(c a), veh/h	521	0	0	507	0	0	1004	0	0	967	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	21.8	0.0	0.0	23.2	0.0	0.0	10.9	0.0	0.0	11.2	0.0	0.0
Incr Delay (d2) s/veh	0.8	0.0	0.0	2.3	0.0	0.0	1.2	0.0	0.0	1.5	0.0	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/ln	1.4	0.0	0.0	3.2	0.0	0.0	3.9	0.0	0.0	4.5	0.0	0.0
Unsig. Movement Delay, s/veh	1											
InGro Delay(d) s/veh	22.6	0.0	0.0	25.5	0.0	0.0	12.0	0.0	0.0	12.7	0.0	0.0
InGrpLOS	С	А	A	С	А	А	В	А	А	В	А	А
Approach Vol. veh/h		98			199			397			438	
Approach Delay, s/yeh		22.6			25.5			12.0			12.7	
Approach LOS		C			C			В			В	
Approach 200		0						-			-	-
Timer - Assigned Phs		2		4	and an or	6		8				
Phs Duration (G+Y+Rc), s		28.0		48.0		28.0	÷	48.0				
Change Period (Y+Rc), s		8.0		8.0		8.0		8.0				
Max Green Setting (Gmax), s		20.0		40.0		20.0		40.0				
Max Q Clear Time (g_c+11), s		5.2		13.1		9.1		11.9				
Green Ext Time (p_c), s		0.4		3.1		0.8		2.7				
Intersection Summary						ALC: Y			1		Sec. 1	
HCM 6th Ctrl Delay			15.6									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green,

Intersection

Int Delay, s/veh	9.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ALC: 10-11
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	5	60	22	21	90	65	15	316	15	48	321	12	
Future Vol, veh/h	5	60	22	21	90	65	15	316	15	48	321	12	
Conflicting Peds, #/hr	0	0	1	0	0	2	0	0	4	0	0	3	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-		None	-		None		-	None		1.1	None	
Storage Length	-						•		•	-	-		
Veh in Median Storage,	# -	0	-	•	0	-	-	0			0	•	
Grade, %	-	0	-	-	0	-		0		÷	0	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	2	1	2	2	1	2	2	3	2	2	2	2	
Mvmt Flow	6	69	25	24	103	75	17	363	17	55	369	14	

Major/Minor	Minor2		1	Minor1		- 11	Major1		N	Aajor2			
Conflicting Flow All	986	907	380	944	906	378	386	0	0	384	0	0	
Stage 1	489	489		410	410	-	-	-	-	-		-	
Stage 2	497	418		534	496			- /	-		÷.		
Critical Hdwy	7.12	6.51	6.22	7.12	6.51	6.22	4.12		-	4.12	-		
Critical Hdwy Stg 1	6.12	5.51		6.12	5.51	-		-			-	•	
Critical Hdwy Stg 2	6.12	5.51	-	6.12	5.51	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.009	3.318	3.518	4.009	3.318	2.218		-	2.218	(•)		
Pot Cap-1 Maneuver	227	277	667	242	277	669	1172		-	1174	-	-	
Stage 1	561	551	•	619	597	1 	-		•	÷.	. 8	9	
Stage 2	555	592	-	530	547		-		-	-	-	-	
Platoon blocked, %											•		
Mov Cap-1 Maneuver	129	254	664	173	254	665	1169		-	1170	(4)	-	
Mov Cap-2 Maneuver	129	254	-	173	254	-	-	- 60			100	-	
Stage 1	549	516	-	605	584	-	-		-	-			
Stage 2	397	579	-	415	513	-	-	-	-	*	•	19	
Approach	EB			WB			NB			SB		-	
HCM Control Delay, s	24.6			36.8			0.4			1			
HCM LOS	С			E									

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1169	4	4	282	307	1170	(•)	-
HCM Lane V/C Ratio	0.015	-		0.355	0.659	0.047	-	1/41
HCM Control Delay (s)	8.1	0	-	24.6	36.8	8.2	0	-
HCM Lane LOS	А	А		C	E	А	А	
HCM 95th %tile Q(veh)	0	-	-	1.5	4.3	0.1	-	-

HCM 6th AWSC Kingston Signals; 118-064

Intersection Delay, s/veh 17.1 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol. veh/h	5	60	22	21	90	65	15	316	15	48	321	12
Future Vol, veh/h	5	60	22	21	90	65	15	316	15	48	321	12
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	1	2	2	1	2	2	3	2	2	2	2
Mvmt Flow	6	69	25	24	103	75	17	363	17	55	369	14
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB	1		WB	- The second		NB		T ALMEN	SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	11.2			12.8			17.8			19.7		
HCM LOS	В			В			С			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	6%	12%	13%	
Vol Thru, %	91%	69%	51%	84%	
Vol Right, %	4%	25%	37%	3%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	346	87	176	381	
LT Vol	15	5	21	48	
Through Vol	316	60	90	321	
RT Vol	15	22	65	12	
Lane Flow Rate	398	100	202	438	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.629	0.185	0.354	0.676	j
Departure Headway (Hd)	5.693	6.666	6.307	5.663	
Convergence, Y/N	Yes	Yes	Yes	Yes	3
Сар	640	539	573	644	
Service Time	3.693	4.696	4.331	3.663	3
HCM Lane V/C Ratio	0.622	0.186	0.353	0.68	
HCM Control Delay	17.8	11.2	12.8	19.7	
HCM Lane LOS	С	В	В	С	
HCM 95th-tile Q	4.4	0.7	1.6	5.2	2

	۶	-	7	1	-	*	1	1	1	*	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स			4	
Traffic Volume (veh/h)	10	0	31	13	27	35	15	293	0	0	278	7
Future Volume (veh/h)	10	0	31	13	27	35	15	293	0	0	278	7
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	0.99		0.99	0.99		0.99	0.99		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1841	1841	1841	1781	1781	0	0	1781	1781
Adj Flow Rate, veh/h	11	0	27	14	28	34	16	308	0	0	293	7
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	4	4	4	8	8	0	0	8	8
Cap, veh/h	208	36	423	142	270	281	73	795	0	0	799	19
Arrive On Green	0.38	0.00	0.38	0.38	0.38	0.38	0.46	0.46	0.00	0.00	0.46	0.46
Sat Flow, veh/h	354	94	1100	198	703	730	33	1723	0	0	1732	41
Grp Volume(v), veh/h	38	0	0	76	0	0	324	0	0	0	0	300
Grp Sat Flow(s), veh/h/ln	1548	0	0	1631	0	0	1757	0	0	0	0	1774
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	7.1
Cycle Q Clear(g_c), s	0.9	0.0	0.0	1.9	0.0	0.0	7.8	0.0	0.0	0.0	0,0	7.1
Prop In Lane	0.29		0.71	0.18		0.45	0.05		0.00	0.00		0.02
Lane Grp Cap(c), veh/h	667	0	0	693	0	0	869	0	0	0	0	819
V/C Ratio(X)	0.06	0.00	0.00	0.11	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.37
Avail Cap(c_a), veh/h	667	0	0	693	0	0	869	0	0	0	0	819
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	12.6	0.0	0.0	12.9	0.0	0.0	11.5	0.0	0.0	0.0	0.0	11.3
Incr Delay (d2), s/veh	0.2	0.0	0.0	0.3	0.0	0.0	1.2	0.0	0.0	0.0	0.0	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.3	0.0	0.0	0.7	0.0	0.0	3.0	0.0	0.0	0.0	0.0	2.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.8	0.0	0.0	13.2	0.0	0.0	12.7	0.0	0.0	0.0	0.0	12.6
LnGrp LOS	В	A	A	В	A	A	В	A	A	A	A	B
Approach Vol, veh/h		38			76			324			300	
Approach Delay, s/veh		12.8			13.2			12.7			12.6	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2		4		6		8	-			
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+11), s		9.8		2.9		9.1		3.9				
Green Ext Time (p_c), s		1.9		0.1		1.7		0.3				
Intersection Summary		1.10			N.C.			1-91	-	2. 11		T L
HCM 6th Ctrl Delay			12.7									
HCM 6th LOS			В									

2.4

Intersection

HCM LOS

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्भ			ĥ	
Traffic Vol, veh/h	10	0	31	13	27	35	15	293	0	0	278	7
Future Vol, veh/h	10	0	31	13	27	35	15	293	0	0	278	7
Conflicting Peds, #/hr	0	0	6	0	0	6	0	0	4	0	0	8
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	-		(e)		-	-		-	-		-	
Veh in Median Storage	e, # -	0	-	-	0	1.		0	-	4	0	-
Grade, %	-	0	-		0	-		0	-		0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	6	8	4	13	13	8	0	0	8	0
Mvmt Flow	11	0	33	14	28	37	16	308	0	0	293	7

Major/Minor	Minor2		1	Minor1			Major1		Ma	ajor2			-	
Conflicting Flow All	684	645	311	659	648	314	308	0	1140		*	0		
Stage 1	305	305	-	340	340	-	- 1		1	-	-	-		
Stage 2	379	340	-	319	308		-	· · · /		-		-		
Critical Hdwy	7.1	6.5	6.26	7.18	6.54	6.33	4.23	-			-			
Critical Hdwy Stg 1	6.1	5.5		6.18	5.54	-	-	-		1	-			
Critical Hdwy Stg 2	6.1	5.5	-	6.18	5.54		-	-	-	-	-			
Follow-up Hdwy	3.5	4	3.354	3.572	4.036	3.417	2.317	-	-	-				
Pot Cap-1 Maneuver	365	393	720	369	387	701	1193		0	0				
Stage 1	709	666		662	636		-	1941	0	0	:40	*		
Stage 2	647	643	-	680	657	-	-		0	0	-	4		
Platoon blocked, %			_					1.e.				÷		
Mov Cap-1 Maneuver	318	384	710	346	378	697	1184							
Mov Cap-2 Maneuver	318	384		346	378		u.	7 .		-	-			
Stage 1	693	661	-	651	626	-	-					-		
Stage 2	572	633	-	645	652		9 4 0		•			*		
Approach	EB			WB		-	NB			SB		1	-	 R.E.
HCM Control Delay, s	12.2			14.2			0.4			0				

В

В

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	VBLn1	SBT	SBR	
Capacity (veh/h)	1184	-	546	471	•	-	
HCM Lane V/C Ratio	0.013	-	0.079	0.168			
HCM Control Delay (s)	8.1	0	12.2	14.2	-	-	
HCM Lane LOS	А	А	В	В		-	
HCM 95th %tile Q(veh)	0	-	0.3	0.6	-		

Intersection Delay, s/veh 10.7 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स			f)	
Traffic Vol, veh/h	10	0	31	13	27	35	15	293	0	0	278	7
Future Vol, veh/h	10	0	31	13	27	35	15	293	0	0	278	7
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	0	0	6	8	4	13	13	8	0	0	8	0
Mvmt Flow	11	0	33	14	28	37	16	308	0	0	293	7
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB	The second		NB			14	SB	
Opposing Approach	WB			EB			SB				NB	
Opposing Lanes	1			1			1	ł.			1	
Conflicting Approach Left	SB			NB			EB				WB	
Conflicting Lanes Left	1			1			1				1	
Conflicting Approach Right	NB			SB			WB				EB	
Conflicting Lanes Right	1			1			1				1	
HCM Control Delay	8.5			9.1			11.4				10.8	
HCM LOS	А			А			В				В	

lane	NBI n1	FBI n1	WBI n1	SBI n1			
	50/	2/10/	17%	0%			
	576	24 /0	200/	070			
Vol Thru, %	95%	0%	30%	98%			
Vol Right, %	0%	76%	4/%	2%			
Sign Control	Stop	Stop	Stop	Stop			
Traffic Vol by Lane	308	41	75	285			
LT Vol	15	10	13	0			
Through Vol	293	0	27	278			
RT Vol	0	31	35	7			
Lane Flow Rate	324	43	79	300			
Geometry Grp	1	1	1	1			
Degree of Util (X)	0.431	0.061	0.116	0.393			
Departure Headway (Hd)	4.786	5.065	5.296	4.71			
Convergence, Y/N	Yes	Yes	Yes	Yes			
Сар	749	700	672	762			
Service Time	2.835	3.144	3.37	2.759			
HCM Lane V/C Ratio	0.433	0.061	0.118	0.394			
HCM Control Delay	11.4	8.5	9.1	10.8			
HCM Lane LOS	В	A	А	В			
HCM 95th-tile Q	2.2	0.2	0.4	1.9			

	٠	-	7	4	-	*	1	1	1	4	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			र्स		-	¢î	
Traffic Volume (veh/h)	12	0	30	28	92	87	29	351	0	0	332	6
Future Volume (veh/h)	12	0	30	28	92	87	29	351	0	0	332	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	0.99		0.99	0.99		0.99	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1885	1885	1885	1841	1841	0	0	1870	1870
Adj Flow Rate, veh/h	14	0	27	32	105	96	33	399	0	0	377	7
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	0	0	0	1	1	1	4	4	0	0	2	2
Cap, veh/h	239	34	383	114	334	270	92	789	0	0	845	16
Arrive On Green	0.38	0.00	0.38	0.38	0.38	0.38	0.46	0.46	0.00	0.00	0.46	0.46
Sat Flow, veh/h	428	89	995	132	870	702	70	1710	0	0	1830	34
Grp Volume(v), veh/h	41	0	0	233	0	0	432	0	0	0	0	384
Grp Sat Flow(s),veh/h/ln	1512	0	0	1704	0	0	1779	0	0	0	0	1864
Q Serve(q_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.1
Cycle Q Clear(g_c), s	1.0	0.0	0.0	6.1	0.0	0.0	10.7	0.0	0.0	0.0	0.0	9.1
Prop In Lane	0.34		0.66	0.14		0.41	0.08		0.00	0.00		0.02
Lane Grp Cap(c), veh/h	656	0	0	719	0	0	881	0	0	0	0	860
V/C Ratio(X)	0.06	0.00	0.00	0.32	0.00	0.00	0.49	0.00	0.00	0.00	0.00	0.45
Avail Cap(c_a), veh/h	656	0	0	719	0	0	881	0	0	0	0	860
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	12.6	0.0	0.0	14.2	0.0	0.0	12.3	0.0	0.0	0.0	0.0	11.9
Incr Delay (d2), s/veh	0.2	0.0	0.0	1.2	0.0	0.0	2.0	0.0	0.0	0.0	0.0	1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	0.0	2.4	0.0	0.0	4.3	0.0	0.0	0.0	0.0	3.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.8	0.0	0.0	15.4	0.0	0.0	14.3	0.0	0.0	0.0	0.0	13.5
LnGrp LOS	В	A	A	В	A	A	В	A	A	A	A	B
Approach Vol, veh/h	-	41			233			432			384	
Approach Delay, s/veh		12.8			15.4			14.3			13.5	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	1912	4	11	6		8	-			
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+I1), s		12.7		3.0		11.1		8.1				
Green Ext Time (p_c), s		2.6		0.2		2.2		1.2				
Intersection Summary	1					1000	THE R					
HCM 6th Ctrl Delay			14.2									
HCM 6th LOS			В									

Intersection

Int Delay, s/veh	7.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			र्भ			f,		
Traffic Vol, veh/h	12	0	30	28	92	87	29	351	0	0	332	6	
Future Vol, veh/h	12	0	30	28	92	87	29	351	0	0	332	6	
Conflicting Peds, #/hr	0	0	6	0	0	6	0	0	4	0	0	8	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	۰.	-	None	(• ?	-	None	-	-	None	
Storage Length	-	-	-		-				-	*	•		
Veh in Median Storage,	# -	0	-	۲	0	-		0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, %	0	0	0	4	1	2	0	4	0	0	2	0	
Mvmt Flow	14	0	34	32	105	99	33	399	0	0	377	7	

Major/Minor	Minor2		1	Minor1		٨	Major1		Ma	ajor2		and pr	
Conflicting Flow All	962	854	395	869	857	405	392	0		-		0	
Stage 1	389	389	-	465	465	-	-	-	191	100	-	-	
Stage 2	573	465	-	404	392		-		•	-		•	
Critical Hdwy	7.1	6.5	6.2	7.14	6.51	6.22	4.1		-			÷	
Critical Hdwy Stg 1	6.1	5.5		6.14	5.51	-		-	-	1		+	
Critical Hdwy Stg 2	6.1	5.5	-	6.14	5.51	-	10	-	-		100		
Follow-up Hdwy	3.5	4	3.3	3.536	4.009	3.318	2.2		-	-			
Pot Cap-1 Maneuver	237	298	659	270	296	646	1178		0	0		-	
Stage 1	639	612		574	565	-	-	-	0	0		*	
Stage 2	508	566	-	619	608	-			0	0	-	-	
Platoon blocked, %								-				÷	
Mov Cap-1 Maneuver	137	285	650	247	283	642	1169	:					
Mov Cap-2 Maneuver	137	285		247	283	-	-	1.00	•		-		
Stage 1	612	607	-	553	545	-	-			-	(*)	-	
Stage 2	333	546	-	583	603	-	-	-	•	191		14	
Approach	EB			WB		1.7	NB			SB		-	
HCM Control Delay, s	18.5			31.8			0.6			0			

С

HCM LOS

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	WBLn1	SBT	SBR	
Capacity (veh/h)	1169	-	314	361		-	
HCM Lane V/C Ratio	0.028	-	0.152	0.652	•		
HCM Control Delay (s)	8.2	0	18.5	31.8	+	1	
HCM Lane LOS	А	А	С	D			
HCM 95th %tile Q(veh)	0.1	-	0.5	4.4		-	

D

HCM 6th AWSC Kingston Signals; 118-064

Intersection Delay, s/veh 15.7 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स			eî.	
Traffic Vol, veh/h	12	0	30	28	92	87	29	351	0	0	332	6
Future Vol, veh/h	12	0	30	28	92	87	29	351	0	0	332	6
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	4	1	2	0	4	0	0	2	0
Mvmt Flow	14	0	34	32	105	99	33	399	0	0	377	7
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB		1		SB	
Opposing Approach	WB			EB			SB				NB	
Opposing Lanes	1			1			1				1	
Conflicting Approach Left	SB			NB	÷.		EB				WB	
Conflicting Lanes Left	1			1			1				1	
Conflicting Approach Right	NB			SB			WB				EB	
Conflicting Lanes Right	1			1			1				1	
HCM Control Delay	9.9			12.8			17.8				15.9	
HCM LOS	А			В			С				С	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	29%	14%	0%	
Vol Thru, %	92%	0%	44%	98%	
Vol Right, %	0%	71%	42%	2%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	380	42	207	338	
LT Vol	29	12	28	0	
Through Vol	351	0	92	332	
RT Vol	0	30	87	6	
Lane Flow Rate	432	48	235	384	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.646	0.083	0.389	0.582	
Departure Headway (Hd)	5.385	6.241	5.96	5.457	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	669	568	600	657	
Service Time	3.441	4.339	4.03	3.518	
HCM Lane V/C Ratio	0.646	0.085	0.392	0.584	
HCM Control Delay	17.8	9.9	12.8	15.9	
HCM Lane LOS	С	А	В	С	
HCM 95th-tile Q	4.7	0.3	1.8	3.8	

	۶	-+	7	4	+	*	1	1	1	4	ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ب ا			4Î			4				
Traffic Volume (veh/h)	59	165	0	0	73	61	13	129	27	0	0	0
Future Volume (veh/h)	59	165	0	0	73	61	13	129	27	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	0.99		1.00	1.00		0.99	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/in	1885	1885	0	0	1856	1856	1900	1870	1900			
Adj Flow Rate, veh/h	74	206	0	0	91	76	16	161	34			
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80			
Percent Heavy Veh, %	1	1	0	0	3	3	0	2	0			
Cap, veh/h	201	523	0	0	313	262	63	637	135			
Arrive On Green	0.38	0.38	0.00	0.00	0.38	0.38	0.46	0.46	0.46			
Sat Flow, veh/h	341	1359	0	0	815	680	137	1381	292			
Grp Volume(v), veh/h	280	0	0	0	0	167	211	0	0			
Grp Sat Flow(s),veh/h/ln	1700	0	0	0	0	1495	1810	0	0			
Q Serve(a s), s	1.8	0.0	0.0	0.0	0.0	5.0	4.6	0.0	0.0			
Cycle Q Clear(q c), s	7.2	0.0	0.0	0.0	0.0	5.0	4.6	0.0	0.0			
Prop In Lane	0.26		0.00	0.00		0.46	0.08		0.16			
Lane Grp Cap(c), veh/h	724	0	0	0	0	575	835	0	0			
V/C Ratio(X)	0.39	0.00	0.00	0.00	0.00	0.29	0.25	0.00	0.00			
Avail Cap(c a), veh/h	724	0	0	0	0	575	835	0	0			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	14.5	0.0	0.0	0.0	0.0	13.9	10.7	0.0	0.0			
Incr Delay (d2), s/veh	1.6	0.0	0.0	0.0	0.0	1.3	0.7	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	3.0	0.0	0.0	0.0	0.0	1.7	1.8	0.0	0.0			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	16.0	0.0	0.0	0.0	0.0	15.1	11.4	0.0	0.0			
LnGrp LOS	В	А	A	А	А	В	В	А	А			
Approach Vol. veh/h		280			167			211				
Approach Delay, s/veh		16.0			15.1			11.4				
Approach LOS		В			В			В				
Timer - Assigned Phs	11-	2	- 11	4			and a	8				
Phs Duration (G+Y+Rc), s		35.0		30.0				30.0				
Change Period (Y+Rc), s		5.0		5.0				5.0				
Max Green Setting (Gmax), s		30.0		25.0				25.0				
Max Q Clear Time (g_c+l1), s		6.6		9.2				7.0				
Green Ext Time (p_c), s		1.2		1.5				0.8				
Intersection Summary			-	12		- 11 - 11			and the second			
HCM 6th Ctrl Delay			14.3									
HCM 6th LOS			В									

Intersection									-			
Int Delay, s/veh	4.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			12			4				
Traffic Vol, veh/h	59	165	0	0	73	61	13	129	27	0	0	0
Future Vol, veh/h	59	165	0	0	73	61	13	129	27	0	0	0
Conflicting Peds, #/hr	0	0	11	0	0	6	0	0	4	0	0	7
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	None	-	-	None	-		None
Storage Length	-	-	-	-	-			-				
Veh in Median Storage,	,# -	0	-	-	0	140		0	-	-	16965	-
Grade, %	-	0	-		0	-	-	0	-	-	0	4
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80
Heavy Vehicles, %	2	1	2	2	3	2	2	2	2	2	2	2
Mymt Flow	74	206	0	0	91	76	16	161	34	0	0	0

Major/Minor	Major1		N	lajor2		N	Minor1			
Conflicting Flow All	173	0				0	483	527	210	
Stage 1	-		-	-	-	-	354	354	-	
Stage 2	-					-	129	173	-	
Critical Hdwy	4.12		0.000			-	6.42	6.52	6.22	
Critical Hdwy Stg 1	-		-	-			5.42	5.52		
Critical Hdwy Stg 2	-		÷	-		-	5.42	5.52	-	
Follow-up Hdwy	2.218		-	-	•	-	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1404		0	0		•	542	456	830	
Stage 1	-	-	0	0	-	-	710	630		
Stage 2	-	-	0	0	9	-	897	756	-	
Platoon blocked, %		-			-					
Mov Cap-1 Maneuver	1404	-	-	-	-	-	509	0	827	
Mov Cap-2 Maneuver	-				-		509	0	•	
Stage 1	-	-	-	1.50	-		667	0	(*)	
Stage 2	-		1.08	-	-	•	897	0		
Approach	EB			WB		- IL-	NB			
HCM Control Delay, s	2			0			12.6			
HCM LOS							В			
Minor Long Marior Mur	A 10	DI a1	EDI	EDT	MPT	W/PD		- 1 - T-		

Minor Lane/Major Mvmt	NBLN1	EBL	ERI	WBI	WBR	the second se
Capacity (veh/h)	687	1404	-	/-	-	
HCM Lane V/C Ratio	0.307	0.053	-	-		
HCM Control Delay (s)	12.6	7.7	0		S - 1	
HCM Lane LOS	В	A	А			
HCM 95th %tile Q(veh)	1.3	0.2	-		-	

Intersection Delay, s/veh 9.9 Intersection LOS A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			()			4				
Traffic Vol, veh/h	59	165	0	0	73	61	13	129	27	0	0	0
Future Vol, veh/h	59	165	0	0	73	61	13	129	27	0	0	0
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Heavy Vehicles, %	2	1	2	2	3	2	2	2	2	2	2	2
Mvmt Flow	74	206	0	0	91	76	16	161	34	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB		1 3	II.	WB		NB		ST.	3		
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	10.5				8.8		9.9					
HCM LOS	В				A		A					

Lane	NBLn1	EBLn1	WBLn1	
Vol Left, %	8%	26%	0%	
Vol Thru, %	76%	74%	54%	
Vol Right, %	16%	0%	46%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	169	224	134	•
LT Vol	13	59	0	
Through Vol	129	165	73	
RT Vol	27	0	61	
Lane Flow Rate	211	280	168	
Geometry Grp	1	1	1	
Degree of Util (X)	0.286	0.366	0.211	
Departure Headway (Hd)	4.878	4.708	4.54	
Convergence, Y/N	Yes	Yes	Yes	
Сар	733	762	787	
Service Time	2.927	2.753	2.589	
HCM Lane V/C Ratio	0.288	0.367	0.213	
HCM Control Delay	9.9	10.5	8.8	
HCM Lane LOS	А	В	A	
HCM 95th-tile Q	1.2	1.7	0.8	

	۶	-	7	*	-	*	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ب ا ا			f)			4				
Traffic Volume (veh/h)	50	147	0	0	104	65	39	170	32	0	0	0
Future Volume (veh/h)	50	147	0	0	104	65	39	170	32	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	0.99		1.00	1.00		0.98	1.00		0.98			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	1767	1767	0	0	1885	1885	1900	1885	1900			
Adj Flow Rate, veh/h	60	177	0	0	125	78	47	205	39			
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83			
Percent Heavy Veh, %	9	9	0	0	1	1	0	1	0			
Cap, veh/h	182	488	0	0	362	226	136	592	113			
Arrive On Green	0.38	0.38	0.00	0.00	0.38	0.38	0.46	0.46	0.46			
Sat Flow, veh/h	293	1269	0	0	941	587	294	1282	244			
Grp Volume(v), veh/h	237	0	0	0	0	203	291	0	0			
Grp Sat Flow(s).veh/h/ln	1562	0	0	0	0	1528	1820	0	0			
Q Serve(q s), s	0.6	0.0	0.0	0.0	0.0	6.1	6.7	0.0	0.0			
Cycle Q Clear(g c), s	6.7	0.0	0.0	0.0	0.0	6.1	6.7	0.0	0.0			
Prop In Lane	0.25		0.00	0.00		0.38	0.16		0.13			
Lane Grp Cap(c), veh/h	670	0	0	0	0	588	840	0	0			
V/C Ratio(X)	0.35	0.00	0.00	0.00	0.00	0.35	0.35	0.00	0.00			
Avail Cap(c a), veh/h	670	0	0	0	0	588	840	0	0			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	14.2	0.0	0.0	0.0	0.0	14.2	11.2	0.0	0.0			
Incr Delay (d2), s/veh	1.5	0.0	0.0	0.0	0.0	1.6	1.1	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/In	2.5	0.0	0.0	0.0	0.0	2.2	2.6	0.0	0.0			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	15.7	0.0	0.0	0.0	0.0	15.8	12.3	0.0	0.0			
LnGrp LOS	В	А	A	А	А	В	В	А	А			_
Approach Vol. veh/h		237			203			291				
Approach Delay, s/veh		15.7			15.8			12.3				
Approach LOS		В			В			В				
Timer - Assigned Phs		2		4	1			8		-	1	
Phs Duration (G+Y+Rc), s		35.0		30.0				30.0				
Change Period (Y+Rc), s		5.0		5.0				5.0				
Max Green Setting (Gmax), s		30.0		25.0				25.0				
Max Q Clear Time (g_c+l1), s		8.7		8.7				8.1				
Green Ext Time (p_c), s		1.7		1.2				1.0				
Intersection Summary							-		I and		11	-
HCM 6th Ctrl Delay			14.4									
HCM 6th LOS			В									

HCM 6th TWSC Kingston Signals; 118-064

.

Intersection			200		1				122			
int Delay, s/veh	6.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ			F			4				
Traffic Vol, veh/h	50	147	0	0	104	65	39	170	32	0	0	0
Future Vol, veh/h	50	147	0	0	104	65	39	170	32	0	0	0
Conflicting Peds, #/hr	0	0	16	0	0	17	0	0	21	0	0	10
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	-						•	-	-			•
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	9	2	2	1	2	2	1	2	2	2	2
Mvmt Flow	60	177	0	0	125	78	47	205	39	0	0	0

.

Major/Minor	Major1	1.000	M	ajor2		1	Ainor1	1					
Conflicting Flow All	220	0	(e.)			0	461	517	198				
Stage 1	-	-	-			-	297	297	-				
Stage 2	-	-	-			-	164	220	-				
Critical Hdwy	4.12	-	-	-	-	-	6.42	6.51	6.22				
Critical Hdwy Stg 1	-	-				-	5.42	5.51					
Critical Hdwy Stg 2	-	-	-	-		-	5.42	5.51	-				
Follow-up Hdwy	2.218	-	-	-	1	-	3.518	4.009	3.318				
Pot Cap-1 Maneuver	1349	-	0	0	-	-	559	464	843			*	
Stage 1	-		0	0		-	754	669	-				
Stage 2	-	-	0	0	-	-	865	723	-				
Platoon blocked, %		-			-	-							
Mov Cap-1 Maneuver	1349	-	-	-	-		532	0	826				
Mov Cap-2 Maneuver	-	-	-	ne -	-	-	532	0					
Stage 1	-		-	-	-	-	717	0					
Stage 2	-			-	-		865	0					
Approach	EB	1		WB			NB	5		A STAT	1		-
HCM Control Delay, s	2			0			15.4						
HCM LOS							С						

Minor Lane/Major Mvmt	NBLni	EBL	EBT	WBT	WBR	
Capacity (veh/h)	634	1349	-	-	-	
HCM Lane V/C Ratio	0.458	0.045	-			
HCM Control Delay (s)	15.4	7.8	0	-		
HCM Lane LOS	С	А	А			
HCM 95th %tile Q(veh)	2.4	0.1	-	-		

Intersection			The Martine					S				
Intersection Delay, s/veh	10.5											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			4			4				
Traffic Vol, veh/h	50	147	0	0	104	65	39	170	32	0	0	0
Future Vol, veh/h	50	147	0	0	104	65	39	170	32	0	0	0
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	9	2	2	1	2	2	1	2	2	2	2
Mvmt Flow	60	177	0	0	125	78	47	205	39	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0

Approach	EB	WB	NB	
Opposing Approach	WB	EB		
Opposing Lanes	1	1	0	
Conflicting Approach Left		NB	EB	
Conflicting Lanes Left	0	1	1	
Conflicting Approach Right	NB		WB	
Conflicting Lanes Right	1	0	1	
HCM Control Delay	10.5	9.5	11.2	
HCM LOS	В	А	В	

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	16%	25%	0%
Vol Thru, %	71%	75%	62%
Vol Right, %	13%	0%	38%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	241	197	169
LT Vol	39	50	0
Through Vol	170	147	104
RT Vol	32	0	65
Lane Flow Rate	290	237	204
Geometry Grp	1	1	1
Degree of Util (X)	0.397	0.327	0.267
Departure Headway (Hd)	4.92	4.967	4.725
Convergence, Y/N	Yes	Yes	Yes
Сар	726	719	753
Service Time	2.987	3.036	2.794
HCM Lane V/C Ratio	0.399	0.33	0.271
HCM Control Delay	11.2	10.5	9.5
HCM Lane LOS	В	В	А
HCM 95th-tile Q	1.9	1.4	1.1

	۶	-	7	-	-	*	1	1	1	4	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स						4	
Traffic Volume (veh/h)	0	162	12	20	130	0	0	0	0	85	73	17
Future Volume (veh/h)	0	162	12	20	130	0	0	0	0	85	73	17
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adi(A pbT)	1.00		0.98	0.98		1.00				1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adi Sat Flow, veh/h/ln	0	1885	1885	1885	1885	0				1900	1856	1900
Adj Flow Rate, veh/h	0	182	5	22	146	0				96	82	18
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89				0.89	0.89	0.89
Percent Heavy Veh, %	0	1	1	1	1	0				0	3	0
Cap, veh/h	0	786	22	121	719	0				309	264	58
Arrive On Green	0.00	0.43	0.43	0.43	0.43	0.00				0.35	0.35	0.35
Sat Flow, veh/h	0	1825	50	136	1670	0				872	745	164
Grp Volume(v), veh/h	0	0	187	168	0	0				196	0	0
Grp Sat Flow(s), veh/h/ln	0	0	1875	1805	0	0				1781	0	0
Q Serve(q s) s	0.0	0.0	4.1	0.0	0.0	0.0				5.2	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	4.1	3.6	0.0	0.0				5.2	0.0	0.0
Prop in Lane	0.00		0.03	0.13		0.00				0.49		0.09
Lane Grp Cap(c), veh/h	0	0	808	840	0	0				630	0	0
V/C Ratio(X)	0.00	0.00	0.23	0.20	0.00	0.00				0.31	0.00	0.00
Avail Cap(c a), veh/h	0	0	808	840	0	0				630	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	-			1.00	1.00	1.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	0.00				1.00	0.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	11.7	11.6	0.0	0.0				15.2	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.7	0.5	0.0	0.0				1.3	0.0	0.0
Initial Q Delav(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.0	1.7	1.5	0.0	0.0				2.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delav(d).s/veh	0.0	0.0	12.4	12.1	0.0	0.0				16.5	0.0	0.0
LnGrp LOS	А	А	В	В	А	А				В	А	А
Approach Vol. veh/h		187			168						196	
Approach Delay, s/veh		12.4			12.1						16.5	
Approach LOS		В			В						В	
Timer - Assigned Phs				4		6	inger 1	8		Para la		U
Phs Duration (G+Y+Rc), s				35.0		30.0		35.0				
Change Period (Y+Rc), s				7.0		7.0		7.0				
Max Green Setting (Gmax), s				28.0		23.0		28.0				
Max Q Clear Time (g_c+l1), s				6.1		7.2		5.6				
Green Ext Time (p_c), s				1.0		0.9		0.9				_
Intersection Summary	-		-	1000	Sale-	12352		10				
HCM 6th Ctrl Delay			13.8									
HCM 6th LOS			В									

4.9

Intersection

Int Delay, s/veh

-													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lane Configurations		4			र्स						4		
Traffic Vol, veh/h	0	162	12	20	130	0	0	0	0	85	73	17	
Future Vol, veh/h	0	162	12	20	130	0	0	0	0	85	73	17	
Conflicting Peds, #/hr	0	0	19	0	0	16	0	0	2	0	0	6	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-		None	-	-	None		-	None	
Storage Length	-	-	-	-	-	-					-		
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-	
Grade, %	-	0		-	0	-	-	0		-	0	-	
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89	
Heavy Vehicles, %	2	1	2	2	1	2	2	2	2	2	3	2	
Mvmt Flow	0	182	13	22	146	0	0	0	0	96	82	19	

Major/Minor	Major1		٨	Aajor2			Minor2
Conflicting Flow All	-	0	0	214	0	0	379 404 152
Stage 1		μ.	-		-	-	190 190 -
Stage 2	-	*	-		-	1.4	189 214 -
Critical Hdwy	-	•	-	4.12	-	-	6.42 6.53 6.22
Critical Hdwy Stg 1	-		+	-		*	5.42 5.53 -
Critical Hdwy Stg 2	-	-		-	-	-	5.42 5.53 -
Follow-up Hdwy	-		-	2.218		-	3.518 4.027 3.318
Pot Cap-1 Maneuver	0	-	-	1356	-	0	623 534 894
Stage 1	0		-	-		0	842 741 -
Stage 2	0	2	4		-	0	843 724 -
Platoon blocked, %			-		-		
Mov Cap-1 Maneuver	-	-	-	1356		1	612 0 889
Mov Cap-2 Maneuver		-	-	÷	-	-	612 0 -
Stage 1	-	-	-	-	-	-	842 0 -
Stage 2	-		-	-	-	•	828 0 -
Approach	EB			WB			SB
HCM Control Delay, s	0			1			13
HCM LOS							В

Minor Lane/Major Mvmt	EBT	EBR	WBL	WBT SE	3Ln1
Capacity (veh/h)	-		1356	-	646
HCM Lane V/C Ratio	-		0.017	- 0	.304
HCM Control Delay (s)	-		7.7	0	13
HCM Lane LOS	•		А	А	В
HCM 95th %tile Q(veh)	-	4	0.1	-	1.3

Intersection		
Intersection Delay, s/veh	9.2	
Intersection LOS	А	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢î,			र्स						4	
Traffic Vol, veh/h	0	162	12	20	130	0	0	0	0	85	73	17
Future Vol, veh/h	0	162	12	20	130	0	0	0	0	85	73	17
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, %	2	1	2	2	1	2	2	2	2	2	3	2
Mvmt Flow	0	182	13	22	146	0	0	0	0	96	82	19
Number of Lanes	0	1	0	0	1	0	0	0	0	0	1	0
Approach		EB		WB		I ST	and.			SB		
Opposing Approach		WB		EB								
Opposing Lanes		1		1						0		
Conflicting Approach Left		SB								WB		
Conflicting Lanes Left		1		0						1		
Conflicting Approach Right				SB						EB		
Conflicting Lanes Right		0		1						1		
HCM Control Delay		9.1		9						9.6		
HCM LOS		А		А	-					А		

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	13%	49%	
Vol Thru, %	93%	87%	42%	
Vol Right, %	7%	0%	10%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	174	150	175	
LT Vol	0	20	85	
Through Vol	162	130	73	
RT Vol	12	0	17	
Lane Flow Rate	196	169	197	
Geometry Grp	1	1	1	8
Degree of Util (X)	0.248	0.219	0.263	
Departure Headway (Hd)	4.567	4.679	4.811	
Convergence, Y/N	Yes	Yes	Yes	
Сар	786	767	745	
Service Time	2.601	2.714	2.848	
HCM Lane V/C Ratio	0.249	0.22	0.264	
HCM Control Delay	9.1	9	9.6	
HCM Lane LOS	А	А	А	
HCM 95th-tile Q	1	0.8	1.1	

	۶	-	7	*	-	*	1	Ť	1	4	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢î	-		र्स						4>	
Traffic Volume (veh/h)	0	155	24	22	147	0	0	0	0	137	140	17
Future Volume (veh/h)	0	155	24	22	147	0	0	0	0	137	140	17
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adi(A pbT)	1.00		0.98	0.99		1.00				1.00		1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adi Sat Flow, veh/h/ln	0	1885	1885	1885	1885	0				1900	1885	1900
Adj Flow Rate, veh/h	0	196	21	28	186	0				173	177	21
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79				0.79	0.79	0.79
Percent Heavy Veh, %	0	1	1	1	1	0				0	1	0
Cap, veh/h	0	720	77	121	718	0				301	308	37
Arrive On Green	0.00	0.43	0.43	0.43	0.43	0.00				0.35	0.35	0.35
Sat Flow, veh/h	0	1671	179	135	1666	0		- 31		850	870	103
Grp Volume(v), veh/h	0	0	217	214	0	0				371	0	0
Grp Sat Flow(s),veh/h/ln	0	0	1850	1801	0	0				1824	0	0
Q Serve(g s), s	0.0	0.0	4.9	0.0	0.0	0.0				10.7	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	4.9	4.7	0.0	0.0				10.7	0.0	0.0
Prop In Lane	0.00		0.10	0.13		0.00				0.47		0.06
Lane Grp Cap(c), veh/h	0	0	797	838	0	0				645	0	0
V/C Ratio(X)	0.00	0.00	0.27	0.26	0.00	0.00				0.57	0.00	0.00
Avail Cap(c_a), veh/h	0	0	797	838	0	0				645	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	0.00				1.00	0.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	11.9	11.9	0.0	0.0				17.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.8	0.7	0.0	0.0				3.7	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	2.0	2.0	0.0	0.0				4.7	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	12.8	12.6	0.0	0.0				20.7	0.0	0.0
LnGrp LOS	A	A	В	В	А	A				С	A	<u> </u>
Approach Vol, veh/h		217			214						371	
Approach Delay, s/veh		12.8			12.6						20.7	
Approach LOS		В			В						С	
Timer - Assigned Phs				4	4	6	-	8				1.
Phs Duration (G+Y+Rc), s				35.0		30.0		35.0				
Change Period (Y+Rc), s				7.0		7.0		7.0				
Max Green Setting (Gmax), s				28.0		23.0		28.0				
Max Q Clear Time (g_c+l1), s				6.9		12.7		6.7				
Green Ext Time (p_c), s				1.2		1.6		1.2				
Intersection Summary		- 1	- She		1	18	1 State				· Lin	
HCM 6th Ctrl Delay			16.4									
HCM 6th LOS			В									

*

10.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		12			र्भ						4	
Traffic Vol, veh/h	0	155	24	22	147	0	0	0	0	137	140	17
Future Vol, veh/h	0	155	24	22	147	0	0	0	0	137	140	17
Conflicting Peds, #/hr	0	0	13	0	0	31	0	0	15	0	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e, # -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	1	2	2	1	2	2	2	2	2	1	2
Mvmt Flow	0	196	30	28	186	0	0	0	0	173	177	22

Major/Minor	Major1		N	lajor2			Minor2
Conflicting Flow All	-	0	0	239	0	0	453 481 189
Stage 1					-	-	242 242 -
Stage 2			-			-	211 239 -
Critical Hdwy	-	-	-	4.12	-	-	6.42 6.51 6.22
Critical Hdwy Stg 1						-	5.42 5.51 -
Critical Hdwy Stg 2		-	-	-	-	-	5.42 5.51 -
Follow-up Hdwy	-		-	2.218		-	3.518 4.009 3.318
Pot Cap-1 Maneuver	0		-	1328	-	0	565 486 853
Stage 1	0	÷.	-	-		0	798 707 -
Stage 2	0	-	-		*	0	824 709 -
Platoon blocked, %		-			-		
Mov Cap-1 Maneuver			-	1328			551 0 851
Mov Cap-2 Maneuver	-	-	-	•	-	V .	551 0 -
Stage 1	4		-		1.	-	798 0 -
Stage 2	194		-			6	804 0 -
Approach	EB	50		WB	The state	THE.	SB
HCM Control Delay, s	6 0			1			22.2
HCM LOS							C

Minor Lane/Major Mvmt	EBT	EBR	WBL	WBT SI	BLn1
Capacity (veh/h)	-	-	1328	-	573
HCM Lane V/C Ratio		(A)	0.021	- 0).649
HCM Control Delay (s)	-	4	7.8	0	22.2
HCM Lane LOS	-	-	А	А	С
HCM 95th %tile Q(veh)	12		0.1	-	4.7

HCM 6th AWSC Kingston Signals; 118-064

Intersection	11	
Intersection Delay, s/veh	12.2	
Intersection LOS	В	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBI	SBR
Lane Configurations		4			र्स						4	
Traffic Vol, veh/h	0	155	24	22	147	0	0	0	0	137	140	17
Future Vol, veh/h	0	155	24	22	147	0	0	0	0	137	140	17
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	1	2	2	1	2	2	2	2	2	1	2
Mymt Flow	0	196	30	28	186	0	0	0	0	173	177	22
Number of Lanes	0	1	0	0	1	0	0	0	0	0	1	0
Approach		EB		WB	excar 	1000	- 10 10			SB		
Opposing Approach		WB		EB								
Opposing Lanes		1		1						0		
Conflicting Approach Left		SB								WB		
Conflicting Lanes Left		1		0						1		
Conflicting Approach Right				SB						EB		
Conflicting Lanes Right		0		1						1		
HCM Control Delay		10.7		10.8						14		
HCM LOS		В		В						В		

Lane	EBLn1	WBLn1	SBLn1	
Vol Left. %	0%	13%	47%	
Vol Thru, %	87%	87%	48%	
Vol Right, %	13%	0%	6%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	179	169	294	
LT Vol	0	22	137	
Through Vol	155	147	140	
RT Vol	24	0	17	
Lane Flow Rate	227	214	372	
Geometry Grp	1	1	1	
Degree of Util (X)	0.327	0.317	0.535	
Departure Headway (Hd)	5.198	5.333	5.18	
Convergence, Y/N	Yes	Yes	Yes	
Сар	691	674	700	
Service Time	3.227	3.363	3.18	
HCM Lane V/C Ratio	0.329	0.318	0.531	
HCM Control Delay	10.7	10.8	14	
HCM Lane LOS	В	В	В	
HCM 95th-tile Q	1.4	1.4	3.2	

	۶	-	7	<	+	*	1	1	1	4	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			\$	
Traffic Volume (veh/h)	9	28	8	6	16	28	8	128	9	11	47	7
Future Volume (veh/h)	9	28	8	6	16	28	8	128	9	11	47	7
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.96		0.95	0.96		0.95	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1914	1914	1914	1976	1976	1976	1899	1899	1899	1853	1853	1853
Adj Flow Rate, veh/h	11	33	9	7	19	33	9	151	11	13	55	8
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	4	4	4	0	0	0	5	5	5	8	8	8
Cap, veh/h	152	405	100	98	220	324	71	699	49	146	545	74
Arrive On Green	0.38	0.38	0.38	0.38	0.38	0.38	0.92	0.92	0.92	0.46	0.46	0.46
Sat Flow, veh/h	221	1052	260	92	572	843	29	1515	106	176	1181	160
Grp Volume(v), veh/h	53	0	0	59	0	0	171	0	0	76	0	0
Grp Sat Flow(s),veh/h/ln	1533	0	0	1507	0	0	1649	0	0	1516	0	0
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.3	0.0	0.0	1.6	0.0	0.0	0.6	0.0	0.0	1.7	0.0	0.0
Prop In Lane	0.21		0.17	0.12		0.56	0.05		0.06	0.17		0.11
Lane Grp Cap(c), veh/h	657	0	0	641	0	0	820	0	0	765	0	0
V/C Ratio(X)	0.08	0.00	0.00	0.09	0.00	0.00	0.21	0.00	0.00	0.10	0.00	0.00
Avail Cap(c_a), veh/h	657	0	0	641	0	0	820	0	0	765	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	12.7	0.0	0.0	12.8	0.0	0.0	1.4	0.0	0.0	9.9	0.0	0.0
Incr Delay (d2), s/veh	0.2	0.0	0.0	0.3	0.0	0.0	0.6	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	0.0	0.0	0.6	0.0	0.0	0.3	0.0	0.0	0.6	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.0	0.0	0.0	13.1	0.0	0.0	1.9	0.0	0.0	10.2	0.0	0.0
LnGrp LOS	В	A	A	В	A	A	A	A	A	В	A	<u> </u>
Approach Vol, veh/h		53			59			171			76	
Approach Delay, s/veh		13.0			13.1			1.9			10.2	
Approach LOS		В			В			А			В	
Timer - Assigned Phs		2	11	4		6	-	8	1 miles			
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+l1), s		2.6		3.3		3.7		3.6				
Green Ext Time (p_c), s		1.0		0.2		0.4		0.2				
Intersection Summary	100		-		110							
HCM 6th Ctrl Delay			7.1									
HCM 6th LOS			А									

Intersection		
Intersection Delay, s/veh	8.1	
Intersection LOS	A	

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBI	SBR
	4			4			4>			4	
9	28	8	6	16	28	8	128	9	11	47	7
9	28	8	6	16	28	8	128	9	11	47	7
0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
0	4	0	0	0	7	13	5	0	0	8	0
11	33	9	7	19	33	9	151	11	13	55	8
0	1	0	0	1	0	0	1	0	0	1	0
EB			WB			NB		1 9	SB		
WB			EB			SB			NB		
1			1			1			1		
SB			NB			EB			WB		
1			1			1			1		
NB			SB			WB			EB		
1			1			1			1		
7.8			7.5			8.6			7.7		
А			А			А			A		
	EBL 9 9 0.85 0 11 0 EB WB 1 SB 1 NB 1 7.8 A	EBL EBT 9 28 9 28 0 28 0.85 0.85 0 4 11 33 0 1 EB 1 WB 1 SB 1 NB 1 7.8 A	EBL EBT EBR 9 28 8 9 28 8 9 28 8 0.85 0.85 0.85 0 4 0 11 33 9 0 1 0 EB WB 1 SB 1 NB 1 7.8	EBL EBT EBR WBL ●	EBL EBT EBR WBL WBT 9 28 8 6 16 9 28 8 6 16 9 28 8 6 16 0 28 8 6 16 0.85 0.85 0.85 0.85 0.85 0 4 0 0 0 11 33 9 7 19 0 1 0 0 1 EB EB 1 SB B SB 1 1 1 1 1 NB SB 1 1 7.8 7.5 4 A A	EBL EBT EBR WBL WBT WBR 9 28 8 6 16 28 9 28 8 6 16 28 9 28 8 6 16 28 0 28 0.85 0.85 0.85 0.85 0.85 0 4 0 0 0 7 11 33 9 7 19 33 0 1 0 0 1 0 EB WB EBB 1 1 1 1 1 SB NB SB 1 1 1 1 1 1 1 7.8 7.5 A A 4	EBL EBT EBR WBL WBT WBR NBL 9 28 8 6 16 28 8 9 28 8 6 16 28 8 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0 4 0 0 0 7 13 11 33 9 7 19 33 9 0 1 0 0 1 0 0 EB WB EB SB SB 1 1 NB SB NB EB 1 1 NB SB NB EB A 0 1 1 1 1 1 1 NB SB NB EB 1 1 NB SB NB WB 1 1 NB SB 7.5 8.6 8.6 A A A A	EBL EBT EBR WBL WBT WBR NBL NB1 9 28 8 6 16 28 8 128 9 28 8 6 16 28 8 128 0 28 8 6 16 28 8 128 0.85 11 1 1 1 1 1 1 1 1 1 1 1 1 1	EBL EBT EBR WBL WBT WBR NBL NBI NBR 9 28 8 6 16 28 8 128 9 9 28 8 6 16 28 8 128 9 0.85 11 0 0 1 0 1 1 1 1 1 1 1 1 1 1	EBL EBR WBL WBT WBR NBL NBI NBR SBL 9 28 8 6 16 28 8 128 9 11 9 28 8 6 16 28 8 128 9 11 0.85 <t< td=""><td>EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 9 28 8 6 16 28 8 128 9 11 47 9 28 8 6 16 28 8 128 9 11 47 9 28 8 6 16 28 8 128 9 11 47 0.85</td></t<>	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 9 28 8 6 16 28 8 128 9 11 47 9 28 8 6 16 28 8 128 9 11 47 9 28 8 6 16 28 8 128 9 11 47 0.85

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	6%	20%	12%	17%	
Vol Thru, %	88%	62%	32%	72%	
Vol Right, %	6%	18%	56%	11%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	145	45	50	65	
LT Vol	8	9	6	11	
Through Vol	128	28	16	47	
RT Vol	9	8	28	7	
Lane Flow Rate	171	53	59	76	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.206	0.066	0.069	0.091	
Departure Headway (Hd)	4.347	4.463	4.213	4.303	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	814	806	854	836	
Service Time	2.438	2.47	2.22	2.315	
HCM Lane V/C Ratio	0.21	0.066	0.069	0.091	
HCM Control Delay	8.6	7.8	7.5	7.7	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.8	0.2	0.2	0.3	

Intersection			-								_		
Int Delay, s/veh	3.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	and the second second
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	9	28	8	6	16	28	8	128	9	11	47	7	
Future Vol, veh/h	9	28	8	6	16	28	8	128	9	11	47	7	
Conflicting Peds, #/hr	19	0	37	37	0	19	1	0	4	4	0	1	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None		-	None	-	-	None	-	-	None	
Storage Length	-	-	-				-	•		-	-	+	
Veh in Median Storage,	# -	0	-	•	0	(4)	-	0	-	-	0	-	
Grade, %	-	0	-		0	-	-	0	4	-	0		
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85	
Heavy Vehicles, %	0	4	0	0	0	7	13	5	0	0	8	0	
Mvmt Flow	11	33	9	7	19	33	9	151	11	13	55	8	

Major/Minor	Minor2	1	N	linor1			Major1		N	lajor2			Concernance of the second	
Conflicting Flow All	306	270	97	322	269	180	64	0	0	166	0	0		
Stage 1	86	86	-	179	179		-	-	-	-	-	-		
Stage 2	220	184		143	90		-		•	-	- 19	-		
Critical Hdwy	7.1	6.54	6.2	7.1	6.5	6.27	4.23		-	4.1	-	14		
Critical Hdwy Stg 1	6.1	5.54	-	6.1	5.5	-		-		÷.	-	-		
Critical Hdwy Stg 2	6.1	5.54		6.1	5.5	-			-			•		
Follow-up Hdwy	3.5	4.036	3.3	3.5	4	3.363	2.317		-	2.2				
Pot Cap-1 Maneuver	650	633	965	635	641	850	1471	0+2	-	1424	-	-		
Stage 1	927	820	÷	827	755	-	-		-					
Stage 2	787	744	=	865	824	-	-	-	-		-	-		
Platoon blocked, %								(P)	-			(*)		
Mov Cap-1 Maneuver	586	618	918	565	626	825	1469		-	1417		-		
Mov Cap-2 Maneuver	586	618	-	565	626	-	-	-	-		ð.			
Stage 1	920	811	-	817	746	-	-	-		100				
Stage 2	714	735	-	775	815	-	-			-				
Approach	EB		1 m	WB		1	NB		2	SB		1.1		_
HCM Control Delay, s	11			10.5			0.4			1.3				
HCM LOS	В			В										

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	The second states and second
Capacity (veh/h)	1469		-	649	713	1417		•	
HCM Lane V/C Ratio	0.006	-	-	0.082	0.083	0.009	-		
HCM Control Delay (s)	7.5	0	-	11	10.5	7.6	0	-	
HCM Lane LOS	А	A		В	В	А	А		
HCM 95th %tile Q(veh)	0		-	0.3	0.3	0	-	-	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Intersection LOS	A											
Intersection Delay, s/veh	9.2											
Intersection	1.000	A DEALERS	10	11							1-2-3	

Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	15	53	14	7	19	48	17	151	9	17	124	10
Future Vol, veh/h	15	53	14	7	19	48	17	151	9	17	124	10
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	0	0	0	0	0	4	6	1	0	0	2	0
Mvmt Flow	19	67	18	9	24	61	22	191	11	22	157	13
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB.			WB			NB	XY		SB	1	1.5
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			_1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.8			8.3			9.7			9.2		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	10%	18%	9%	11%	
Vol Thru, %	85%	65%	26%	82%	
Vol Right, %	5%	17%	65%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	177	82	74	151	
LT Vol	17	15	7	17	
Through Vol	151	53	19	124	
RT Vol	9	14	48	10	
Lane Flow Rate	224	104	94	191	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.292	0.142	0.121	0.245	
Departure Headway (Hd)	4.684	4.919	4.635	4.619	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	764	726	769	774	
Service Time	2.731	2.974	2.69	2.668	
HCM Lane V/C Ratio	0.293	0.143	0.122	0.247	
HCM Control Delay	9.7	8.8	8.3	9.2	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	1.2	0.5	0.4	1	

Intersection	1 2	-	-					1200			1	100	
Int Delay, s/veh	4.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	and the second
Lane Configurations		4			4			4			4>		
Traffic Vol, veh/h	15	53	14	7	19	48	17	151	9	17	124	10	
Future Vol, veh/h	15	53	14	7	19	48	17	151	9	17	124	10	
Conflicting Peds, #/hr	2	0	8	8	0	2	16	0	3	3	0	16	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None		-	None	-	-	None	
Storage Length	-		: ()	1.14	-			-					
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-		0	-	
Grade, %	-	0			0	-	-	0	-	-	0	-	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79	
Heavy Vehicles, %	0	0	0	0	0	4	6	1	0	0	2	0	
Mvmt Flow	19	67	18	9	24	61	22	191	11	22	157	13	

Major/Minor	Minor2		N	1inor1	100	J.	Major1		N	Aajor2	h	-	1.15		1.1
Conflicting Flow All	509	473	188	502	474	202	186	0	0	205	0	0			
Stage 1	224	224		244	244	-	-	-	-	-	4				
Stage 2	285	249	-	258	230		-		-	-	-	19			
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.24	4.16		<u>të</u> s	4.1	-	÷.			
Critical Hdwy Stg 1	6.1	5.5		6.1	5.5	-		-	-	-					
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-							
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.336	2.254			2.2					
Pot Cap-1 Maneuver	478	493	859	483	492	834	1365	-	+	1378					
Stage 1	783	722	•	764	708	19	-		-	100		-			
Stage 2	727	704		751	718	-	-			(-)	-	-			
Platoon blocked, %											-	•			
Mov Cap-1 Maneuver	404	463	833	403	462	829	1337	-1		1373					
Mov Cap-2 Maneuver	404	463		403	462	-	-		•	-					
Stage 1	752	695	-	746	692	-	-		-						
Stage 2	636	688	-	645	691	-	-		-		-				
Margania and	100 km					-	18/18 000			00				-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	14.4	11.6	0.7	0.9	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1			SBL	SBT	SBR				
Capacity (veh/h)	1337	-		487	636	1373						
HCM Lane V/C Ratio	0.016	- 1	•	0.213	0.147	0.016	-					
HCM Control Delay (s)	7.7	0	+	14.4	11.6	7.7	0	-				
HCM Lane LOS	А	А	-	В	В	А	А	*				
HCM 95th %tile Q(veh)	0	-	-	0.8	0.5	0	-					
	٠	-	7	-	-	*	1	1	1	1	÷.	-
------------------------------	------	--------	------	------	------------	------	-------	------	------	------	------	------
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ф .			4			4	
Traffic Volume (veh/h)	15	53	14	7	19	48	17	151	9	17	124	10
Future Volume (veh/h)	15	53	14	7	19	48	17	151	9	17	124	10
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	0.99		0.99	0.99		0.99	0.99		0.98	0.99		0.98
Parking Bus, Adj	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1976	1976	1976	1976	1976	1976	1961	1961	1961	1945	1945	1945
Adj Flow Rate, veh/h	19	67	18	9	24	61	22	191	11	22	157	13
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Percent Heavy Veh, %	0	0	0	0	0	0	1	1	1	2	2	2
Cap, veh/h	140	438	107	86	181	382	99	696	38	109	656	51
Arrive On Green	0.38	0.38	0.38	0.38	0.38	0.38	0.92	0.92	0.92	0.46	0.46	0.46
Sat Flow, veh/h	193	1140	279	66	471	992	83	1507	82	103	1422	111
Grp Volume(v), veh/h	104	0	0	94	0	0	224	0	0	192	0	0
Grp Sat Flow(s),veh/h/ln	1611	0	0	1529	0	0	1672	0	0	1637	0	0
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	2.6	0.0	0.0	2.6	0.0	0.0	0.9	0.0	0.0	4.5	0.0	0.0
Prop In Lane	0.18		0.17	0.10		0.65	0.10		0.05	0.11		0.07
Lane Grp Cap(c), veh/h	685	0	0	649	0	0	833	0	0	817	0	0
V/C Ratio(X)	0.15	0.00	0.00	0.14	0.00	0.00	0.27	0.00	0.00	0.23	0.00	0.00
Avail Cap(c_a), veh/h	685	0	0	649	0	0	833	0	0	817	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.1	0.0	0.0	13.1	0.0	0.0	1.4	0.0	0.0	10.6	0.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	0.0	0.5	0.0	0.0	0.8	0.0	0.0	0.7	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.0	0.0	0.0	0.9	0.0	0.0	0.4	0.0	0.0	1.6	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.6	0.0	0.0	13.6	0.0	0.0	2.2	0.0	0.0	11.3	0.0	0.0
LnGrp LOS	В	А	A	В	А	А	А	А	А	В	А	A
Approach Vol, veh/h		104			94			224			192	
Approach Delay, s/veh		13.6			13.6			2.2			11.3	
Approach LOS		В			В			А			В	
Timer - Assigned Phs		2		4		6		8				152
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+l1), s		2.9		4.6		6.5		4.6				
Green Ext Time (p_c), s		1.3		0.5		1.1		0.4				
Intersection Summary	- AL	Second					1 - 5		0.05			
HCM 6th Ctrl Delay			8.7									
HCM 6th LOS			A									

	٠	-	7	1	+	*	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	9	53	29	5	43	17	8	89	9	10	62	9
Future Volume (veh/h)	9	53	29	5	43	17	8	89	9	10	62	9
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	0.99		0.98	0.99		0.98	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1976	1976	1976	1976	1976	1976	1822	1822	1822	1853	1853	1853
Adj Flow Rate, veh/h	9	55	30	5	44	18	8	92	9	10	64	9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	0	0	0	0	0	0	10	10	10	8	8	8
Cap, veh/h	91	448	224	77	444	169	82	642	60	112	592	78
Arrive On Green	0.38	0.38	0.38	0.38	0.38	0.38	0.92	0.92	0.92	0.46	0.46	0.46
Sat Flow, veh/h	79	1165	583	46	1153	441	48	1391	129	107	1283	169
Grp Volume(v), veh/h	94	0	0	67	0	0	109	0	0	83	0	0
Grp Sat Flow(s),veh/h/ln	1826	0	0	1640	0	0	1568	0	0	1560	0	0
Q Serve(g s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g c), s	2.1	0.0	0.0	1.7	0.0	0.0	0.4	0.0	0.0	1.9	0.0	0.0
Prop In Lane	0.10		0.32	0.07		0.27	0.07		0.08	0.12		0.11
Lane Grp Cap(c), veh/h	763	0	0	690	0	0	783	0	0	782	0	0
V/C Ratio(X)	0.12	0.00	0.00	0.10	0.00	0.00	0.14	0.00	0.00	0.11	0.00	0.00
Avail Cap(c_a), veh/h	763	0	0	690	0	0	783	0	0	782	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.0	0.0	0.0	12.8	0.0	0.0	1.4	0.0	0.0	9.9	0.0	0.0
Incr Delay (d2), s/veh	0.3	0.0	0.0	0.3	0.0	0.0	0.4	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	0.0	0.0	0.6	0.0	0.0	0.2	0.0	0.0	0.7	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.3	0.0	0.0	13.1	0.0	0.0	1.7	0.0	0.0	10.2	0.0	0.0
LnGrp LOS	В	A	A	В	Α	А	А	А	А	В	А	<u>A</u>
Approach Vol, veh/h		94			67			109			83	
Approach Delay, s/veh		13.3			13.1			1.7			10.2	
Approach LOS		В			В			А			В	
Timer - Assigned Phs		2	1	4		6	- 24.	8		12		
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+I1), s		2.4		4.1		3.9		3.7				
Green Ext Time (p_c), s		0.6		0.4		0.4		0.3				
Intersection Summary		al.	-			-	1 1 1 1	1. 10	4	11-34	1.1	
HCM 6th Ctrl Delay			9.0									
HCM 6th LOS			А									

	П	ter	S	e	C	u	0	n	
--	---	-----	---	---	---	---	---	---	--

Int Delay, s/veh	5.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	9	53	29	5	43	17	8	89	9	10	62	9
Future Vol, veh/h	9	53	29	5	43	17	8	89	9	10	62	9
Conflicting Peds, #/hr	13	0	7	7	0	13	4	0	3	3	0	4
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None			None
Storage Length	-	-			-	140			-	*	-	
Veh in Median Storage	,# -	0	1.		0	-	-	0	-	i.	0	-
Grade, %	-	0	-	-	0			0		-	0	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	11	0	7	0	0	6	13	10	0	0	8	0
Mymt Flow	9	55	30	5	44	18	8	92	9	10	64	9

Major/Minor	Minor2	1	N	/inor1			Major1		N	Aajor2	1		- 1	
Conflicting Flow All	250	213	80	254	213	113	77	0	0	104	0	0		
Stage 1	93	93	-	116	116		-	-		253	-			
Stage 2	157	120	-	138	97		-		-	-	*			
Critical Hdwy	7.21	6.5	6.27	7.1	6.5	6.26	4.23			4.1	-			
Critical Hdwy Stg 1	6.21	5.5	-	6.1	5.5			-	- 100			•		
Critical Hdwy Stg 2	6.21	5.5	-	6.1	5.5	-	-			(=)	-	-		
Follow-up Hdwy	3.599	4	3.363	3.5	4	3.354	2.317	-	-	2.2	*	•		
Pot Cap-1 Maneuver	685	688	966	703	688	929	1455		•	1500	4			
Stage 1	892	822	-	894	803	-	-	19		(a)		•		
Stage 2	824	800	-	870	819		-	-	•	201	-	•		
Platoon blocked, %								•			•			
Mov Cap-1 Maneuver	619	674	953	625	674	911	1449		-	1495	-			
Mov Cap-2 Maneuver	619	674		625	674	-	-		•	45				
Stage 1	883	813	-	886	796	-	-	-			-	-		
Stage 2	746	793	-	774	810	-	-		•		100			
Approach	EB			WB			NB	all and a		SB		1	and all	
HCM Control Delay, s	10.6			10.5			0.6			0.9				

В

HCM LOS

В

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1449		-	736	719	1495			
HCM Lane V/C Ratio	0.006	-		0.127	0.093	0.007	-	.:e/	
HCM Control Delay (s)	7.5	0	-	10.6	10.5	7.4	0		
HCM Lane LOS	А	А	-	В	В	А	А	-	
HCM 95th %tile Q(veh)	0	-		0.4	0.3	0	-	-	

Intersection		
Intersection Delay, s/veh	8	
Intersection LOS	А	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	9	53	29	5	43	17	8	89	9	10	62	9
Future Vol, veh/h	9	53	29	5	43	17	8	89	9	10	62	9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, %	11	0	7	0	0	6	13	10	0	0	8	0
Mvmt Flow	9	55	30	5	44	18	8	92	9	10	64	9
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB	3 - 00		WB	1200	-	NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8			7.7			8.3			7.9		
HCM LOS	А			А			А			А		

		and the second second	and a lot of the second s		
Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	10%	8%	12%	
Vol Thru, %	84%	58%	66%	77%	
Vol Right, %	8%	32%	26%	11%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	106	91	65	81	
LT Vol	8	9	5	10	
Through Vol	89	53	43	62	
RT Vol	9	29	17	9	
Lane Flow Rate	109	94	67	84	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.138	0.116	0.08	0.101	
Departure Headway (Hd)	4.543	4.435	4.309	4.348	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	791	811	833	827	
Service Time	2.557	2.45	2.327	2.363	
HCM Lane V/C Ratio	0.138	0.116	0.08	0.102	
HCM Control Delay	8.3	8	7.7	7.9	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.5	0.4	0.3	0.3	

	≯	-	7	1	+	*	1	Ť	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Volume (veh/h)	10	56	19	21	50	49	7	111	12	26	108	16
Future Volume (veh/h)	10	56	19	21	50	49	7	111	12	26	108	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97		0.97	0.97		0.97	0.98		0.98	0.98		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88
Work Zone On Approach		No			No			No			No	
Adi Sat Flow, veh/h/ln	1945	1945	1945	1945	1945	1945	1945	1945	1945	1930	1930	1930
Adj Flow Rate, veh/h	10	58	20	22	52	51	7	116	12	27	112	17
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	3	3	3
Cap, veh/h	101	497	158	131	278	237	71	692	69	151	563	79
Arrive On Green	0.38	0.38	0.38	0.38	0.38	0.38	0.92	0.92	0.92	0.92	0.92	0.92
Sat Flow, veh/h	103	1292	410	171	723	616	28	1500	149	186	1220	172
Grp Volume(v), veh/h	88	0	0	125	0	0	135	0	0	156	0	0
Grp Sat Flow(s),veh/h/ln	1806	0	0	1510	0	0	1677	0	0	1579	0	0
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	2.0	0.0	0.0	3.4	0.0	0.0	0.5	0.0	0.0	0.6	0.0	0.0
Prop In Lane	0.11		0.23	0.18	_	0.41	0.05		0.09	0.17		0.11
Lane Grp Cap(c), veh/h	756	0	0	646	0	0	832	0	0	794	0	0
V/C Ratio(X)	0.12	0.00	0.00	0.19	0.00	0.00	0.16	0.00	0.00	0.20	0.00	0.00
Avail Cap(c_a), veh/h	756	0	0	646	0	0	832	0	0	794	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	12.9	0.0	0.0	13.4	0.0	0.0	1.4	0.0	0.0	1.4	0.0	0.0
Incr Delay (d2), s/veh	0.3	0.0	0.0	0.7	0.0	0.0	0.4	0.0	0.0	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.0	0.0	1.2	0.0	0.0	0.2	0.0	0.0	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.2	0.0	0.0	14.0	0.0	0.0	1.8	0.0	0.0	1.9	0.0	0.0
LnGrp LOS	В	A	A	В	A	A	A	A	A	A	A	A
Approach Vol, veh/h		88			125			135			156	
Approach Delay, s/veh		13.2			14.0			1.8			1.9	
Approach LOS		В			В			А			А	
Timer - Assigned Phs	1	2	14 - 12	4	1231	6		8		1 James	1	
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+11), s		2.5		4.0		2.6		5.4				
Green Ext Time (p_c), s		0.7		0.4		0.9		0.6				
Intersection Summary	20		I and			-			1.15	and the		
HCM 6th Ctrl Delay			6.9									
HCM 6th LOS			А									

Intersection													
Int Delay, s/veh	5.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			4			4			4		
Traffic Vol, veh/h	10	56	19	21	50	49	7	111	12	26	108	16	
Future Vol, veh/h	10	56	19	21	50	49	7	111	12	26	108	16	
Conflicting Peds, #/hr	24	0	8	8	0	24	8	0	17	17	0	8	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-		None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-		-		-	×.		-			-	
Veh in Median Storage,	# -	0		-	0	-	-	0	-	-	0	-	
Grade, %	-	0	+	-	0	-	-	0	4	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	20	2	11	5	2	2	0	2	0	0	3	0	
Mvmt Flow	10	58	20	22	52	51	7	116	13	27	113	17	

Major/Minor	Minor2			Minor1		1	Major1		٨	Major2			le nie	
Conflicting Flow All	396	344	138	377	346	164	138	0	0	146	0	0		
Stage 1	184	184	-	154	154	-	-	-	- 44 -	-		2		
Stage 2	212	160	-	223	192	-	-		-	-	-	19		
Critical Hdwy	7.3	6.52	6.31	7.15	6.52	6.22	4.1		-	4.1		1		
Critical Hdwy Stg 1	6.3	5.52	-	6.15	5.52	-		-	-					
Critical Hdwy Stg 2	6.3	5.52	-	6.15	5.52	-	-	-	-			-		
Follow-up Hdwy	3.68	4.018	3.399	3.545	4.018	3.318	2.2		-	2.2	•			
Pot Cap-1 Maneuver	533	579	887	575	577	881	1458	-	-	1448	-			
Stage 1	778	747	-	841	770	-	-							
Stage 2	751	766	-	773	742	-	-	-	-	14				
Platoon blocked, %									-					
Mov Cap-1 Maneuver	437	548	870	492	546	838	1445		-	1421	-	in .		
Mov Cap-2 Maneuver	437	548		492	546	-	-	-	-	141		<i>.</i>		
Stage 1	767	725	-	821	752	-	-		1.00			-		
Stage 2	633	748	-	673	720	-	-	*						
America	ED	-		M/D			NID		-	CD		- 1		

Approach	EB	WB	NB	SB	and the second sec
HCM Control Delay, s	12.3	12.2	0.4	1.3	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1445	-	(=)	579	623	1421		-	
HCM Lane V/C Ratio	0.005	-		0.153	0.201	0.019	-		
HCM Control Delay (s)	7.5	0	-	12.3	12.2	7.6	0		
HCM Lane LOS	А	А	-	В	В	A	A	-	
HCM 95th %tile Q(veh)	0	-	-	0.5	0.7	0.1		-	

Intersection		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-	1
Intersection Delay, s/veh	8.6			
Intersection LOS	А			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			ф э	
Traffic Vol, veh/h	10	56	19	21	50	49	7	111	12	26	108	16
Future Vol, veh/h	10	56	19	21	50	49	7	111	12	26	108	16
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, %	20	2	11	5	2	2	0	2	0	0	3	0
Mvmt Flow	10	58	20	22	52	51	7	116	13	27	113	17
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB	-		WB			NB		1-11	SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.7			8.5			8.5			8.7		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	11
Vol Left, %	5%	12%	17%	17%	
Vol Thru, %	85%	66%	42%	72%	
Vol Right, %	9%	22%	41%	11%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	130	85	120	150	
LT Vol	7	10	21	26	
Through Vol	111	56	50	108	
RT Vol	12	19	49	16	
Lane Flow Rate	135	89	125	156	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.171	0.122	0.158	0.197	
Departure Headway (Hd)	4.549	4.955	4.562	4.54	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	788	722	785	789	
Service Time	2.582	2.991	2.597	2.572	
HCM Lane V/C Ratio	0.171	0.123	0.159	0.198	
HCM Control Delay	8.5	8.7	8.5	8.7	
HCM Lane LOS	A	A	А	А	
HCM 95th-tile Q	0.6	0.4	0.6	0.7	

Intersection	1		-	and the second sec		and a second						
Intersection Delay, s/veh	8.6											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR

Morenter	the lot in								-			
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	64	19	17	83	11	12	93	28	18	59	15
Future Vol, veh/h	6	64	19	17	83	11	12	93	28	18	59	15
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	0	5	0	6	1	10	8	10	4	11	5	7
Mymt Flow	7	74	22	20	95	13	14	107	32	21	68	17
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB	-		WB		-	NB		14	SB	3	1.04
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.3			8.7			8.7			8.6		
HCM LOS	А			А			А			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	9%	7%	15%	20%	
Vol Thru, %	70%	72%	75%	64%	
Vol Right, %	21%	21%	10%	16%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	133	89	111	92	
LT Vol	12	6	17	18	
Through Vol	93	64	83	59	
RT Vol	28	19	11	15	
Lane Flow Rate	153	102	128	106	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.195	0.129	0.167	0.14	
Departure Headway (Hd)	4.6	4.556	4.708	4.753	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	780	786	762	754	
Service Time	2.631	2.59	2.741	2.786	
HCM Lane V/C Ratio	0.196	0.13	0.168	0.141	
HCM Control Delay	8.7	8.3	8.7	8.6	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.7	0.4	0.6	0.5	

	٠	-	\mathbf{r}	1	-	A.	1	1	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	6	64	19	17	83	11	12	93	28	18	59	15
Future Volume (veh/h)	6	64	19	17	83	11	12	93	28	18	59	15
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97		0.96	0.97		0.96	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1899	1899	1899	1961	1961	1961	1822	1822	1822	1899	1899	1899
Adj Flow Rate, veh/h	7	74	22	20	95	13	14	107	32	21	68	17
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	5	5	5	1	1	1	10	10	10	5	5	5
Cap, veh/h	74	465	130	123	502	63	92	525	147	167	490	113
Arrive On Green	0.38	0.38	0.38	0.38	0.38	0.38	0.46	0.46	0.46	0.46	0.46	0.46
Sat Flow, veh/h	38	1209	339	153	1306	165	68	1137	318	218	1062	244
Grp Volume(v), veh/h	103	0	0	128	0	0	153	0	0	106	0	0
Grp Sat Flow(s), veh/h/ln	1586	0	0	1624	0	0	1523	0	0	1524	0	0
Q Serve(q s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(q c), s	2.7	0.0	0.0	3.3	0.0	0.0	3.8	0.0	0.0	2.4	0.0	0.0
Prop In Lane	0.07		0.21	0.16		0.10	0.09		0.21	0.20		0.16
Lane Grp Cap(c), veh/h	669	0	0	689	0	0	763	0	0	770	0	0
V/C Ratio(X)	0.15	0.00	0.00	0.19	0.00	0.00	0.20	0.00	0.00	0.14	0.00	0.00
Avail Cap(c a), veh/h	669	0	0	689	0	0	763	0	0	770	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.2	0.0	0.0	13.3	0.0	0.0	10.5	0.0	0.0	10.1	0.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	0.0	0.6	0.0	0.0	0.6	0.0	0.0	0.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.0	0.0	0.0	1.3	0.0	0.0	1.3	0.0	0.0	0.9	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.6	0.0	0.0	13.9	0.0	0.0	11.0	0.0	0.0	10.5	0.0	0.0
LnGrp LOS	В	А	A	В	А	А	В	A	А	В	А	A
Approach Vol. veh/h		103			128			153			106	
Approach Delay, s/veh		13.6			13.9			11.0			10.5	
Approach LOS		В			В			В			В	
Timer - Assigned Phs	1. 1. 1.	2		4	1. 10	6	100-	8		11 f =		
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+l1), s		5.8		4.7		4.4		5.3				
Green Ext Time (p_c), s		0.8		0.5		0.5		0.6				
Intersection Summary	24	1 Stalle			al II		42				1	
HCM 6th Ctrl Delay			12.2									
HCM 6th LOS			В									

Intersection					1								
Int Delay, s/veh	6.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	and the second second
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	6	64	19	17	83	11	12	93	28	18	59	15	
Future Vol, veh/h	6	64	19	17	83	11	12	93	28	18	59	15	
Conflicting Peds, #/hr	28	0	13	13	0	28	2	0	7	7	0	2	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	(=)		None	-		None	
Storage Length		-			-	-					-		
Veh in Median Storage,	# -	0			0	-	-	0	-		0	-	
Grade, %	-	0	-	-	0	-	•	0	-	(a)	0	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	0	5	0	6	1	10	8	10	4	11	5	7	
Mvmt Flow	7	74	22	20	95	13	14	107	32	21	68	17	

Major/Minor	Minor2		1	Minor1	1		Major1		N	Aajor2	the Ster		100	1. J.	
Conflicting Flow All	354	295	92	338	287	158	87	0	0	146	0	0			
Stage 1	121	121	-	158	158	-	-	-	-	-	-	-			
Stage 2	233	174	-	180	129	-	-	141	-						
Critical Hdwy	7.1	6.55	6.2	7.16	6.51	6.3	4.18	-	-	4.21	-	-			
Critical Hdwy Stg 1	6.1	5.55	-	6.16	5.51	-		-	-		× .				
Critical Hdwy Stg 2	6.1	5.55	-	6.16	5.51	-	-		-			-			
Follow-up Hdwy	3.5	4.045	3.3	3.554	4.009	3.39	2.272		-	2.299	-	3			
Pot Cap-1 Maneuver	605	611	971	608	624	867	1472		-	1383		-			
Stage 1	888	790	-	835	769				•			-			
Stage 2	775	749	-	813	791	-	-	140	+	*		÷.			
Platoon blocked, %									•		*	*			
Mov Cap-1 Maneuver	494	588	953	513	600	829	1468	-	-	1371		4			
Mov Cap-2 Maneuver	494	588	-	513	600	-	-	3	è.			*			
Stage 1	876	775	-	819	754	-	-		-	-	-				
Stage 2	636	735	-	696	776	-	-	-							
Approach	EB		E.C.	WB			NB			SB					-
HCM Control Delay, s	11.8			12.6			0.7			1.5					
HCM LOS	В			В											

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1468		-	632	601	1371	(m)	-	
HCM Lane V/C Ratio	0.009	-		0.162	0.212	0.015	-	•	
HCM Control Delay (s)	7.5	0	-	11.8	12.6	7.7	0		
HCM Lane LOS	А	А		В	В	А	А		
HCM 95th %tile Q(veh)	0	-	-	0.6	0.8	0	-	-	

	٠	-	7	4	+	*	1	t	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	6	65	24	26	79	23	12	124	26	37	92	9
Future Volume (veh/h)	6	65	24	26	79	23	12	124	26	37	92	9
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97		0.96	0.97		0.96	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88	1.00	1.00	0.88
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1930	1930	1930	1837	1837	1837	1884	1884	1884	1868	1868	1868
Adj Flow Rate, veh/h	8	81	30	32	99	29	15	155	32	46	115	11
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	3	3	3	9	9	9	6	6	6	7	7	7
Cap, veh/h	73	445	155	143	385	102	83	596	117	214	486	43
Arrive On Green	0.38	0.38	0.38	0.38	0.38	0.38	0.46	0.46	0.46	0.92	0.92	0.92
Sat Flow, veh/h	37	1158	403	199	1001	266	50	1292	253	311	1054	93
Grp Volume(v), veh/h	119	0	0	160	0	0	202	0	0	172	0	0
Grp Sat Flow(s), veh/h/ln	1598	0	0	1466	0	0	1595	0	0	1458	0	0
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	3.2	0.0	0.0	4.6	0.0	0.0	5.0	0.0	0.0	0.7	0.0	0.0
Prop In Lane	0.07		0.25	0.20		0.18	0.07		0.16	0.27		0.06
Lane Grp Cap(c), veh/h	674	0	0	630	0	0	796	0	0	743	0	0
V/C Ratio(X)	0.18	0.00	0.00	0.25	0.00	0.00	0.25	0.00	0.00	0.23	0.00	0.00
Avail Cap(c_a), veh/h	674	0	0	630	0	0	796	0	0	743	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.3	0.0	0.0	13.7	0.0	0.0	10.8	0.0	0.0	1.4	0.0	0.0
Incr Delay (d2), s/veh	0.6	0.0	0.0	1.0	0.0	0.0	0.8	0.0	0.0	0.7	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.2	0.0	0.0	1.6	0.0	0.0	1.7	0.0	0.0	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.9	0.0	0.0	14.7	0.0	0.0	11.5	0.0	0.0	2.1	0.0	0.0
LnGrp LOS	В	A	A	В	A	Α	В	A	A	A	A	A
Approach Vol, veh/h		119			160			202			172	
Approach Delay, s/veh		13.9			14.7			11.5			2.1	
Approach LOS		В			В			В			А	
Timer - Assigned Phs	- and	2		4		6	E.	8				
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0		30.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		25.0		30.0		25.0				
Max Q Clear Time (g_c+l1), s		7.0		5.2		2.7		6.6				
Green Ext Time (p_c), s		1.1		0.6		1.0		0.8				
Intersection Summary					1	- ALLON			in the second	All March		
HCM 6th Ctrl Delay			10.2									
HCM 6th LOS			В									

Intersection				_								_	
Int Delay, s/veh	7.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		42			4			4			4		
Traffic Vol, veh/h	6	65	24	26	79	23	12	124	26	37	92	9	
Future Vol, veh/h	6	65	24	26	79	23	12	124	26	37	92	9	
Conflicting Peds, #/hr	28	0	13	13	0	28	2	0	7	7	0	2	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None		-	None	-	-	None		-	None	
Storage Length	-	-	-		-						-		
Veh in Median Storage	# -	0	10	-	0			0		-	0	-	

Ven in Median Storage, #		0	-		0	-	-	U	-	-	0			
Grade, %	-	0	-	141	0		1	0	-	-	0	19		
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80		
Heavy Vehicles, %	0	3	4	15	9	6	0	6	8	11	7	0		
Mvmt Flow	8	81	30	33	99	29	15	155	33	46	115	11		

Major/Minor	Minor2			Minor1		1	Major1		N	Aajor2				
Conflicting Flow All	509	440	136	490	429	207	128	0	0	195	0	0		
Stage 1	215	215	-	209	209	-	-	-	-	(1)	-	-		
Stage 2	294	225	-	281	220		-		•			3 8 -		
Critical Hdwy	7.1	6.53	6.24	7.25	6.59	6.26	4.1		-	4.21	-	-		
Critical Hdwy Stg 1	6.1	5.53	-	6.25	5.59	-	-	-			1			
Critical Hdwy Stg 2	6.1	5.53	-	6.25	5.59	-	-			-		*		
Follow-up Hdwy	3.5	4.027	3.336	3.635	4.081	3.354	2.2	-	-	2.299				
Pot Cap-1 Maneuver	478	510	907	468	508	823	1470		-	1326	-	-		
Stage 1	792	723	-	764	716		-							
Stage 2	719	716	-	698	708	-	-	-		-	-			
Platoon blocked, %									-		140			
Mov Cap-1 Maneuver	359	479	890	370	478	787	1466		-	1314	-			
Mov Cap-2 Maneuver	359	479	-	370	478	-	-		•	-	-	÷		
Stage 1	781	693	-	749	702	-	-	-		-	-			
Stage 2	568	702	-	563	679	-	-	187		1.05	200			
Approach	EB		and the second	WB		1 10-	NB		-	SB				
HCM Control Delay, s	13.7			16.1			0.6			2.1				
HCM LOS	В			С										

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn 1	SBL	SET	SBR	
Capacity (veh/h)	1466	-		530	483	1314	-		
HCM Lane V/C Ratio	0.01	-		0.224	0.331	0.035	-	*	
HCM Control Delay (s)	7.5	0	-	13.7	16.1	7.8	0		
HCM Lane LOS	А	А	•	В	С	А	Α	-	
HCM 95th %tile Q(veh)	0		-	0.9	1.4	0.1	-		

Information					_							-
Intersection												
Intersection Delay, s/veh	9.5											
Intersection LOS	А											
Mayaraark	EDI	CDT	CCC	WMD)	WIDT	WEE	NDI	NDT	NIDD	CDI	COT	CRD

wovernem	EDL	EDI	CEDIA	WEL	A M (ESU)	A WEARA	NDL	TNDT	INDIA	ODL	ODT	ODIN
Lane Configurations		4			4			4>			4	
Traffic Vol, veh/h	6	65	24	26	79	23	12	124	26	37	92	9
Future Vol, veh/h	6	65	24	26	79	23	12	124	26	37	92	9
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Heavy Vehicles, %	0	3	4	15	9	6	0	6	8	11	7	0
Mvmt Flow	8	81	30	33	99	29	15	155	33	46	115	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB	NT 4.5		NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			. 1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.9			9.8			9.6			9.7		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	7%	6%	20%	27%	
Vol Thru, %	77%	68%	62%	67%	
Vol Right, %	16%	25%	18%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	162	95	128	138	
LT Vol	12	6	26	37	
Through Vol	124	65	79	92	
RT Vol	26	24	23	9	
Lane Flow Rate	202	119	160	172	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.267	0.161	0.229	0.242	
Departure Headway (Hd)	4.744	4.893	5.152	5.052	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	751	727	691	706	
Service Time	2.808	2.968	3.223	3.12	
HCM Lane V/C Ratio	0.269	0.164	0.232	0.244	
HCM Control Delay	9.6	8.9	9.8	9.7	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	1.1	0.6	0.9	0.9	

Intersection												1	
Int Delay, s/veh	7.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	20	70	40	9	87	66	9	247	24	63	236	12	
Future Vol, veh/h	20	70	40	9	87	66	9	247	24	63	236	12	
Conflicting Peds, #/hr	0	0	1	0	0	2	0	0	0	0	0	1	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	4	-			-		-	-		(*)		•	
Veh in Median Storage,	# -	0	-	-	0	3441		0	-	-	0	-	
Grade, %	-	0	-		0	-	÷	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	8	2	2	10	2	2	7	2	
Mvmt Flow	22	78	44	10	97	73	10	274	27	70	262	13	

Major/Minor	Minor2		1	Minor1	1.1		Major1		N	Aajor2			
Conflicting Flow All	805	731	271	779	724	290	276	0	0	301	0	0	
Stage 1	410	410	-	308	308	2 8	14	-	-	-		-	
Stage 2	395	321	-	471	416	-	-	-	-	•			
Critical Hdwy	7.12	6.52	6.22	7.12	6.58	6.22	4.12		-	4.12		-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.58	-		-				•	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.58	-		-	-	-	-		
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.072	3.318	2.218	-	-	2.218			
Pot Cap-1 Maneuver	301	349	768	313	345	749	1287	-	-	1260	-		
Stage 1	619	595	-	702	650		-		-		•	1	
Stage 2	630	652	-	573	582	-	-	-	-	-			
Platoon blocked, %								-	-		*	•	
Mov Cap-1 Maneuver	196	323	767	227	319	748	1286		-	1260	-		
Mov Cap-2 Maneuver	196	323	-	227	319	-	-		-		-		
Stage 1	613	555	-	696	644	-	-	-	-				
Stage 2	478	646	-	433	543	-	-					•	
Approach	EB	0-1		WB			NB			SB			
HCM Control Delay, s	22.3			20.9			0.3			1.6			
HCM LOS	С			С									

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1286	-	-	350	404	1260	-	
HCM Lane V/C Ratio	0.008	-	-	0.413	0.446	0.056		
HCM Control Delay (s)	7.8	0		22.3	20.9	8	0	-
HCM Lane LOS	А	А	(*	С	С	А	А	
HCM 95th %tile Q(veh)	0	-	-	2	2.2	0.2	-	-

Intersection		
Intersection Delay, s/veh	12.8	
Intersection LOS	В	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			(
Traffic Vol, veh/h	20	70	40	9	87	66	9	247	24	63	236	12
Future Vol, veh/h	20	70	40	9	87	66	9	247	24	63	236	12
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	8	2	2	10	2	2	7	2
Mvmt Flow	22	78	44	10	97	73	10	274	27	70	262	13
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB		1.00	WB	1999	70.01	NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.8			11.1			13.1			14.2		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	15%	6%	20%	
Vol Thru, %	88%	54%	54%	76%	
Vol Right, %	9%	31%	41%	4%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	280	130	162	311	
LT Vol	9	20	9	63	
Through Vol	247	70	87	236	
RT Vol	24	40	66	12	
Lane Flow Rate	311	144	180	346	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.466	0.237	0.287	0.519	
Departure Headway (Hd)	5.397	5.901	5.746	5.404	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	666	605	621	663	
Service Time	3.454	3.97	3.815	3.457	
HCM Lane V/C Ratio	0.467	0.238	0.29	0.522	
HCM Control Delay	13.1	10.8	11.1	14.2	
HCM Lane LOS	В	В	В	В	
HCM 95th-tile Q	2.5	0.9	1.2	3	

	٠		\mathbf{r}	*		*	1	1	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	20	70	40	9	87	66	9	247	24	63	236	12
Future Volume (veh/h)	20	70	40	9	87	66	9	247	24	63	236	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adi Sat Flow, veh/h/ln	1870	1870	1870	1781	1781	1781	1752	1752	1752	1796	1796	1796
Adi Flow Rate, veh/h	22	78	40	10	97	71	10	274	27	70	262	12
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh. %	2	2	2	8	8	8	10	10	10	7	7	7
Cap. veh/h	93	282	128	59	251	173	58	814	78	191	678	29
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	145	1072	487	34	954	656	18	1546	149	255	1289	56
Grn Volume(v) veh/h	140	0	0	178	0	0	311	0	0	344	0	0
Grp Sat Flow(s) veh/h/ln	1703	0	0	1644	0	0	1713	0	0	1600	0	0
Q Serve(q , s) s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0
Cycle Q Clear(q, c), s	4.8	0.0	0.0	6.7	0.0	0.0	7.9	0.0	0.0	8.7	0.0	0.0
Pron In Lane	0.16		0.29	0.06		0.40	0.03		0.09	0.20		0.03
Lane Grp Cap(c), veh/h	503	0	0	483	0	0	950	0	0	899	0	0
V/C Ratio(X)	0.28	0.00	0.00	0.37	0.00	0.00	0.33	0.00	0.00	0.38	0.00	0.00
Avail Cap(c a), veh/h	503	0	0	483	0	0	950	0	0	899	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.4	0.0	0.0	23.1	0.0	0.0	10.4	0.0	0.0	10.6	0.0	0.0
Incr Delay (d2), s/yeh	1.4	0.0	0.0	2.2	0.0	0.0	0.9	0.0	0.0	1.2	0.0	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/ln	2.1	0.0	0.0	2.8	0.0	0.0	2.9	0.0	0.0	3.3	0.0	0.0
Unsig. Movement Delay, s/veh	1											
InGro Delav(d) s/veh	23.8	0.0	0.0	25.3	0.0	0.0	11.3	0.0	0.0	11.8	0.0	0.0
LnGrp LOS	С	A	A	С	А	А	В	А	А	В	А	A
Approach Vol. veh/h		140			178			311			344	
Approach Delay s/yeh		23.8			25.3			11.3			11.8	
Approach LOS		C			C			В			В	
		0			-	~	-		-	_		
Timer - Assigned Phs	- and the	2		4	10-10-1	00.0		40.0				-
Phs Duration (G+Y+Rc), s		28.0		48.0		28.0		48.0				
Change Period (Y+Rc), s		8.0		8.0		8.0		8.0				
Max Green Setting (Gmax), s		20.0		40.0		20.0		40.0				
Max Q Clear Time (g_c+l1), s		6.8		10.7		8.7		9.9				
Green Ext Time (p_c), s		0.6		2.4		0.7		2.0				
Intersection Summary	. Ta				1.5		- 1	5 h		To the		111 1 2
HCM 6th Ctrl Delay			15.8									
HCM 6th LOS			В									_

Notes

User approved pedestrian interval to be less than phase max green.

Intersection	-	-	100						_				_	
Int Delay, s/veh	26.7													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	The	
Lane Configurations		4			4			4			4			
Traffic Vol, veh/h	5	45	22	34	147	106	15	316	15	48	293	12		
Future Vol, veh/h	5	45	22	34	147	106	15	316	15	48	293	12		
Conflicting Peds, #/hr	0	0	1	0	0	2	0	0	4	0	0	3		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		
RT Channelized	-	-	None	-	-	None		-	None	-		None		
Storage Length	-	-		-		-					-	-		
Veh in Median Storage,	# -	0	-		0	-		0	-	-	0	-		
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-		
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87		
Heavy Vehicles, %	2	1	2	2	1	2	2	3	2	2	2	2		
Mymt Flow	6	52	25	39	169	122	17	363	17	55	337	14		

Major/Minor	Minor2		1	Minor1			Major1	1	N	lajor2			
Conflicting Flow All	1010	875	348	904	874	378	354	0	0	384	0	0	
Stage 1	457	457	-	410	410		-	-		-		-	
Stage 2	553	418	-	494	464		1.1		-			-	
Critical Hdwy	7.12	6.51	6.22	7.12	6.51	6.22	4.12		-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.51	-	6.12	5.51	-		-			-	-	
Critical Hdwy Stg 2	6.12	5.51	-	6.12	5.51	-	200		-		-	-	
Follow-up Hdwy	3.518	4.009	3.318	3.518	4.009	3.318	2.218		-	2.218	•		
Pot Cap-1 Maneuver	218	289	695	258	289	669	1205	100	-	1174			
Stage 1	583	569	-	619	597		1	-	7 •1	•			
Stage 2	517	592	-	557	565	-	-		-				
Platoon blocked, %								7.4				140	
Mov Cap-1 Maneuver	83	266	692	199	266	665	1202		-	1170	-	-	
Mov Cap-2 Maneuver	83	266	-	199	266	-	-	1		•		1	
Stage 1	571	534	-	605	584	-	-	-	-	-			
Stage 2	294	579	-	456	531	-	-				-		
Approach	EB			WB	h. 1		NB			SB			
HCM Control Delay, s	23.5			90.7			0.3			1.1			
HCM LOS	С			F									

HCM LOS С

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1202	-		276	325	1170	-		
HCM Lane V/C Ratio	0.014	-	-	0.3	1.015	0.047	-		
HCM Control Delay (s)	8	0	-	23.5	90.7	8.2	0		
HCM Lane LOS	А	A		С	F	А	А		
HCM 95th %tile Q(veh)	0	-	-	1.2	11.4	0.1	-		

19.8

С

Intersection

Intersection Delay, s/veh Intersection LOS

Movement	EBL	EBT	EBR	WBL	WB ^T	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ф			4			4	
Traffic Vol, veh/h	5	45	22	34	147	106	15	316	15	48	293	12
Future Vol, veh/h	5	45	22	34	147	106	15	316	15	48	293	12
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	1	2	2	1	2	2	3	2	2	2	2
Mymt Flow	6	52	25	39	169	122	17	363	17	55	337	14
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB	-	the state	WB			NB	1423	20	SB	· · · · ·	
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			_1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	11.6			17.9			21.1			21.8		
HCM LOS	В			С			С			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	7%	12%	14%	
Vol Thru, %	91%	62%	51%	83%	
Vol Right, %	4%	31%	37%	3%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	346	72	287	353	
LT Vol	15	5	34	48	
Through Vol	316	45	147	293	
RT Vol	15	22	106	12	
Lane Flow Rate	398	83	330	406	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.676	0.164	0.581	0.69	
Departure Headway (Hd)	6.118	7.124	6.339	6.125	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	589	501	567	588	
Service Time	4.173	5.205	4.395	4.181	
HCM Lane V/C Ratio	0.676	0.166	0.582	0.69	
HCM Control Delay	21.1	11.6	17.9	21.8	
HCM Lane LOS	С	В	С	С	
HCM 95th-tile Q	5.1	0.6	3.7	5.4	

	٠	-	7	•	-	*	1	1	1	4	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4>			4			4			4	
Traffic Volume (veh/h)	5	45	22	34	147	106	15	316	15	48	293	12
Future Volume (veh/h)	5	45	22	34	147	106	15	316	15	48	293	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adi Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1856	1856	1856	1870	1870	1870
Adi Flow Rate, veh/h	6	52	20	39	169	120	17	363	17	55	337	13
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh. %	1	1	1	1	1	1	3	3	3	2	2	2
Cap. veh/h	63	335	119	86	253	165	66	898	41	137	795	29
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	45	1272	454	127	962	628	31	1706	78	158	1510	55
Gro Volume(v) veh/h	78	0	0	328	0	0	397	0	0	405	0	0
Grp Sat Flow(s) veh/h/ln	1770	0	0	1717	0	0	1815	0	0	1723	0	0
Q Serve(q , s), s	0.0	0.0	0.0	5.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(q, c) s	2.5	0.0	0.0	13.1	0.0	0.0	9.9	0.0	0.0	10.0	0.0	0.0
Prop In Lane	0.08		0.26	0.12		0.37	0.04	-	0.04	0.14		0.03
l ane Grn Cap(c) veh/h	517	0	0	505	0	0	1005	0	0	961	0	0
V/C Ratio(X)	0.15	0.00	0.00	0.65	0.00	0.00	0.40	0.00	0.00	0.42	0.00	0.00
Avail Cap(c, a), veh/h	517	0	0	505	0	0	1005	0	0	961	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	21.6	0.0	0.0	25.4	0.0	0.0	10.9	0.0	0.0	10.9	0.0	0.0
Incr Delay (d2), s/yeh	0.6	0.0	0.0	6.4	0.0	0.0	1.2	0.0	0.0	1.4	0.0	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/ln	1.1	0.0	0.0	6.0	0.0	0.0	3.9	0.0	0.0	4.0	0.0	0.0
Unsig, Movement Delay, s/veh	1											
InGrp Delav(d).s/veh	22.2	0.0	0.0	31.7	0.0	0.0	12.0	0.0	0.0	12.3	0.0	0.0
LnGrp LOS	С	A	А	С	А	А	В	А	А	В	А	А
Approach Vol. veh/h		78			328			397			405	
Approach Delay, s/yeh		22.2			31.7			12.0			12.3	
Approach LOS		С			С			В			В	
Timer - Assigned Phs	5,900	2	10-1-1	4		6		8	10.00	10.00	2.4	
Pha Durotion (C+V+Po) s		28.0		18.0		28.0		48.0				
Chapped Pariod (V+Pc), s		20.0		8.0		8.0		8.0				
Max Groop Sotting (Gmax) s	a.	20.0		40.0		20.0		40.0				
Max O Clear Time (q. c+l1) s		4.5		12.0		15.1		11.9				
Groon Ext Time (n. c) s				2.8		0.9		27				
oreen Ext nine (p_0), s		0.0	_	2.0		0.0		£,1		-		
Intersection Summary	here have	1.7/ 1-	40.4	in the					112.00			
HCM 6th Ctrl Delay			18.1									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

Intersection		-										11-12-	
Int Delay, s/veh	1.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4						ર્સ			4		
Traffic Vol, veh/h	. 10	20	31	0	0	0	15	328	0	0	278	7	
Future Vol, veh/h	10	20	31	0	0	0	15	328	0	0	278	7	
Conflicting Peds, #/hr	0	0	6	0	0	6	0	0	4	0	0	8	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-			-		-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	16979	10	8 4 1	0	-	-	0	-	
Grade, %	-	0	-	-	0			0	-	-	0	1-1	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	0	6	8	4	13	13	8	0	0	8	0	
Mvmt Flow	11	21	33	0	0	0	16	345	0	0	293	7	

Major/Minor	Minor2	1		Major1		M	ajor2			Miles	
Conflicting Flow All	682	682	311	308	0				0		
Stage 1	305	305	-	-	-	-	-	•	-		
Stage 2	377	377	-			-			•10		
Critical Hdwy	6.4	6.5	6.26	4.23		-	-	-	-		
Critical Hdwy Stg 1	5.4	5.5	-		-	-		•			
Critical Hdwy Stg 2	5.4	5.5	-		100	-	-		*		
Follow-up Hdwy	3.5	4	3.354	2.317	-	-	-				
Pot Cap-1 Maneuver	419	375	720	1193		0	0	•			
Stage 1	752	666	-		1 (A)	0	0				
Stage 2	698	619	-		-	0	0		-		
Platoon blocked, %			_		-			(•)			
Mov Cap-1 Maneuver	405	0	710	1184		(÷	-	ė	141		
Mov Cap-2 Maneuver	405	0	-		•	1.00			•		
Stage 1	733	0	-	-	-	-		·*.	•		
Stage 2	692	0			•						
Approach	EB		-	NB		-1	SB			AN CONTRACT	
HCM Control Delay, s	11.7			0.4			0				
HCM LOS	В										

Minor Lane/Major Mvmt	NBL	NBTE	BLn1	SBT	SBR	
Capacity (veh/h)	1184	-	600	-	-	
HCM Lane V/C Ratio	0.013	- 0	0.107		•	
HCM Control Delay (s)	8.1	0	11.7		+	
HCM Lane LOS	А	А	В	4	•	
HCM 95th %tile Q(veh)	0	-	0.4	4	14	

Intersection				1			1.4				-	1
Intersection Delay, s/veh	10.8											
Intersection LOS	В											
		FOT	-	saul Phi	MOT	MIDE	NOL	NIDT	NIDE	COL	CDT	CDD
Movement	EBL	FRI	EBK	WBL	WBI	WBR	NBL	NBI	NBR	SBL	SBI	SBR
Lane Configurations		4						र्भ			_î≱	
Traffic Vol, veh/h	10	20	31	0	0	0	15	328	0	0	278	7
Future Vol, veh/h	10	20	31	0	0	0	15	328	0	0	278	7
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	0	0	6	8	4	13	13	8	0	0	8	0
Mvmt Flow	11	21	33	0	0	0	16	345	0	0	293	7
Number of Lanes	0	1	0	0	0	0	0	1	0	0	1	0
Approach	E9					10-14	NB	2113			SB	-
Opposing Approach							SB				NB	
Opposing Lanes	0						1				1	
Conflicting Approach Left	SB						EB					
Conflicting Lanes Left	1						1				0	
											ED	

SB	EB	
1	1	0
NB		EB
1	0	1
8.7	11.6	10.4
А	В	В
	SB 1 NB 1 8.7 A	SB 1 1 NB 1 0 8.7 11.6 A B

					-
Lane	NBLn1	EBLn1	SBLn1		
Vol Left, %	4%	16%	0%		
Vol Thru, %	96%	33%	98%		
Vol Right, %	0%	51%	2%		
Sign Control	Stop	Stop	Stop		
Traffic Vol by Lane	343	61	285		
LT Vol	15	10	0		
Through Vol	328	20	278		
RT Vol	0	31	7		
Lane Flow Rate	361	64	300		
Geometry Grp	1	1	1		
Degree of Util (X)	0.463	0.091	0.381		
Departure Headway (Hd)	4.615	5.105	4.577		
Convergence, Y/N	Yes	Yes	Yes		
Сар	780	700	786		
Service Time	2.642	3.152	2.605		
HCM Lane V/C Ratio	0.463	0.091	0.382		
HCM Control Delay	11.6	8.7	10.4		
HCM Lane LOS	В	А	В		
HCM 95th-tile Q	2.5	0.3	1.8		

	٠	-	7	1	-	*	1	1	1	4	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						र्भ			₽	
Traffic Volume (veh/h)	10	20	31	0	0	0	15	328	0	0	278	7
Future Volume (veh/h)	10	20	31	0	0	0	15	328	0	0	278	7
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99				0.99		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900				1781	1781	0	0	1781	1781
Adj Flow Rate, veh/h	11	21	27				16	345	0	0	293	7
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0				8	8	0	0	8	8
Cap, veh/h	124	237	305				72	798	0	0	799	19
Arrive On Green	0.38	0.38	0.38				0.46	0.46	0.00	0.00	0.46	0.46
Sat Flow, veh/h	323	617	793				30	1729	0	0	1732	41
Grp Volume(v), veh/h	59	0	0				361	0	0	0	0	300
Grp Sat Flow(s),veh/h/ln	1734	0	0				1759	0	0	0	0	1774
Q Serve(g_s), s	1.4	0.0	0.0				0.0	0.0	0.0	0.0	0.0	7.1
Cycle Q Clear(g_c), s	1.4	0.0	0.0				8.9	0.0	0.0	0.0	0.0	7.1
Prop In Lane	0.19		0.46				0.04		0.00	0.00		0.02
Lane Grp Cap(c), veh/h	667	0	0				870	0	0	0	0	819
V/C Ratio(X)	0.09	0.00	0.00				0.42	0.00	0.00	0.00	0.00	0.37
Avail Cap(c_a), veh/h	667	0	0				870	0	0	0	0	819
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	12.7	0.0	0.0			\sim	11.8	0.0	0.0	0.0	0.0	11.3
Incr Delay (d2), s/veh	0.3	0.0	0.0				1.5	0.0	0.0	0.0	0.0	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.6	0.0	0.0				3.4	0.0	0.0	0.0	0.0	2.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.0	0.0	0.0				13.3	0.0	0.0	0.0	0.0	12.6
LnGrp LOS	В	A	A				B	А	А	A	A	B
Approach Vol, veh/h		59						361			300	
Approach Delay, s/veh		13.0						13.3			12.6	
Approach LOS		В						В			В	
Timer - Assigned Phs	1-11	2	1.2	4		6						
Phs Duration (G+Y+Rc), s		35.0		30.0		35.0						
Change Period (Y+Rc), s		5.0		5.0		5.0						
Max Green Setting (Gmax), s		30.0		25.0		30.0						
Max Q Clear Time (g_c+l1), s		10.9		3.4		9.1						
Green Ext Time (p_c), s		2.1		0.2		1.7						
Intersection Summary		- 110	1 1		1576							1
HCM 6th Ctrl Delay			13.0									
HCM 6th LOS			В									

Intersection	I I Mark a	11	
Int Delay, s/veh	1.3		

Lane Configurations Image: April and Configurations Image:	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h 12 15 30 0 0 29 392 0 0 332 6 Future Vol, veh/h 12 15 30 0 0 29 392 0 0 332 6 Conflicting Peds, #/hr 0 0 6 0 0 6 0 0 4 0 0 8 Sign Control Stop Stop Stop Stop Stop Stop Stop Free	Lane Configurations		4			19.0			र्स			eî 👘	
Future Vol, veh/h 12 15 30 0 0 29 392 0 0 332 6 Conflicting Peds, #/hr 0 0 6 0 0 6 0 0 4 0 0 8 Sign Control Stop Stop Stop Stop Stop Stop Stop Free Free <td< td=""><td>Traffic Vol, veh/h</td><td>12</td><td>15</td><td>30</td><td>0</td><td>0</td><td>0</td><td>29</td><td>392</td><td>0</td><td>0</td><td>332</td><td>6</td></td<>	Traffic Vol, veh/h	12	15	30	0	0	0	29	392	0	0	332	6
Conflicting Peds, #/hr 0 0 6 0 0 6 0 0 4 0 0 8 Sign Control Stop Stop Stop Stop Stop Stop Stop Stop Free Free </td <td>Future Vol, veh/h</td> <td>12</td> <td>15</td> <td>30</td> <td>0</td> <td>0</td> <td>0</td> <td>29</td> <td>392</td> <td>0</td> <td>0</td> <td>332</td> <td>6</td>	Future Vol, veh/h	12	15	30	0	0	0	29	392	0	0	332	6
Sign Control Stop Free None - - None - None - - None - No -<	Conflicting Peds, #/hr	0	0	6	0	0	6	0	0	4	0	0	8
RT Channelized - - None - None - None - None Storage Length - - - - - - - - - - - None - - None - - O - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0	Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
Storage Length - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 -	RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Veh in Median Storage, # - 0 - - 16979 - - 0 0 - 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 <	Storage Length	-	18	-						-			-
Grade, % - 0 - - 0 - - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 2 0 0 0 0 377 7 7 Mean <	Veh in Median Storage	,# -	0	-	-	16979	-	-	0	-	-	0	-
Peak Hour Factor 88	Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, % 0 0 0 4 1 2 0 4 0 2 0 Mvmt Flow 14 17 34 0 0 0 33 445 0 0 377 7	Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Mvmt Flow 14 17 34 0 0 0 33 445 0 0 377 7	Heavy Vehicles, %	0	0	0	4	1	2	0	4	0	0	2	0
	Mvmt Flow	14	17	34	0	0	0	33	445	0	0	377	7

Major/Minor	Minor2			Major1		Ma	ajor2	1			
Conflicting Flow All	900	900	395	392	0		-		0		
Stage 1	389	389	-		-	(**)	-				
Stage 2	511	511		-		-					
Critical Hdwy	6.4	6.5	6.2	4.1			-		9		
Critical Hdwy Stg 1	5.4	5.5			-			÷.	-		
Critical Hdwy Stg 2	5.4	5.5	-		-	-	-		•		
Follow-up Hdwy	3.5	4	3.3	2.2		-	-	145			
Pot Cap-1 Maneuver	312	280	659	1178		0	0	10	-		
Stage 1	689	612	-			0	0				
Stage 2	606	540	•			0	0		-		
Platoon blocked, %					-						
Mov Cap-1 Maneuver	295	0	650	1169	-	٠	۲	-	-		
Mov Cap-2 Maneuver	295	0	-			-	-				
Stage 1	657	0	-		-	*					
Stage 2	601	0									
Approach	EB	10. J.		NB			SB			a lan a saint	
HCM Control Delay, s	13.6			0.6			0				
HCM LOS	В										

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR	
Capacity (veh/h)	1169		484	-	-	
HCM Lane V/C Ratio	0.028	-	0.134	+		
HCM Control Delay (s)	8.2	0	13.6	-		
HCM Lane LOS	А	А	В	-	•	
HCM 95th %tile Q(veh)	0.1	-	0.5	-	-	

HCM 6th AWSC Kingston Signals; 118-064

SRT SRP

Intersection
Intersection Delay, s/veh 12.9
Intersection LOS B
Mexemate EDI EDI EDI WEI WEI WED NEI NET NEE SEI

wovement	EDL	EDI	EDR	VVDL	VVDI	WDR	NDL	INDI	NON	ODL	001	ODIN
Lane Configurations		4						4			1	
Traffic Vol, veh/h	12	15	30	0	0	0	29	392	0	0	332	6
Future Vol, veh/h	12	15	30	0	0	0	29	392	0	0	332	6
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	0	0	0	4	1	2	0	4	0	0	2	0
Mvmt Flow	14	17	34	0	0	0	33	445	0	0	377	7
Number of Lanes	0	1	0	0	0	0	0	1	0	0	1	0
Approach	EB	1	18				NB				SB	
Opposing Approach							SB				NB	
Opposing Lanes	0						1				1	
Conflicting Approach Left	SB						EB					
Conflicting Lanes Left	1						1				0	
Conflicting Approach Right	NB										EB	
Conflicting Lanes Right	1						0				1	
HCM Control Delay	9.2						14.1				12	
HCM LOS	А						В				В	

Lane	NBLn1	EBLn1	SBLn1	
Vol Left, %	7%	21%	0%	
Vol Thru, %	93%	26%	98%	
Vol Right, %	0%	53%	2%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	421	57	338	
LT Vol	29	12	0	
Through Vol	392	15	332	
RT Vol	0	30	6	
Lane Flow Rate	478	65	384	
Geometry Grp	1	1	1	
Degree of Util (X)	0.598	0.099	0.491	
Departure Headway (Hd)	4.501	5.476	4.601	
Convergence, Y/N	Yes	Yes	Yes	
Сар	799	650	780	
Service Time	2.539	3.548	2.642	
HCM Lane V/C Ratio	0.598	0.1	0.492	
HCM Control Delay	14.1	9.2	12	
HCM Lane LOS	В	А	В	
HCM 95th-tile Q	4.1	0.3	2.7	

	٠	->	7	1	+	*	1	1	r	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						Ł			ţ,	
Traffic Volume (veh/h)	12	15	30	0	0	0	29	392	0	0	332	6
Future Volume (veh/h)	12	15	30	0	0	0	29	392	0	0	332	6
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adi(A_pbT)	1.00		0.99				1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900				1841	1841	0	0	1870	1870
Adj Flow Rate, veh/h	14	17	27				33	445	0	0	377	7
Peak Hour Factor	0.88	0.88	0.88				0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	0	0	0				4	4	0	0	2	2
Cap, veh/h	160	195	309				88	795	0	0	845	16
Arrive On Green	0.38	0.38	0.38				0.46	0.46	0.00	0.00	0.46	0.46
Sat Flow, veh/h	417	506	804				63	1722	0	0	1830	34
Grp Volume(v), veh/h	58	0	0				478	0	0	0	0	384
Grp Sat Flow(s).veh/h/ln	1727	0	0				1785	0	0	0	0	1864
Q Serve(q s), s	1.4	0.0	0.0				0.0	0.0	0.0	0.0	0.0	9.1
Cycle Q Clear(q c), s	1.4	0.0	0.0				12.3	0.0	0.0	0.0	0.0	9.1
Prop In Lane	0.24		0.47				0.07		0.00	0.00		0.02
Lane Grp Cap(c), veh/h	664	0	0				883	0	0	0	0	860
V/C Ratio(X)	0.09	0.00	0.00				0.54	0.00	0.00	0.00	0.00	0.45
Avail Cap(c a), veh/h	664	0	0				883	0	0	0	0	860
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	-			1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	12.7	0.0	0.0				12.7	0.0	0.0	0.0	0.0	11.9
Incr Delay (d2), s/veh	0.3	0.0	0.0				2.4	0.0	0.0	0.0	0.0	1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0				5.0	0.0	0.0	0.0	0.0	3.7
Unsig, Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.0	0.0	0.0				15.1	0.0	0.0	0.0	0.0	13.5
LnGrp LOS	В	А	A				В	А	А	А	А	В
Approach Vol. veh/h		58						478			384	
Approach Delay, s/veh		13.0						15.1			13.5	
Approach LOS		В						В			В	
Timer - Assigned Phs		2		4		6		1. 25	¥			
Phs Duration (G+Y+Rc) s		35.0		30.0		35.0						
Change Period (Y+Rc) s		5.0		5.0		5.0						
Max Green Setting (Gmax) s		30.0		25.0		30.0						
Max O Clear Time (q. c+11) s		14.3		3.4		11.1						
Green Ext Time (p_c), s		2.8		0.2		2.2						
Intersection Summary					1.5			- Fritzer				RI
HCM 6th Ctrl Delav			14.3									
HCM 6th LOS			В									

Intersection	-		1.44		-	1	-		-		100		
Int Delay, s/veh	5.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	And the second second
Lane Configurations		4			र्भ						4		
Traffic Vol, veh/h	0	212	12	20	155	0	0	0	0	85	73	17	
Future Vol, veh/h	0	212	12	20	155	0	0	0	0	85	73	17	
Conflicting Peds, #/hr	0	0	11	0	0	6	0	0	4	0	0	7	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-		None	-	-	None	-	-	None	()	-	None	
Storage Length	-	-	-	-	-	-		-	. 40		-		
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	()#3		0	-	
Grade, %	-	0	-	-	0	-	-	0	100	140	0		
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80	
Heavy Vehicles, %	2	1	2	2	3	2	2	2	2	2	3	2	
Mvmt Flow	0	265	15	25	194	0	0	0	0	106	91	21	

Major/Minor	Major1		A	Major2	110		Minor2
Conflicting Flow All		0	0	291	0	0	517 535 201
Stage 1		-	-	-	-	-	244 244 -
Stage 2		-	-	-	-		273 291 -
Critical Hdwy		-	-	4.12		-	6.42 6.53 6.22
Critical Hdwy Stg 1		-			×.	-	5.42 5.53 -
Critical Hdwy Stg 2	-		-	-	-	+	5.42 5.53 -
Follow-up Hdwy	-		-	2.218		-	3.518 4.027 3.318
Pot Cap-1 Maneuver	0	-	-	1271	-	0	518 450 840
Stage 1	0	-		-		0	797 702 -
Stage 2	0		÷		12	0	773 670 -
Platoon blocked, %					-		
Mov Cap-1 Maneuve	r -		-	1271	-	-	507 0 834
Mov Cap-2 Maneuve	r +		-	-	-	-	507 0 -
Stage 1			-		+	-	797 0 -
Stage 2				-		-	756 0 -
Approach	EB			WB			SB
HCM Control Delay,	s 0			0.9			16.1
HCM LOS							C

Minor Lane/Major Mvmt	EBT	EBR	WBL	WBT S	SBLn1
Capacity (veh/h)	-0	-	1271	-	542
HCM Lane V/C Ratio		-	0.02	-	0.404
HCM Control Delay (s)		-	7.9	0	16.1
HCM Lane LOS	-	-	А	А	С
HCM 95th %tile Q(veh)	141		0.1		1.9

Intersection	1-3-5		1000									
Intersection Delay, s/veh	10.3											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1+			र्स						4	
Traffic Vol, veh/h	0	212	12	20	155	0	0	0	0	85	73	17
Future Vol, veh/h	0	212	12	20	155	0	0	0	0	85	73	17
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Heavy Vehicles, %	2	1	2	2	3	2	2	2	2	2	3	2
Mvmt Flow	0	265	15	25	194	0	0	0	0	106	91	21
Number of Lanes	0	1	0	0	1	0	0	0	0	0	1	0
Approach		EB		WB				- Aller		SB		
Opposing Approach		WB		EB								

Opposing Approach	VVD	LD		
Opposing Lanes	1	1	0	
Conflicting Approach Left	SB		WB	
Conflicting Lanes Left	1	0	1	
Conflicting Approach Right		SB	EB	
Conflicting Lanes Right	0	1	1	
HCM Control Delay	10.5	10	10.5	
HCM LOS	В	А	В	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	11%	49%	
Vol Thru, %	95%	89%	42%	
Vol Right, %	5%	0%	10%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	224	175	175	
LT Vol	0	20	85	
Through Vol	212	155	73	
RT Vol	12	0	17	
Lane Flow Rate	280	219	219	
Geometry Grp	1	1	1	
Degree of Util (X)	0.368	0.296	0.312	
Departure Headway (Hd)	4.727	4.864	5.127	
Convergence, Y/N	Yes	Yes	Yes	
Сар	756	733	696	
Service Time	2.786	2.928	3.196	
HCM Lane V/C Ratio	0.37	0.299	0.315	
HCM Control Delay	10.5	10	10.5	
HCM Lane LOS	В	А	В	
HCM 95th-tile Q	1.7	1.2	1.3	

	۶	-	7	4	+	*	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4						4	
Traffic Volume (veh/h)	0	212	12	20	155	0	0	0	0	85	73	17
Future Volume (veh/h)	0	212	12	20	155	0	0	0	0	85	73	17
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adj(A pbT)	1.00		0.99	0.99		1.00				1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adj Sat Flow, veh/h/ln	0	1885	1885	1856	1856	0				1900	1856	1900
Adj Flow Rate, veh/h	0	265	15	25	194	0				106	91	21
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80				0.80	0.80	0.80
Percent Heavy Veh, %	0	1	1	3	3	0				0	3	0
Cap, veh/h	0	679	38	101	647	0				399	343	79
Arrive On Green	0.00	0.38	0.38	0.77	0.77	0.00				0.46	0.46	0.46
Sat Flow, veh/h	0	1766	100	101	1682	0				865	743	171
Grp Volume(v), veh/h	0	0	280	219	0	0				218	0	0
Grp Sat Flow(s),veh/h/ln	0	0	1865	1783	0	0				1780	0	0
Q Serve(q s), s	0.0	0.0	7.1	0.0	0.0	0.0				4.9	0.0	0.0
Cycle Q Clear(q c), s	0.0	0.0	7.1	2.3	0.0	0.0				4.9	0.0	0.0
Prop In Lane	0.00		0.05	0.11		0.00				0.49		0.10
Lane Grp Cap(c), veh/h	0	0	717	748	0	0				821	0	0
V/C Ratio(X)	0.00	0.00	0.39	0.29	0.00	0.00				0.27	0.00	0.00
Avail Cap(c_a), veh/h	0	0	717	748	0	0				821	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	0.00				1.00	0.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	14.5	4.9	0.0	0.0				10.7	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	1.6	1.0	0.0	0.0				0.8	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.0	3.0	0.9	0.0	0.0				1.9	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	16.1	5.9	0.0	0.0				11.5	0.0	0.0
LnGrp LOS	А	Α	В	А	А	А				В	А	A
Approach Vol, veh/h		280		-	219						218	
Approach Delay, s/veh		16.1			5.9						11.5	
Approach LOS		В			А						В	
Timer - Assigned Phs			S. M.	4	1.1	6	14. 	8				
Phs Duration (G+Y+Rc), s				30.0		35.0		30.0				
Change Period (Y+Rc), s				5.0		5.0		5.0				
Max Green Setting (Gmax), s				25.0		30.0		25.0				
Max Q Clear Time (g_c+l1), s				9.1		6.9		4.3				
Green Ext Time (p_c), s				1.4		1.2		1.2				
Intersection Summary	1,2,7	in fall	11 - ME,	1		Arth 1	ニスト					
HCM 6th Ctrl Delay			11.6									
HCM 6th LOS			В									

11.5

				1000	
п	IC	TRO-	00	110	
	Re.			uo	
		0.7	1.00	10.00	

J

	Int	Delay	. s/veh	
--	-----	-------	---------	--

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स						4	
Traffic Vol, veh/h	0	173	24	22	237	0	0	0	0	137	140	17
Future Vol, veh/h	0	173	24	22	237	0	0	0	0	137	140	17
Conflicting Peds, #/hr	0	0	16	0	0	17	0	0	21	0	0	10
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-		14	٠			141	-	*	-	-	
Veh in Median Storage	,# -	0	-	-	0		-	16974		-	0	-
Grade, %	-	0			0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	9	2	2	1	2	2	1	2	2	1	2
Mvmt Flow	0	208	29	27	286	0	0	0	0	165	169	20

Major/Minor	Major1		N	Aajor2	T-1		Miner2
Conflicting Flow All		0	0	253	0	0	563 593 296
Stage 1		-			-	-	340 340 -
Stage 2	+		-	-	-	-	223 253 -
Critical Hdwy	*	•	-	4.12	-	-	6.42 6.51 6.22
Critical Hdwy Stg 1	-				-	-	5.42 5.51 -
Critical Hdwy Stg 2	-					-	5.42 5.51 -
Follow-up Hdwy	-		-	2.218	-	-	3.518 4.009 3.318
Pot Cap-1 Maneuver	0		-	1312	-	0	487 420 743
Stage 1	0	•		-	-	0	721 641 -
Stage 2	0		-		-	0	814 700 -
Platoon blocked, %		+	-		-		
Mov Cap-1 Maneuver	-	-	-	1312	-		475 0 736
Mov Cap-2 Maneuver	•	-	—		-		475 0 -
Stage 1	-	+	-	1	-		721 0 -
Stage 2		¥				1	794 0 -
Approach	EB		1	WB		24.2	SB
HCM Control Delay, s	0			0.7			28.7
HCM LOS							D

/inor Lane/Major Mvmt	EBT	EBR	WBL	WBT SI	BLn1
Capacity (veh/h)	-	•	1312	-	494
HCM Lane V/C Ratio	-		0.02	- 0).717
HCM Control Delay (s)	-	-	7.8	0	28.7
HCM Lane LOS			А	A	D
HCM 95th %tile Q(veh)		-	0.1	-	5.7

In the second provide		the second second			-	
Intersection			- 10 - 20 - 20 - 20	and the second second		
Intersection Delay, s/veh	13.3					
Intersection LOS	В					

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘			र्स						4	
Traffic Vol, veh/h	0	173	24	22	237	0	0	0	0	137	140	17
Future Vol, veh/h	0	173	24	22	237	0	0	0	0	137	140	17
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	9	2	2	1	2	2	1	2	2	1	2
Mvmt Flow	0	208	29	27	286	0	0	0	0	165	169	20
Number of Lanes	0	1	0	0	1	0	0	0	0	0	1	0
Approach	_	EB	1	WB		31	10		1	SB		2
Opposing Approach		WB		EB								
Opposing Lanes		1		1						0		
Conflicting Approach Left		SB								WB		
Conflicting Lanes Left		1		0						1		
Conflicting Approach Right				SB						EB		
Conflicting Lanes Right		0		1						1		
HCM Control Delay		11.6		13						14.7		
HCM LOS		В		В						В		

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	8%	47%	
Vol Thru, %	88%	92%	48%	
Vol Right, %	12%	0%	6%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	197	259	294	
LT Vol	0	22	137	
Through Vol	173	237	140	
RT Vol	24	0	17	
Lane Flow Rate	237	312	354	
Geometry Grp	1	1	1	
Degree of Util (X)	0.362	0.465	0.537	
Departure Headway (Hd)	5.496	5.361	5.462	
Convergence, Y/N	Yes	Yes	Yes	
Сар	655	671	659	
Service Time	3.534	3.395	3.494	
HCM Lane V/C Ratio	0.362	0.465	0.537	
HCM Control Delay	11.6	13	14.7	
HCM Lane LOS	В	В	В	
HCM 95th-tile Q	1.6	2.5	3.2	

	٠	-	7	*	-	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			র্ন						4	
Traffic Volume (veh/h)	0	173	24	22	237	0	0	0	0	137	140	17
Future Volume (veh/h)	0	173	24	22	237	0	0	0	0	137	140	17
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0
Ped-Bike Adi(A pbT)	1.00		0.98	0.99		1.00				1.00		0.99
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adi Sat Flow, veh/h/ln	0	1767	1767	1885	1885	0				1900	1885	1900
Adj Flow Rate, veh/h	0	208	29	27	286	0				165	169	20
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83				0.83	0.83	0.83
Percent Heavy Veh, %	0	9	9	1	1	0				0	1	0
Cap, veh/h	0	582	81	90	676	0				392	402	48
Arrive On Green	0.00	0.38	0.38	0.77	0.77	0.00				0.46	0.46	0.46
Sat Flow, veh/h	0	1512	211	77	1757	0			_	850	870	103
Grp Volume(v), veh/h	0	0	237	313	0	0				354	0	0
Grp Sat Flow(s),veh/h/ln	0	0	1723	1834	0	0				1823	0	0
Q Serve(q s), s	0.0	0.0	6.4	0.0	0.0	0.0				8.4	0.0	0.0
Cycle Q Clear(g c), s	0.0	0.0	6.4	3.7	0.0	0.0				8.4	0.0	0.0
Prop In Lane	0.00		0.12	0.09		0.00				0.47		0.06
Lane Grp Cap(c), veh/h	0	0	663	766	0	0				841	0	0
V/C Ratio(X)	0.00	0.00	0.36	0.41	0.00	0.00				0.42	0.00	0.00
Avail Cap(c a), veh/h	0	0	663	766	0	0				841	0	0
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	0.00				1.00	0.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	14.3	5.0	0.0	0.0				11.7	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	1.5	1.6	0.0	0.0				1.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.0	2.5	1.4	0.0	0.0				3.4	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	15.8	6.7	0.0	0.0				13.2	0.0	0.0
LnGrp LOS	А	А	B	A	А	Α				В	A	<u> </u>
Approach Vol, veh/h		237			313						354	
Approach Delay, s/veh		15.8			6.7						13.2	
Approach LOS		В			А						В	
Timer - Assigned Phs				4		6		8	Jun -			2.7.1
Phs Duration (G+Y+Rc), s				30.0		35.0		30.0				
Change Period (Y+Rc), s				5.0		5.0		5.0				
Max Green Setting (Gmax), s				25.0		30.0		25.0				
Max Q Clear Time (g_c+l1), s				8.4		10.4		5.7				
Green Ext Time (p_c), s				1.2		2.1		1.8				
Intersection Summary			115		-	21- 41	and the second		THE R.			1
HCM 6th Ctrl Delay			11.6									
HCM 6th LOS			В									

Intersection	1	and the second	1	15					1.	14.5				
Int Delay, s/veh	6.6													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Ī	
Lane Configurations		ર્ન			¢,			4						
Traffic Vol, veh/h	59	220	0	0	119	61	69	129	27	0	0	0		
Future Vol, veh/h	59	220	0	0	119	61	69	129	27	0	0	0		
Conflicting Peds, #/hr	0	0	19	0	0	16	0	0	2	0	0	6		
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop		
RT Channelized		-	None		-	None		-	None	-	-	None		
Storage Length	-	-	-	-	-		-	-	-					
Veh in Median Storage	# -	0	-	-	0	-	-	0	-	-	16965	-		

Veh in Median Storage, #	-	0	-	-	0		-	0	-	- 1	6965		
Grade, %	-	0	-	-	0	-	-	0	-	-	0		
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89	
Heavy Vehicles, %	2	1	2	2	1	2	2	2	2	2	3	2	
Mymt Flow	66	247	0	0	134	69	78	145	30	0	0	0	

Major/Minor	Majori		M	ajor2		1	Minor1			
Conflicting Flow All	219	0				0	548	598	249	
Stage 1	-	-				-	379	379	•	
Stage 2	-	-			+	-	169	219	-	
Critical Hdwy	4.12	-		-	-	-	6.42	6.52	6.22	
Critical Hdwy Stg 1	-	-			•	-	5.42	5.52	1	
Critical Hdwy Stg 2	-	*		÷ .		-	5.42	5.52	-	
Follow-up Hdwy	2.218		-	-		-	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1350	-	0	0	-	-	497	416	790	
Stage 1	-		0	0		-	692	615	-	
Stage 2	-	-	0	0	÷.	-	861	722	-	
Platoon blocked, %						•				
Mov Cap-1 Maneuver	1350		-	-	-	-	469	0	788	
Mov Cap-2 Maneuver	-	-	-		-		469	0		
Stage 1	-	-	4	*	+	-	653	0	-	
Stage 2	-	-	-		•	-	861	0		
Approach	EB	5015		WB			NB			
HCM Control Delay, s	1.7			0			17.9			
HCM LOS							С			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	WBT	WBR	
Capacity (veh/h)	529	1350	-	-	-	
HCM Lane V/C Ratio	0.478	0.049	-		+	
HCM Control Delay (s)	17.9	7.8	0	4	-	
HCM Lane LOS	С	A	А	-	-	
HCM 95th %tile Q(veh)	2.6	0.2	-		-	

HCM 6th AWSC Kingston Signals; 118-064

Intersection Delay, s/veh 10.9 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ب			4			4				
Traffic Vol. veh/h	59	220	0	0	119	61	69	129	27	0	0	0
Future Vol. veh/h	59	220	0	0	119	61	69	129	27	0	0	0
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, %	2	1	2	2	1	2	2	2	2	2	3	2
Mymt Flow	66	247	0	0	134	69	78	145	30	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB			1 L I.	WB		NB			100		
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0	7	1					
HCM Control Delay	11.6				9.6		11.1					
HCM LOS	В				А		В					

Lane	NBLn1	EBLn1	WBLn1		- 4E - 3	
Vol Left, %	31%	21%	0%			
Vol Thru, %	57%	79%	66%			
Vol Right, %	12%	0%	34%			
Sign Control	Stop	Stop	Stop			
Traffic Vol by Lane	225	279	180			
LT Vol	69	59	0			
Through Vol	129	220	119			
RT Vol	27	0	61			
Lane Flow Rate	253	313	202			
Geometry Grp	1	1	1			
Degree of Util (X)	0.36	0.425	0.268			
Departure Headway (Hd)	5.121	4.882	4.765			
Convergence, Y/N	Yes	Yes	Yes			
Сар	695	730	746			
Service Time	3.199	2.951	2.841			
HCM Lane V/C Ratio	0.364	0.429	0.271			
HCM Control Delay	11.1	11.6	9.6			
HCM Lane LOS	В	В	A			
HCM 95th-tile Q	1.6	2.1	1.1			

	٠	-	7	1	+-	*	1	1	1	1	ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷Î			12			4				
Traffic Volume (veh/h)	59	220	0	0	119	61	69	129	27	0	0	0
Future Volume (veh/h)	59	220	0	0	119	61	69	129	27	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adi(A pbT)	0.99		1.00	1.00		0.98	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	1885	1885	0	0	1885	1885	1900	1870	1900			
Adj Flow Rate, veh/h	66	247	0	0	134	69	78	145	30			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89			
Percent Heavy Veh, %	1	1	0	0	1	1	0	2	0			
Cap, veh/h	180	631	0	0	502	258	167	311	64			
Arrive On Green	0.86	0.86	0.00	0.00	0.43	0.43	0.35	0.35	0.35			
Sat Flow, veh/h	262	1465	0	0	1164	600	473	879	182			
Grp Volume(v), veh/h	313	0	0	0	0	203	253	0	0			
Grp Sat Flow(s).veh/h/ln	1726	0	0	0	0	1764	1533	0	0			
Q Serve(q_s), s	0.0	0.0	0.0	0.0	0.0	4.8	8.3	0.0	0.0			
Cycle Q Clear(q c), s	2.2	0.0	0.0	0.0	0.0	4.8	8.3	0.0	0.0			
Prop In Lane	0.21		0.00	0.00		0.34	0.31		0.12			
Lane Grp Cap(c), veh/h	811	0	0	0	0	760	542	0	0			
V/C Ratio(X)	0.39	0.00	0.00	0.00	0.00	0.27	0.47	0.00	0.00			
Avail Cap(c a), veh/h	811	0	0	0	0	760	542	0	0			
HCM Platoon Ratio	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	2.7	0.0	0.0	0.0	0.0	11.9	16.3	0.0	0.0			
Incr Delay (d2), s/veh	1.4	0.0	0.0	0.0	0.0	0.9	2.9	0.0	0.0			
Initial Q Delav(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/In	0.9	0.0	0.0	0.0	0.0	1.9	3.1	0.0	0.0			
Unsig, Movement Delay, s/veh												
LnGrp Delay(d),s/veh	4.1	0.0	0.0	0.0	0.0	12.8	19.1	0.0	0.0			
LnGrp LOS	А	А	A	А	А	В	В	А	А			
Approach Vol. veh/h		313			203			253				
Approach Delay, s/veh		4.1			12.8			19.1				
Approach LOS		А			В			В				
Timer - Assigned Phs	de -	2		4				8				1-1-1
Phs Duration (G+Y+Rc), s		30.0		35.0				35.0				
Change Period (Y+Rc), s		7.0		7.0				7.0				
Max Green Setting (Gmax), s		23.0		28.0				28.0				
Max Q Clear Time (g c+l1), s		10.3		4.2				6.8				
Green Ext Time (p_c), s		1.1		1.9				1.1				
Intersection Summary		1.00	in the							-		
HCM 6th Ctrl Delay			11.3									
HCM 6th LOS			В									

Intersection	- Labore	and the second	
Int Delay, s/veh	21.1		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		କ			4			4					
Traffic Vol, veh/h	50	260	0	0	143	65	111	170	32	0	0	0	
Future Vol, veh/h	50	260	0	0	143	65	111	170	32	0	0	0	
Conflicting Peds, #/hr	0	0	13	0	0	31	0	0	15	0	0	3	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None		-	None	
Storage Length	-	-	-		-	-	-				-		
Veh in Median Storage,	# -	0		-	0	-	-	0	-	-	16965	-	
Grade, %	-	0		÷	0	-	-	0		-	0	-	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79	
Heavy Vehicles, %	2	1	2	2	1	2	2	1	2	2	1	2	
Mvmt Flow	63	329	0	0	181	82	141	215	41	0	0	0	

Major/Minor	Major1		Ma	jor2	111	٨	Minor1	1.1		
Conflicting Flow All	294	0	-		4	0	677	749	344	
Stage 1	-	-	-		-	-	455	455	-	
Stage 2	-		•		-	-	222	294	-	
Critical Hdwy	4.12	-	-		-	-	6.42	6.51	6.22	
Critical Hdwy Stg 1	-		-		-	-	5.42	5.51	-	
Critical Hdwy Stg 2	-	-	-	-		-	5.42	5.51	-	
Follow-up Hdwy	2.218	-	-	-	1	-	3.518	4.009	3.318	
Pot Cap-1 Maneuver	1268	(a)	0	0	-	-	418	342	699	
Stage 1	-		0	0	-	-	639	570		
Stage 2	-		0	0	-	-	815	671	-	
Platoon blocked, %						-				
Mov Cap-1 Maneuver	1268	-	-	-	-	-	393	0	689	
Mov Cap-2 Maneuver	-		•		-		393	0		
Stage 1		4	-	=	+	-	600	0	-	
Stage 2	-	ч.	-	20	÷	08	815	0	1.00	
				V						
Approach	EB	1	1	WB	24.1		NB			
HCM Control Delay, s	1.3			0			54.8			
HCM LOS							F			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	WBT	WBR	
Capacity (veh/h)	435	1268		-	-	
HCM Lane V/C Ratio	0.911	0.05	-		-	
HCM Control Delay (s)	54.8	8	0	2	-	
HCM Lane LOS	F	А	A	-	127	
HCM 95th %tile Q(veh)	10	0.2	-	-	4	
Intersection Delay, s/veh 16.3 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ			4			4				
Traffic Vol, veh/h	50	260	0	0	143	65	111	170	32	0	0	0
Future Vol, veh/h	50	260	0	0	143	65	111	170	32	0	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	1	2	2	1	2	2	1	2	2	1	2
Mymt Flow	63	329	0	0	181	82	141	215	41	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	0	0
Approach	EB			1	WB		NB	10 T				
Opposing Approach	WB				EB							
Opposing Lanes	1				1		0					
Conflicting Approach Left					NB		EB					
Conflicting Lanes Left	0				1		1					
Conflicting Approach Right	NB						WB					
Conflicting Lanes Right	1				0		1					
HCM Control Delay	17.1				12.5		18					
HCM LOS	С				В		С					

Lane	NBLn1	EBLn1	WBLn1	
Vol Left, %	35%	16%	0%	
Vol Thru, %	54%	84%	69%	
Vol Right, %	10%	0%	31%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	313	310	208	
LT Voi	111	50	0	
Through Vol	170	260	143	
RT Vol	32	0	65	
Lane Flow Rate	396	392	263	
Geometry Grp	1	1	1	
Degree of Util (X)	0.629	0.61	0.408	
Departure Headway (Hd)	5.711	5.599	5.574	
Convergence, Y/N	Yes	Yes	Yes	
Сар	630	644	642	
Service Time	3.762	3.657	3.638	
HCM Lane V/C Ratio	0.629	0.609	0.41	
HCM Control Delay	18	17.1	12.5	
HCM Lane LOS	С	С	В	
HCM 95th-tile Q	4.4	4.1	2	

HCM 6th Signalized Intersection Summary Kingston Signals; 118-064

	٠	-	7	*	-	*	1	1	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ			f)			4				
Traffic Volume (veh/h)	50	260	0	0	143	65	111	170	32	0	0	0
Future Volume (veh/h)	50	260	0	0	143	65	111	170	32	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adi(A pbT)	0.98		1.00	1.00		0.96	1.00		0.98			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	1885	1885	0	0	1885	1885	1900	1885	1900			
Adi Flow Rate, veh/h	63	329	0	0	181	82	141	215	41			
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79			
Percent Heavy Veh, %	1	1	0	0	1	1	0	1	0			
Cap, veh/h	144	676	0	0	522	237	194	296	56			
Arrive On Green	0.86	0.86	0.00	0,00	0.43	0.43	0.35	0.35	0.35			
Sat Flow, veh/h	184	1569	0	0	1213	549	548	835	159			
Grp Volume(v), veh/h	392	0	0	0	0	263	397	0	0			
Grp Sat Flow(s).veh/h/in	1754	0	0	0	0	1762	1542	0	0			
Q Serve(q_s), s	0.0	0.0	0.0	0.0	0.0	6.5	14.6	0.0	0.0			
Cycle Q Clear(q, c), s	3.2	0.0	0.0	0.0	0.0	6.5	14.6	0.0	0.0			
Prop In Lane	0.16		0.00	0.00		0.31	0.36		0.10			
Lane Gro Cap(c), veh/h	820	0	0	0	0	759	546	0	0			
V/C Ratio(X)	0.48	0.00	0.00	0.00	0.00	0.35	0.73	0.00	0.00			
Avail Cap(c a), veh/h	820	0	0	0	0	759	546	0	0			
HCM Platoon Ratio	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	2.8	0.0	0.0	0.0	0.0	12.4	18.3	0.0	0.0			
Incr Delay (d2), s/veh	2.0	0.0	0.0	0.0	0.0	1.3	8.2	0.0	0.0			
Initial Q Delav(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	1.2	0.0	0.0	0.0	0.0	2.5	5.9	0.0	0.0			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	4.8	0.0	0.0	0.0	0.0	13.6	26.5	0.0	0.0			
LnGrp LOS	А	А	A	A	А	В	С	А	А			
Approach Vol. veh/h		392			263			397				
Approach Delay, s/veh		4.8			13.6			26.5				
Approach LOS		А			В			С				
Timer - Assigned Phs	1	2	1	4				8	10000	19.5	-	
Phs Duration (G+Y+Rc), s		30.0		35.0				35.0				
Change Period (Y+Rc), s		7.0		7.0				7.0				
Max Green Setting (Gmax), s		23.0		28.0				28.0				
Max Q Clear Time (g_c+l1), s		16.6		5.2				8.5				
Green Ext Time (p_c), s		1.3		2.5				1.5				
Intersection Summary	-	1							5			100
HCM 6th Ctrl Delay			15.2									
HCM 6th LOS			В									

.