APPENDIX D: Future Conditions Analysis

Route 9W Corridor Management Plan

Towns of Marlborough and Lloyd Ulster County, NY

Appendix D: Future Conditions Analysis

Contents

- 1. Traffic Counts and Speed Surveys
- 2. HCM Intersection Analysis Route 9W & Milton Turnpike
- 3. HCS Arterial LOS Calculations for Proposed Lane Reconfiguration

1	Traffic Cou	nts and Տլ	peed Surv	eys		

PEAK HOUR TRAFFIC VOLUMES

ntersection:	Route 9W & Milton Turnpike
ntersection:	Route 9W & Milton Turnpik

Date and Time: Wednesday, May 24 2017
Project: Route 9W Corridor Manangement Plan

Municipality, State: Marlborough, NY

Morning Traffic Counts (7:00 - 9:00AM)

						Rout	e 9W							•	•	Milton 7	Turnpike						_	
			N	IORTHBOUN	D			5	OUTHBOUN	D				EASTBOUND)				WESTBOUNI)		15 minute	1	
Start	End	Left	Thru	Right	U-Turn	Total	Left	Thru	Right	U-Turn	Total	Left	Thru	Right	U-Turn	Total	Left	Thru	Right	U-Turn	Total	Totals	1	
7:00	7:15	9	143	8	0	160	4	126	9	0	139	8	11	13	0	32	14	5	5	0	24	355	1	
7:15	7:30	6	147	14	0	167	0	161	6	0	167	16	7	15	0	38	13	8	6	0	27	399	Hourly	7
7:30	7:45	3	208	9	0	220	2	130	5	0	137	12	8	10	0	30	10	12	14	0	36	423	Totals	
7:45	8:00	10	222	12	0	244	4	116	4	0	124	18	12	16	0	46	17	4	8	0	29	443	1620	7
8:00	8:15	6	157	14	0	177	4	127	7	0	138	15	9	14	0	38	13	6	14	0	33	386	1651	
8:15	8:30	5	182	13	0	200	6	136	6	0	148	14	3	18	0	35	9	13	6	0	28	411	1663	
8:30	8:45	8	172	12	0	192	4	101	2	0	107	18	6	17	0	41	9	10	2	0	21	361	1601	
8:45	9:00	9	121	9	0	139	2	125	14	0	141	17	9	9	0	35	19	4	4	0	27	342	1500	
To	otal	56	1352	91	0	1499	26	1022	53	0	1101	118	65	112	0	295	104	62	59	0	225			_
	Hour Total 3:30 AM)	28	720	43	0	791	10	533	24	0	567	54	38	54	0	146	54	29	33	0	116		1663	Peak Hou
Peak H	Hour Factor	0.70	0.81	0.77	0.00	0.81	0.63	0.83	0.67	0.00	0.85	0.75	0.79	0.84	0.00	0.79	0.79	0.60	0.59	0.00	0.81			

Afternoon Traffic Counts (4:00 - 6:00PM)

						Rout	e 9W									Milton 7	urnpike							
			١	IORTHBOUN	ID			S	OUTHBOUN	ID				EASTBOUNI)				WESTBOUN	D		15 minute		
Start	End	Left	Thru	Right	U-Turn	Total	Left	Thru	Right	U-Turn	Total	Left	Thru	Right	U-Turn	Total	Left	Thru	Right	U-Turn	Total	Totals		
16:00	16:15	8	149	9	0	166	3	214	16	0	233	11	13	12	0	36	15	12	2	0	29	464		
16:15	16:30	22	143	13	0	178	6	197	20	0	223	10	4	13	0	27	15	5	3	0	23	451	Hourly	
16:30	16:45	12	147	8	0	167	4	206	12	0	222	19	4	12	0	35	21	13	4	0	38	462	Totals	
16:45	17:00	15	113	11	0	139	7	213	13	0	233	13	9	14	0	36	14	12	3	0	29	437	1814	
17:00	17:15	14	154	11	0	179	6	170	7	0	183	5	9	4	0	18	18	7	4	0	29	409	1759	
17:15	17:30	10	184	17	0	211	11	225	13	0	249	15	7	9	0	31	12	6	3	0	21	512	1820	
17:30	17:45	12	147	15	0	174	7	210	4	0	221	16	7	9	0	32	19	8	6	0	33	460	1818	
17:45	18:00	10	136	8	0	154	5	149	7	0	161	9	3	7	0	19	10	6	1	0	17	351	1732	
To	otal	103	1173	92	0	1368	49	1584	92	0	1725	98	56	80	0	234	124	69	26	0	219			_
PM Peak I (4:30-5	Hour Total :30 PM)	46	621	51	0	718	29	754	31	0	814	45	26	29	0	100	59	27	14	0	100		1820	Peak Ho
Peak Ho	ur Factor	0.52	0.84	0.98	0.00	1.01	1.04	0.88	0.39	0.00	0.87	0.59	0.50	0.52	0.00	0.69	0.70	0.52	0.88	0.00	0.66			

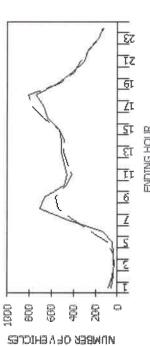
3E0038 :MOITATS

County of Ulster Traffic Count Hourly Report

TetelU Tros\2	7/20	ТY: COUNT:	COUN			KE	IIGNAL	т иот	: אור	OT		10 Thui				egns10 FNT: 7				_		9 ≔		AN QA				TUOR OITATS
		TQA/ 8328	1					snossəi misulb! 1		le Adj. <u>actor</u> 000.	- ਬ		YA to tasy %8	%	∀GE M	AVER) h Hour 740	_	- ,	13 <u>oniz</u> EKD V A	Ħ	√ <u>onuțeq</u> EKD∀J	_		SAUC bainnied 73		t iuted AXS	<u>107</u>	
		TOA EOLE	136	121	99Z	303	614	220	740	(nooM 878	l to Fri 631		919	212	787	997	4 YA(I) 064	994 MEEK	39 A Я; 109	∃VA 844	139	87	07	33	L9	08		
<u>ا</u> ا	287 087	1916 6816	130	641 641 781	69Z 80£ LZZ	300 328 287	414 420 420	748 698	726 733 760	799 669 929	PZ9 149 914	699 669 809	979 209 767	9ZS 7CS 9.27	067 927 987	877 837 167	470 517 482	249 469 649 299	969 877 807	977 127 997	146 751	79 97 77	97 76 07	35 35 18	89 97 97	86 18 99	SHLOOSHSHLOOSHSHLOOSHS	5 6 7 8 9 0 11 2 3 4 4 5 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 1 1 1 1
HIGH	YJILY HIGH JOUNT	YJIAG		10 TO	6 OT 01	8 OT 6	OT 8	8 OT 7	S OT 8 Mq	to OT G	3 OT \$	2 TO 3	r OT S	SI TO I	II TO SI	01 OT 11	9 OT 01	8 OT 6	Υ ΟΤ 8	8 OT 7	č OT 8	7	ε	2	ŀ	15	YAQ S S M M	DATE 1 2 3 3
16321U 0067001 7862001	:6	:			39C		CLASS Oity	T ON T.	C N H		:SJAIT		la nos	OFES of Hud t	VEHIC FR: 1825 St 1825 St 1826 St	Orange ERIAL: MENT: MARKI ATA: C SSED	EC. SELACEN REF DDL D OUNT	G (C)	0€ ∶9↓ 0€	:ય	K OE J	A7 W	'N GAC	ane 17	1/25/20 travel 1	•	TION: DIR C OF CO	DATE (

3E0038 :MOITATS

Traffic Count Hourly Report


Ulater Trosizsi		: СОПИ .	COUN	7		KE	เฯทภบ	т иот	: שור	DΤ		ועלל Dr		r Co Li of Huc								E: ۲		AN GA				ETUOR OITATS
		TQA/	1	11				nossəć ntsulbA		le Adj. actor 000.	Ē	_	of day			AVEK Ih Hour 812			73 <u>Iours</u> 73		EKDAY <u>vunted</u>	_		OURS ounted 73		/\S <u>inted</u> 4	<u>107</u>	
		TQA ≯268	154	170	263	339	403	233	812	477	179 178	653 633	485	Factor 490	†9 †	4Z0	074 074	999	245	LOP	536	68	68	75	36	69	_	
	018 S18	9806 0Z06	651 611	156 160 160	289 298 238	346 313 313	389 310	729 279 629	813 810 810	647 887 787	289 178 289	242 247 547	987 987	909 827 987	167 197 187	435	483 483	550 557 557 602	538 538 538	998 404 946	234 247 228	4 80 F 84 85	36	31 04 39	47 82 82	85 81 70	∽≥⊢≥⊢∟∽∞≥⊢≥⊢∟∞∞≥⊢≥⊢∟∞∞≥⊢≥⊢∟∞∞ ≥	2345678901123456789012222555555555555555555555555555555555
HONE HIGH	HIGH	YJIAC			10	-	0		Md						7.		0.1				MA						□ <u>xaq</u>	atao T
DAILY	YJIAQ		11 01	01 OT	. OT	8 OT 9	7 OT 8	8 OT 7	5 OT 8	. OT	£ OT ≱	2 TO :	ا TO	St OT	II OT SI	01 OT 11	9 OT 01		ОТ 8	. OT 7	9 LO . 2	9 L O.	T O	r OT	r or	12 ۲O . ۱		
7675001 760029001	:6	:			390		SEAJC Jify	ТОИ ТІ	C N N E		:ST∀I.		nla nos	3G COI SEER SEER SEER	YEHIO 740' N ER: 1825 Sp 1826 Sp	ERIAL A MENT: 7 MARKE S :ATA S :STPE:	EC. SE REF I DU DA DUNT	PI PI M PI CC CC D D	30		(OE X	PAG WK		DE: L Sul L L L Dund	OKG C	S 1. SB 1 1. SB 1 1. SB 1 1. SB 1	LION: DIR COL TION:	ROUTE PIRECT STATE DATE C NOTES TNUCO

County of Uister Classification Count Average Weekday Data Report

ROAD NAME STATION 860036 MONTH July	DIRECTION North South		! NUMBEP OF AXLES 1877 18628	F13: 7.08% 6.58%	1002967 TRUCKS AND BUSES (F3-F13) 22.02% 20.67%	LION# 0.97 0.97 0.97		COCCOO C TO CONTRACT
				2	1902967	CIONE		
Ulster	d Orange/Uister Co	MILTÓN TURNPIKE		0532	14	0036	ORG CODE TST INITIALS BEK	720000000
COUNTY NAME	FROW COUR	O.F.	REF-MARKER	END MILEPOINT	FUNCTOASS	STATION NO	COUNT TAKEN BY	VD COCCED BY

TOTAL		81 33 33 33 33 33 34 448 460 460 460 460 460 460 460 460 460 460	9086 18777	67 38 38 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	8949 18528 18035 37305
F13	8 75	000000**0+0+0000++0+00000	61	00000000000-000000	52 113 114
F12	ဖ	000000000000000000000000000000000000000	•0	000000000000000000000000000000000000000	0000
F11	2	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	• 0 • 0 • 0 · ii
F10	ω	00000	96	000000000000000000000000000000000000000	51 123 10 178 615 60 19 21 21 318 1155 156 VEHICLE CLASSIFICATION CODES
F9	S		108 540	000004400 <u>000</u> 00 <u>+</u> L000L0040-00	123 615 231 1155 ASSIFICA T
F8	3.5	000	40	000000000000000000000000000000000000000	51 178 91 318 HICLE CL
F7	4	000000	24 6	00000004%+400000000000	64 64 64 64 64 64 64 64 64 64 64 64 64 6
75	ന	-0-60-00-00-00-00-00-00-00-00-00-00-00-0	44 132	0000001-004400044001-00000	36 108 240
II.	7	222222222222222222222222222222222222222	313 626	0	257 514 570 1140
F4	2 5		109	0-00049080000000000000000000000000000000	240 205 512
F3	7	8 2 4 4 9 4 5 2 5 5 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1358 2716	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1261 2522 2619 5238
F2	2	86 28 28 29 318 318 352 343 343 3445 404 404 404 405 405 405 405 405 405	7040 14080	50 22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	7057 14114 14097 28194
F1	2	00000%ИИИ%И444%И4ИИ-И-	90 80	0-0	84 87 174
CLASS	NO OF AXLES	1 00 3 00 3 00 5 00 6 00 6 00 6 00 10 10 10 10 10 10 10 10 10 10 10 10 1	HICLES	22500 22500	HICLES HICLES AXLES
VEHICLE CLASS	NO ON	ENDING HOUR DIRECTION North	TOTAL VEHICLES TOTAL AXLES	ENDING HOUR DIRECTION South	TOTAL VEHICLES TOTAL AKLES GRAND TOTAL VEHICLES GRAND TOTAL AKLES

TRAFFIC FLOW BY DIRECTION

/	52				HOUR COUNT 8 1249	1547
f	ĪZ				HOUR 8	2
	हा					-
	Zī.			⋖	2-WAY A.M.	P.M.
	SI	5		DAT/		
	13	오	£	PEAK HOUR DATA		
	ĪI	ENDING HOUR	South	PEAK	COUNT 737	810
	6	ш			Ö	
-	Z				HOUR 8	50
1	5		orth		DIRECTION HOUR North 18	-
1	<u>ء</u>		North		North	South

F1. Motorcycles
F2. Autos*
F3. Laktos*
F4. Buses
F4. Buses
F4. Buses
F5. Lake, F1ire Single Unit Trucks
F6. Sake Single Unit Trucks
F6. Sake Single Unit Trucks
F7. 4 or More Ayle Single Unit Trucks
F9. Face Double Unit Vehicles, One Unit is a Truck
F9. Face Double Unit Vehicles, One Unit is a Truck
F1. 6 or More Double Unit Vehicles, One Unit is a Truck
F11. 5 or Less Ayle Multi-Unit Trucks
F12. 6 Axle Multi-Unit Trucks
F13. 7 or More Axle Multi-Unit Trucks

* INCLUDING THOSE HAULING TRAILERS

FUNCTIONAL CLASS CODES:

URBAN RURAL

SYSTEM

8848883

11 PRINCIPAL ARTERIAL-INTERSTATE
12 PRINCIPAL ARTERIAL-EXPRESSWAY
14 PRINCIPAL ARTERIAL-OTHER
16 MINOR ARTERIAL
17 MAJOR COLLECTOR
19 LOCAL SYSTEM

SOURCE: NYSDOT DATA SERVICES BUREAU

		. .	5. 202		noH 9N																	
dtuoS		23	21 15				1	7	000 + 000 + 000 + 000 + 000 + 000 + 000	NUMBER OF VEHICLES		ount 1551 1551	. 8		е уви-S .М.А .М.Я	our Date	Peak H 740 811	ur C. 18 18		inection orth rftuo	N	
Иочь	ı —								1000	ECLES.	•	bəər 1.73 7.73		18	6.5peed 6.03 61.9	80th	beed 48.5 61.0			dho		
				NO	TTOBATO	OM BA	FFIC FL	AST														
67E									%0.00 %0.001 0	%0.001 0	%0.001 %0.001 0	%1.0 %0.001 0	%6°66 %9°0	91 %£'66 %£'7	%0°96 %8°91	%6.16 %1.87 911	%8.84 %8.84 104	%5.21 %4,81 74	%0.7 %0.7	%8.2 %8.2	%6.1 %6.1 3	Percent Cum, Percent Average hour
6063	1.78	9.03	3.84	0.0	1.0	7.0	6.0	21.9	0	0	0	L	69	380	1532	5849	2490	1134	380	134	811	Avg. Daily Total
171	£.78	7.08 7.08	6.64 8.64	0.0	0.0	8.0 7.0	6.8 8.8	22.1	0 0	0	, O	0	ŀ	8	51	77	37	81	9	l 2	0	24:00
586	6.68	2.08	48.2	0.0	0.0	8.0	4,E	19,9 8,22	0	0	0	0	2	2	44 30	28 24	1 ⊅ 19	74 74	61 5	9	2	22:00 23:00
305	8.83	7.64	7.84	0.0	0.0	7.0	6.3	20.2	a	0	ō	0	2	Þ١	91/2	1/8	16	817	ÞL	ε	ī	21:00
418	8.78	5.13	7.64	0.0	0.0	7.0	5.3	24.4	۵	0	0	0	8	61	08	140	211	44	10	ŀ	Þ	20:00
099 097	8.82 7.72	7.02 8.18	7.8ħ 8.08	0.0	0.0 S.0	€.0 7.0	9,6 8.8	21.1	a a	0	a 0	l D	S 3	58 58	921 901	186 188	761 132	26 17	16 11	8	0	00:91
₽ 78	8.88	7.02	6.84	0.0	0.0	£.0	2,4	20.9	a	0	0	0	2	36	113	225	861	02	37	8	8	00:71 00:81
630	7.88	p .02	8.84	0.0	2.0	6,0	6.₽	8.61	0	0	a	ī	Z	82	1/6	204	981	08	22	*	6	00:91
930	1.88	8.64	0.81	0.0	0.0	6'0	7.4	7.71	0	0	0	0	9	20	69	1 91	164	Z9	72	2	L	15:00
618 618	5.88 5.83	49.5	7.84 5.74	0.0	0.0	9.0 4.0	7.E 1.E	18,6 15.3	0	0	0	0	8 2	81 14	92 63	122	151	88 88	2Z 30	01	8	13:00
981	0.88	6.64	4.84	0.0	0.0	₽.0	6.4	8.71	0	۵	0	0	2	6l	179	742	149	23 25	30	01 01	14	12:00
784	0.88	6.64	8.7A	0.0	0.0	₽.0	3.2	8.71	0	D	0	0	2	13	89	971	145	29	۷١	9	8	00:11
700	9.88	9.03	6.84	0.0	2.0	8.0	1.4	20.0	0	0	0	1	3	91	87	165	139	89	92	9	3	10:00
299 299	8.78 1.78	5.02 5.03	8.74 1.74	0.0	r.o 0.0	0.1 0.9	6.8 1.3	7.5S 1,SS	0	0	0	0	9	8Z 83	122	202 202	971 271	98 04	38 38	0Z 18	18 18	00:8
448	0.68	5.68	8.08	0.0	4.0	2.0	2.6	38.4	0	0	0	ž	2	35	131	143	82	32	14	۷.	4	00:4
138	7.68	6.68	8.18	0.0	0.0	4.1	12.9	39.65	0	٥	0	0	2	91	46	14	97	٥ı	Þ	3	0	00:9
2₩ 0₩	6,82 2.83	9.18 7.08	1.00	0.0	0.0	0.0	79	8.62	0	0	0	٥	٥	3	LL	LL.	72	9	2	2	0	9:00
33	1,08 9.88	5.22	8.02 5.03	0.0	0.6 0.0	6.1	2,81 0,01	36.4	0	0	0	C L	k L	E 2	6 4	8 11	7 · 8	5 tr	7	į.	0	3:00
re	Þ.88	9.64	B.74	0.0	0.0	0.0	2.0	9.91	0	0	0	0	0	ŀ	6	かし	81	g g	8	0	ŀ	3-00
08	8.78	5.03	49.5	0.0	0.0	£.1	6.3	23,8	0	0	٥	0	1	7	14	SS	EZ	13	2	ŀ	0	00:1
istoī	%·4158	%410S	8∧∀	9% Exc 0.8√	o.07	% Exc 0.38	o.0a 0.0a	ox∃ % 0.68	-1,28 0.211	-1.08 0.38	-1.37 0.08	-1.07 0.37	-1.68 0.07	-1,08 0,38	-1,68 0,08	-1. 03 0.33	-1. 21 0.03	-1.0h 0.3h	-1.35 0.04	-1.05 35.0	-0,0 0.06	Hour
														dqm ,et	Speed							
	JES Init: ST Init: ST Init:	Org: T		pk:): 922 :	nt durati ctional c br ID: int taken int taken	Fun Pat Dati Cou				Z10Z/83		ate: y: I limit:	Start of End d Count Town: Speed Speed							80036 Road RangeVUla ILTON TI	W O M	ecgou: ow: nre#: NZ 8 agou:
02/60/80		7/4		.20	, p - year				13y Kepor						,					95005	76	tion.

2 to 1 egs9 7105/80/80 :efs0 County of Ulster Speed Count Average Weekday Report

2 to 2 egs9 T10S/60/80 :efs0

County of Ulster Speed Count Average Weekday Report

Morth South		23	12 15		n to	E 10	1	7 141	000 - 400 -	NUMBER OF VEHICLES		1.25 1.25 1.75 1.75 1.75 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.9	J 11.	поН	6.15 6.15 6.15 .M.A .M.A	60th9	6,84 0.13	:		outh rection thr huth	PN !CI		
				NC	IRECTIO	J AB MC	FFIC FL	A ЯТ															
6488 676	7.78	6.1 3	0.18	0.0	١.٥	۲.0	p .8	8'92	0 %0.0 %0.001 0	f %0.0 %0.001 0	8 %0.0 %0.001 0	8 %1.D %0.DO1 O	SS %9:0 %8:66 %9:0	45.9% 4.8% 81	1823 %4.02 %6.46 87	8146 %2.86 %2.47 \$41	2350 %0.38 86	807 %9.7 %8.9 82	181 %8.1 8	81 %2.0 %4.0 1	85.0 %6.0 %6.0		Cum,
152	2.62	2.68	P.S3	0.0	0.0	9.1	10.4	4.8E	0	0	0	0	2	l.	9 E	6E	28	6	ı	0	0	54:00	
071	9.83	7.23	8,18	9.0	S.r	8.1	Z.8	8.16	0	0	L.	ī	i	11	04	99	32	12	7	٥	Į.	23:00	
262	0.88	1.58	1,12	0.0	0.0	4.0	1.8	6.7 S	0	0	0	D	L	42	78	86	89	6١	2	L	ı	22:00	
95E	5.78	6.13	0.18	0.0	0.0	6.0	0.8	22,5	0	0	0	0	8	PL	69	741	98	24	9	0	ŀ	21:00	
101	8,78	1.56	51.3	0.0	0.0	6.0 6.0	5.2	7.92	0	0	0	0	2	61	88	69 L	86	9Z	B:	S	0	19:00	
118 168	F,88 T,78	8.08 1.58	5.08 5.18	f,D 0.0	1.0 0.0	≱.0 8.0	0,£ 8,₹	19.2 25.6	0 0	0	O L	0 D	3	72 21	132 106	222 262	272 133	74 82	6 01	č L	2.	16:00	
772	9.66	6.03	S.94	1.0	1.0	9.0	0.6	6.81	a	ı	á	D	t	18	104	312	244	99	Þί	ε	۷.	00:71	
699	0.88	6.08	0.08	0.0	0.0	1.0	8.2	6.71	ā	0	ō	0	ī	81	101	526	211	69	11	L	ı	16:00	
263	0.78	51.2	5.03	Z.D	Z.O	4.0	L'tr	8.12	a	0	Ļ	0	L	SO	1 /6	96 L	671	179	91	L	ŀ	15:00	
685	7.88	4.18	5.02	0.0	0.0	₽.0	7.6	20.4	0	0	0	0	2	91	18	184	74r	9E	9	ı	2	14:00	
684	2.95	1,18	6 67	0.0	0.0	0.2	3.5	8.61	0	0	0	0	Į.	91	08	881	131	99	91	0	ŀ	13:00	
464	0.78	4.16	6.08	0,0	0.0	4.0	3.9	22.0	0	0	0	D	2	91	148	871	122	23	₽ ₽	0	1	12:00	
614	0.78 7.88	1,18	50.0	0.0	0.0 0.0	2.0 5.0	8.5 2.9	2.12	0	0 0	0	0	l L	11 21	<u>11</u>	193	154 148	97 97	S S	Z L	2	00:01 00:11	
999	6.88	52,4	p.12	0.0	0.0	7.0	2.8	7.05	0	0	0	0	Þ	18	951	206	135	76	ii.	Z	L	00:6	
£#9	8.88	6.68	6.23	0.0	Z.0	1.1	1.8	1.88	0	D	0	i	g	38	152	222	102	22	i	ō	Ď	00:8	
104	8.68	1.66	7.48	0.0	Z.0	۲.۱	Z.E1	9.03	a	D	0	ı	9	917	120	120	43	g	0	0	0	00:7	
237	8.08	6.88	L'79	0.0	Þ .0	2.5	16.5	9.63	0	D	0	l.	9	33	88	BY	23	8	ŀ	0	D	00:9	
68	7.09	0.88	5.43	0.0	11	3.4	6.81	7.67	0	D	0	l	2	12	62	72	19	3	0	0	0	00:9	
96	8.62 0.08	8.62 0.43	9.52 9.63	0.0	0.0 0.0	8.S 0.0	9.E1 0.31	9.8£ 2.54	0 0	0	0	0	0 L	9	9 11	12 14	9 G	2 2	0	0	0	3:00	
9E	4,88	A.S.2 A.E.3	62.3	0.0	0.0	2.9	9.8 9.51	38.6	0	0	0	0	l.	2	7	b l	01 a	i	0	0	0	3:00	
69	2.83	5.23	4.12	0.0	0.0	7.1	8.8	9.55	ō	0	0	ō	i	E	16	۷١	91	9	ī	ō	0	00:r	
IstoT	%4158	%4109	gvA	% Exc 0,8√	o,0₹	ox∃ % 0,68	% Exc 0.09	% Exc 55.0	-1.38 0.311	-1.08 0.38	-1.87 0.08	-1.07 0.87	-1.38 0,07	-1.08 0.38	-1.33 0.08	-1.02 0.33	-1.34 0.03	-1,04 45.0	-1,3£ 0.04	-1,0£ 35.0	-0.0 0.08	Hour	
														ydw 'sp	eeds								
8EK	ars 160036C 15 Init: 15 Init:	T :g1O		pk: (see:	nt durati ctional c to group th ID: nt taken ressed b	nn7 bs7 bts8 uoO				756/2017 7102/82		ate: y: t limit:	rion:	,				ənil Ə;	l name: ster Co l URNPIK	range/Ul	M O M		Station: Route #: To: Direction:

ENDING HOUR

County of Ulster

Traffic Count Hourly Report

ROUTE #: US 9W ROAD NAME: FROM: MILTON TURNPIKE TO: AFTER CHAPEL HILL RD COUNTY: **Ulster** Northbound TOWN: DIRECTION: FACTOR GROUP: 30 REC. SERIAL #: DR74 FUNC, CLASS: 14 WK OF YR: 30 PLACEMENT: 900' N of New Rd NHS: no LION#: STATE DIR CODE: 6 @ REF MARKER: DATE OF COUNT: 07/25/2017 JURIS: City BIN: NOTES LANE 1: NB travel lane ADDL DATA: Class Speed CC Stn: RR CROSSING: **COUNT TYPE: VEHICLES** BATCH ID: ULS-860040A HPMS SAMPLE: 2223756 COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: ULS INITIALS: DS 8 6 12 10 11 TO DAILY DAILY 3 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 DAILY HIGH HIGH DATE DAY S S AM PM TOTAL COUNT HOUR 12345 М Т W 6 Т 7 F 8 S 9 S 10 М 11 Т 12 W 13 Т F 14 15 16 17 18 S S M W 19 20 21 22 23 24 25 26 27 Т F S S M Т 496 775 757 508 531 502 485 604 631 676 507 396 260 206 155 113 9329 782 W 63 45 31 160 496 782 760 581 497 509 565 518 511 605 646 675 519 365 336 288 150 127 Т 8 67 45 35 40 62 145 485 767 798 535 469 483 548 523 568 557 625 712 501 402 268 242 172 112 9161 798 28 F 55 39 65 156 78 52 465 29 S 30 S 31 M AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 486 775 772 545 491 489 548 514 521 589 634 509 388 288 117 9170 69 48 35 62 154 688 245 159 AVERAGE WEEKDAY DAYS HOURS WEEKDAYS WEEKDAY Axle Adi. Seasonal/Weekday **ESTIMATED** Counted Hours High Hour % of day Factor Adjustment Factor Counted Counted **AADT** 4 73 73 775 8% 1.000 1.093 8390

ROUTE #:US 9W STATION: 860040

ROAD NAME: STATE DIR CODE: 6 FROM: MILTON TURNPIKE PLACEMENT: 900' N of New Rd TO: AFTER CHAPEL HILL RD

COUNTY: DATE OF COUNT: 07/25/2017

Ulster

County of Ulster Traffic Count Hourly Report

ROUTE #: US 9W ROAD NAME: FROM: MILTON TURNPIKE TO: AFTER CHAPEL HILL RD COUNTY: **Uister** DIRECTION: Southbound FACTOR GROUP: 30 REC. SERIAL #: DR74 FUNC, CLASS: 14 TOWN: STATE DIR CODE: 7 WK OF YR: PLACEMENT: 900' N of New Rd NHS: no LION#: DATE OF COUNT: 07/25/2017 @ REF MARKER: JURIS: City BIN: NOTES LANE 1: SB travel lane ADDL DATA: Class Speed CC Stn: RR CROSSING: COUNT TYPE: VEHICLES BATCH ID: ULS-860040A HPMS SAMPLE: 2223756 COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: ULS INITIALS: DS 2 7 8 10 5 6 8 9 10 11 TO DAILY DAILY 3 5 6 8 9 10 11 2 12 3 4 5 6 9 7 8 10 11 12 DAILY HIGH HIGH DAY S DATE AM PM TOTAL COUNT HOUR 1234567 S М Т W Т 8 S 9 S 10 М 11 Т 12 W 13 Т 14 F S 15 16 S 17 М 18 Т 19 W 20 21 22 23 24 25 26 27 28 29 30 Т F s S М Т 365 493 422 494 519 579 679 835 863 558 394 322 240 181 126 W 82 198 398 506 504 417 413 449 495 480 560 687 808 876 587 471 369 282 177 118 9046 876 17 T 52 36 38 40 63 201 372 509 450 464 431 478 514 507 542 715 824 841 574 401 348 302 212 9035 841 17 F 29 37 74 184 332 S 31 M AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 37 367 503 482 441 408 450 501 502 560 694 822 860 573 422 346 275 190 32 73 194 122 8953 AVERAGE WEEKDAY DAYS HOURS WEEKDAYS WEEKDAY Axle Adi. Seasonal/Weekday **ESTIMATED** Counted Counted Counted High Hour **Hours** % of day Factor Adjustment Factor **AADT**

rou'	TE #:1	US 9W
CTAT	ION:	260040

4

73

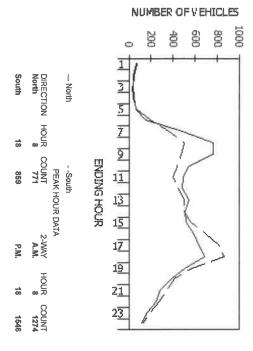
73

10%

1.000

860

1.093


8191

County of Ulster Classification Count Average Weekday Data Report

							000
0.9	0.98	0.98	AXLE CORRECTION FACTOR		INITIALS DEK	ORG CODE TET INITIALS BEK	STATION NO
19.375	19.14%	19.60%	To TRUCKS AND BUSES (F3-F13)	2223756	I ON SMOL	4	UNC-CLASS
5.815	5.60%	6.01%	I HEAVY VEHICLES (F4-F13)	2	NO OF LANES	0970	NO MILEPOINT
3707	18314	18762	NUMBER OF AYLES				EL WYBRES
1809	8943	9153	I NUMBER OF VEHICLES		TICE RO	AFTER CHAPEL!	O
TOTAL	South	North	DIRECTION		ri)	WITCH TURES KIN	\$0K
						(4,1)	mi Gooda coom Toom
0000			MONTH July			Ulster	OUNTY NAME
2002	STATION		YEAR 2017		ガロカロマンMM	We S∪	COLTE #

	TOTAL VEHICLES TOTAL AXLES GRAND TOTAL VEHICLES GRAND TOTALAXLES	ENDING HOUR DIRECTION South	TOTAL VEHICLES	ENDING HOUR DIRECTION North	NO OF AXLES	VEHICLE CLASS
	AXLES AXLES	1:00 5:00 6:00 7:00 7:00 7:00 7:00 7:00 7:00 11:0	AXLES	1000 11100 1100 11000 11	AXLES	CLASS
	162 162 162 162	0	35	000000000000000000000000000000000000000	2	Ξ
	7185 14370 14509 29018	54 30 25 54 54 54 54 30 30 30 30 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	7324 14648	59 42 29 33 33 35 62: 62: 62: 412 412 412 412 412 412 412 412 412 412	2	F2
	1211 2422 2455 4910	1 2 2 2 3 4 8 8 8 9 0 1 5 5 8 8 9 7 4 3 3 6 7 4 8 8 9 0 1 5 5 8 8 9 7 4 8 9 1 5 6 8 9	1 244 2488	9 35 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	E3
	95 238 186 465	0 C 0 O 0 0 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 228	° C → → → → N N W M M M M M M M M M M M M M M M M M	2 5	F4
	238 476 515 1030	222333333345221	277 554	118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	F5
	29 87 78 234	000000000000000000000000000000000000000	49 147	0000110040404440011000000	ω	F6
П	17 68 21 84 VEH	00000001010101010000000	16	0000000-0000-0000000	4	F7
No.	154 89 312 CLE CLA	0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	45		35	F.
	44 66 10 154 330 60 89 133 21 89 133 126 665 126 VEHICLE CLASSIFICATION CODES:		67 335		Un	F 9
	10 60 21 126 N CODE:	00000-0	8 1	000000000000000000000000000000000000000	o	F10
	0000	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	თ	F11
	0000	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	თ	F12
	70 8 8 2	000000-000000-000000	52 6	00000010111100010000000	8 75	F13
	8943 18314 18096 37076	61 36 36 36 36 43 43 43 43 43 43 43 43 43 43 43 43 43	9153 18762	70 34 44 44 45 47 48 48 48 48 48 48 48 48 48 48 48 48 48		TOTAL

TRAFFIC FLOW BY DIRECTION

1	Ę	13	Ξ.	
)	2 Axle, 4-Tire Pickups, \	Autos*	Motorcycles	
	Vans, I			
	Motorhon			

nes*

* INCLUDING THOSE HAULING TRAILERS

FUNCTIONAL CLASS CODES:

3	RURAL
14 DBINICIDAL	URBAN
11 DDINICIDAL ADTEDIAL INTERS	SYSTEM

8898882 11 PRINCIPAL ARTERIAL-INTERSTATE
12 PRINCIPAL ARTERIAL-EXPRESSWAY
14 PRINCIPAL ARTERIAL-OTHER
16 MINOR ARTERIAL
17 MAJOR COLLECTOR
17 MINOR COLLECTOR
19 LOCAL SYSTEM

SOURCE: NYSDOT DATA SERVICES BUREAU

F4. Buses
F5. 2 Axie, 6-Tire Single Unit Trucks
F6. 3 Axie Single Unit Trucks
F6. 3 Axie Single Unit Trucks
F7. 4 or More Axie Single Unit Trucks
F8. 4 or Less Axie Vehicles, One Unit is a Truck
F9. 5 Axie Double Unit Vehicles, One Unit is a Truck
F10. 6 or More Double Unit Vehicles, One Unit is a Truck
F11.5 or Less Axie Multi-Unit Trucks
F12.6 Axie Multi-Unit Trucks
F13.7 or More Axie Multi-Unit Trucks

Page 1 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

To:

Direction:

860040

Road name: MILTON TURNPIKE AFTER CHAPEL HILL RD North Start date: End date: County: Town:

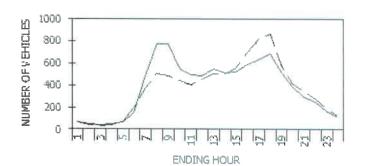
Tue 07/25/2017 06:00 Fri 07/28/2017 07:45

Ulster

Speed limit: 55 LION#: Count duration: Functional class: Factor group: Batch ID: Count taken by: Processed by:

74 hours 14 30 ULS-860040A Org: TST Init: B

Speeds mob


ULS-860040A Org: TST Init: BEK Org: ULS Init: DS

Speed	s,	m	p	r
-------	----	---	---	---

							Ope	cus, mp	411													
Hour	0.0- 30.0	30,1- 35,0	35.1- 40.0	40.1- 45.0	45.1- 50.0	50.1- 55.0	55.1- 60,0	60,1- 65,0	65.1- 70.0	70,1- 75.0	75.1- 80.0	80.1- 85.0	85.1- 115.0	% Exc 55.0	% Exc 60,0	% Exc 65.0	% Exc 70.0	% Exc 75.0	Avg	50th%	85th%	Total
1:00	1	0	2	4	10	27	18	4	1	٥	0	0	0	34.3	7.5	1.5	0.0	0.0	51.0	53.1	58.6	67
2:00	0	0	0	3	13	17	12	3	0	0	0	0	0	31.3	6.3	0.0	0.0	0.0	51.9	52.4	58.3	48
3:00	0	0	0	3	9	12	8	3	0	0	0	0	0	31.4	8,6	0.0	0.0	0.0	51.8	52.3	58.6	35
4:00	1	0	1	3	7	16	13	2	1	0	0	0	0	36.4	8,8	2.3	0.0	0.0	50.4	53.2	58.7	44
5:00	1	1	1	7	13	18	16	4	1	0	0	0	0	33.9	8.1	1.6	0.0	0.0	49.8	52.3	58.7	62
6:00	2	3	3	5	27	59	40	12	3	0	0	0	0	35.7	9.7	1.9	0.0	0.0	51.1	53.2	59.0	154
7:00	3	7	14	49	118	180	93	18	2	0	0	0	0	23.3	4.1	0.4	0.0	0.0	49.7	51.5	57.2	484
8:00	3	6	25	102	254	278	93	13	1	0	0	0	0	13,8	1.8	0.1	0.0	0.0	48.8	50.0	54,9	773
9:00	5	6	21	112	281	247	86	13	1	0	0	0	0	13.0	1.8	0.1	0.0	0,0	48.3	49.4	54.7	772
10:00	2	8	18	82	181	181	64	9	1	0	0	0	0	13.6	1.8	0.2	0.0	0.0	48.4	49.6	54.8	546
11:00	2	3	16	84	162	162	53	9	1	0	0	0	0	12.8	2.0	0.2	0,0	0.0	48.4	49.4	54.7	492
12:00	2	3	10	53	181	172	55	11	1	0	0	0	0	13.7	2.5	0,2	0.0	0,0	49.1	49,9	54.9	488
13:00	2	(24	103	212	155	37	7	1	0	0	0	0	8,2	1.5	0.2	0.0	0.0	47.4	48,3	53,8	548
14:00	3	3	22	81	200	156	44	5	1	0	0	0	0	9.7	1.2	0.2	0.0	0.0	47.8	48.8	54.2	515
15:00	1	4	9	53	185	193	69	7	0	0	0	0	0	14.6	1,3	0,0	0.0	0.0	49.4	50,3	55.0	521
16:00	2	2	9	66	225	197	73	14	1	0	0	0	0	14.9	2.5	0.2	0.0	0.0	49.3	49.8	55,0	589
17:00	4	4	24	79	215	216	78	13	1	0	0	0	0	14.5	2.2	0,2	0.0	0,0	48.6	49.8	55,0	834
18:00	4	6	16	88	223	245	92	11	1	1	0	0	0	15.3	1.9	0.3	0.1	0.0	48.9	50.2	55,2	687
19:00 20 :00	0	3	6	38	149	192	99	19	1	0	0	0	0	23.4	3.9	0.2	0.0	0.0	50.6	51.5	57.2	508
21:00	4	- 1	2	27	118	159	64	13	3	U	0	0	0	20,7	4.1	0.8	0.0	0.0	50,9	51.5	56.8	387
22:00	1	- 1		27 25	102	103	39	10	1	U	0	0	0	17.3	3.8	0.3	0.0	0,0	49.7	50,5	55,9	289
23:00	0	2	9	11	87 43	80 50	39	10	1	0	0	0	0	19.1	3.3	0.4	0.0	0.0	49.6	50.3	56.3	246
24:00	0	1	4	8	43 27	59 45	31 29	10 5	2	0	0	0	0	26.4	6.9	0,6	0.0	0.0	51.0	51.9	58.0	159
24,00	Ū		'	·	21	40	25	J	2	U	U	U	0	30,5	5.9	1.7	0.0	0,0	51.6	52.5	58.2	118
Avg. Daily Total	41	72	236	1113	3042	3167	1245	222	27	4	0	0	0	16,3	2.7	0.3	0.0	0.0	40.4	50.0		
Percent		0.8%	2.6%	12.1%	33.2%	34.6%	13.6%	2.4%	0.3%	0.0%	0.0%	0.0%	0.0%	10.3	2.1	0.3	0.0	0.0	49.1	50.2	55,5	9166
Cum. Percent		1.2%	3.8%	16.0%	49.1%	83.7%	97.3%	99.7%	100,0%	100.0%	100.0%	100.0%	100.0%									
Average hour	2	3	10	46	127	132	52	9 9	1	0	100.0%	0	0									202
o. ago (10a)	-	•		40	121	102	J_	3	'	Ū		0	U									382

TRAFFIC FLOW BY DIRECTION

North South	Avg	, Speed 49.1 48.4	50th% Speed 50.2 49.2	851117	6 Speed 55.5 54.5
		Peak H	Hour Data		
Direction	Hour	Count	2-way	Hour	Count
North	8	773	A.M.	8	1276
South	18	859	P.M.	18	1546
South Direction North	8	48.4 Peak F Count 773	49.2 Hour Data 2-way A.M.	8	54.5 Coun 1276

-- North

Page 2 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

860040

Road name: MILTON TURNPIKE AFTER CHAPEL HILL RD

To: Direction: South Start date: End date: County: Town:

Tue 07/25/2017 06:00 Fri 07/28/2017 07:45

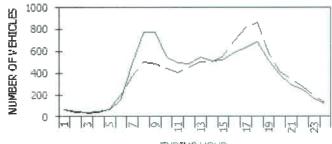
Ulster

55

Count duration: Functional class: Factor group:
Batch ID:
Count taken by:
Processed by:

14 30 ULS-860040A Org: TST Init: BEK Org: ULS Init: DS

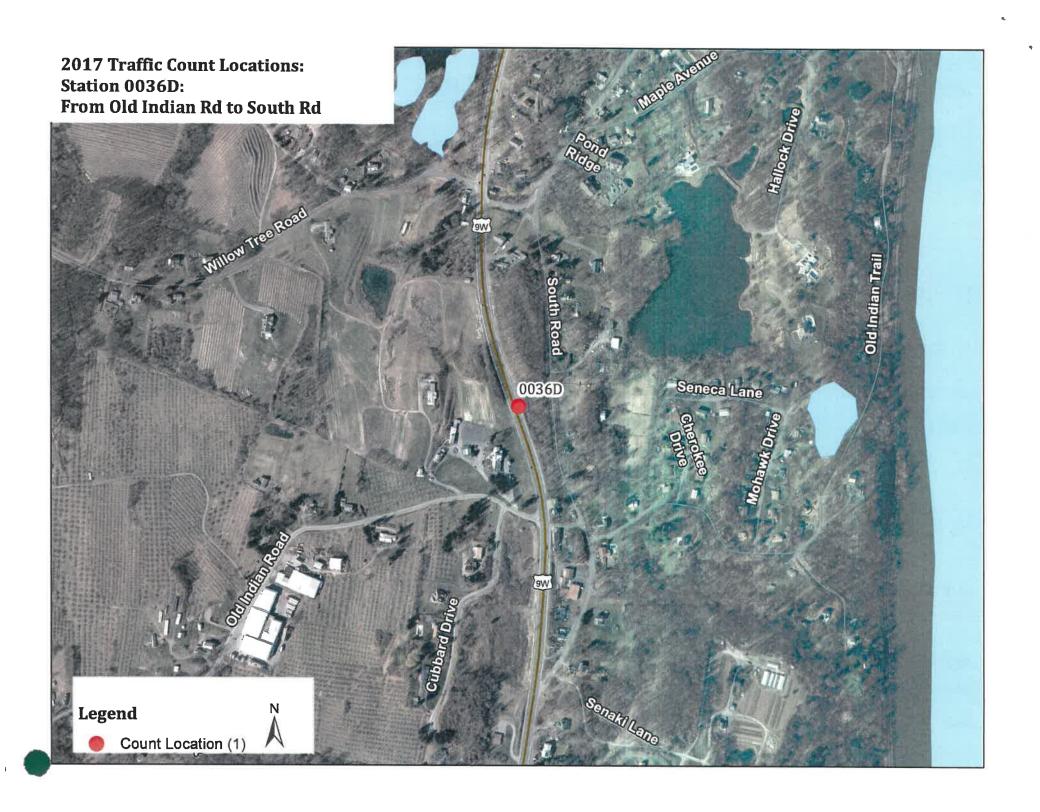
74 hours


Speed limit: LION#:

Speeds mph

							Spe	eas, mp	ın													
Hour	0.0- 30.0	30.1- 35.0	35,1- 40.0	40.1- 45.0	45.1- 50.0	50,1- 55.0	55.1- 60.0	60.1- 65,0	65.1- 70.0	70.1- 75.0	75.1- 80.0	80,1- 85,0	85.1- 115,0	% Exc 55.0	% Exc 60,0	% Exc 65.0	% Exc 70.0	% Exc 75.0	Avg	50th%	85th%	Total
1:00	0	0	1	10	16	19	12	3	0	0	0	0	a	24.6	4.9	0.0	0,0	0.0	50.1	51.0	57.5	61
2:00	0	0	0	3	10	13	10	1	0	0	0	0	0	29.7	2.7	0.0	0,0	0,0	51.5	52,2	57.8	37
3:00	0	0	0	2	6	12	10	2	0	0	0	0	0	37,5	6,3	0,0	0.0	0.0	52.6	53.4	58.6	32
4:00	1	0	0	3	8	11	11	2	0	1	0	0	a	37.8	8.1	2.7	2.7	0,0	50,3	53,0	58,9	37
5:00	0	1	2	4	13	26	19	7	0	0	0	0	0	36.1	9.7	0.0	0.0	0.0	51.8	53.1	59.0	72
6:00	1	0	2	10	32	76	59	13	2	0	0	0	0	37.9	7.7	1.0	0.0	0.0	52.4	53.5	58.8	195
7:00	2	2	9	28	94	153	67	12	1	0	0	0	0	21.7	3.5	0.3	0.0	0.0	50.2	51.7	56.9	368
8:00	0	7	15	70	166	170	66	8	1	0	0	0	0	14.9	1.8	0.2	0.0	0.0	48.9	49,9	55.0	503
9:00	4	5	15	65	198	148	42	4	1	0	0	0	0	9.8	1.0	0.2	0.0	0.0	47.8	48.9	54.2	482
10:00	3	6	18	75	181	118	34	5	1	0	0	0	0	9.1	1.4	0.2	0.0	0.0	47.3	48.3	53.9	441
11:00	2	3	16	65	170	118	28	5	2	0	0	0	0	8.6	1.7	0.5	0.0	0.0	47.7	48.5	53.9	409
12:00	0	2	14	71	165	150	42	4	0	0	0	0	0	10,3	0.9	0.0	0.0	0.0	48.5	49.2	54.3	448
13:00	2	8	16	87	206	149	29	3	0	0	0	0	0	6.4	0.6	0.0	0,0	0.0	47.4	48.4	53,6	500
14:00	4	4	20	100	210	136	23	5	0	0	. 0	0	0	5.6	1.0	0.0	0.0	0.0	46.9	48.0	53.3	502
15:00	2	2	14	85	236	177	40	4	0	0	0	0	0	7.9	0.7	0.0	0.0	0.0	48.1	48.8	53.9	580
16:00	0	6	28	134	289	188	46	3	0	0	0	0	0	7.1	0.4	0.0	0,0	0,0	47.5	48,1	53.6	694
17:00	6	7	29	125	355	252	41	6	0	0	0	Ü	0	5.7	0.7	0,0	0.0	0,0	47.4	48.5	53.5	821
18:00	2	8	25	123	363	285	52	1	0		0	0	0	6.2	0.1	0.0	0.0	0.0	48.0	48,8 49,8	53,7 54,5	859 573
19:00	1	2 3	44	61	226	211 152	58	5	0	0	0	0	0	11.0 18.2	0.9 1.9	0.0 0.0	0.0 0.0	0.0 0.0	49.2 49.6	50.4	55.5	420
20:00	0	0	11 6	41 31	145 119	142	60 43	5	4	0	0	0	0	14.1	1.7	0.3	0.0	0.0	50.0	50.4	54.9	347
21:00 22:00	0	0		35	108	97	43 26	. J	Ö	0	0	0	0	10.9	1.5	0.0	0.0	0.0	49.2	49.6	54,5	275
23:00	0	1	3	22	59	70	30	5	0	1	0	0	0	18.8	3,1	0.5	0.5	0.0	50.0	50.8	56.3	191
24:00	0	0	3	13	33	48	21	4	0	0	0	0	0	20.5	3.3	0.0	0.0	0.0	50.3	51.3	56.6	122
24.00	U	U		15	55	40	21	7		•		ŭ	·	20.0	0.0	0.0	0.0	0.0	00,0	01,0	00.0	
Avg. Daily Total	30	67	261	1263	3408	2921	869	119	9	2	0	0	0	11.2	1.5	0.1	0.0	0.0	48.4	49.2	54.5	8949
Percent		0.7%	2.9%	14,1%	38.1%	32.6%	9.7%	1.3%	0.1%	0.0%	0.0%	0.0%	0.0%									
Cum. Percent		1.1%	4.0%	18.1%	56.2%	88.8%	98.5%	99.9%	100.0%	100.0%	100.0%	100.0%	100.0%									
Average hour	1	3	11	53	142	122	36	5	0	0	0	0	0									373

TRAFFIC FLOW BY DIRECTION


North South	Avg	y. Speed 49.1 48.4	50th% Speed 50.2 49.2	85th9	6 Speed 55.5 54.5
Direction North South	Hour 8 18	Peak I Count 773 859	Hour Data 2-way A.M. P.M.	Hour 8 18	Count 1276 1546

- - South

--- North

ENDING HOUR

STATION: **860036**

County of Ulster Traffic Count Hourly Report

ROUTE; DIRECTI STATE D DATE OF NOTES I NOTES I COUNT	ION: DIR CO COL LANE LANE	ODE: UNT: 0 1: NB 2: NB	Northb 1 7/25/20 Travel Travel	ound)17 Lane Lane	OAD N	F/ W	KOF	YR:	UP: 30) F) F (REC. S PLACE D REF ADDL E COUNT	Orango ERIAL: MENT: MARK DATA: C TYPE: SSED	#: 2489 675' N ER: Class S : VEHI	g of Old peed CLES	Indian	Rd ST INI	ΓIALS:		F	FUNC. NHS: y IURIS: CC Stn	City	S: 14	036D		TOV LION BIN: RR (Ulster 1007300 1002967
	-	12 TO 1	1 TO 2	2 TO 3	3 TO 4	4 TO 5	5 TO 6	6 TO 7	7 TO 8	8 TO 9	9 TO 10	10 TO 11	11 TO 12	12 TO 1	1 TO 2	2 TO 3	3 TO 4	4 TO 5	5 TO 6	6 TO 7	7 TO 8	8 TO 9	9 TO 10	10 TO 11	11 TO 12	DAILY	DAILY	HIGH
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	DAY SSMTWTFSSMTWTFSSMTWTFSSMTWTFSSM	62 74 88	50 48 57	35 34 34	45 36 45	49 51 56	152 134 147	490 455 458	759 770 764	729 728 784	486 554 535	512 499 485	500 493 516	510 561 542	501 518 541	496 542 558	624 656 611	649 677 665	705 740 719	562 538 547		267 320 297	225 310 255	176 156 191	129 137 119	9473	759 784	7
		75	52	34	42	52	144	AV 468	ERAGE 764	WEE 747	KDAY 525	HOUR: 499	S (Axle 503	Facto 538	red, M 520	on 6AN 532	f to Fr 630	i Noon 664) 721	549	409	295	263	174	128	ADT 9328		
	Col	AYS unted		OURS counted			ounte		EKDAY Hours	'	Hiệ	AVER gh Hou 764	RAGE V		OAY of day 8%		<u>F</u>	de Adj. Factor		<u>Adjust</u>	nal/We ment F				E	STIMAT		
ROUTE:	#:US			72 OAD NATATE DI		DE: 1	4		72			Orange			ine	n Rd	1		D: MIL		TURNP	IKE		D		8534		Ulster 2/25/2017

County of Ulster Traffic Count Hourly Report

OF CO S LANE S LANE	ODE: 2 UNT: 0 1: SB 2: SB	Southb 2 7/25/20 Travel Travel	ound 17 Lane Lane		F# W	K OF `	YR:) F) F (REC. S PLACE @ REF ADDL D COUNT	ERIAL MENT: MARK OATA: C	#: 260- 675' N ER: Jass S : VEHI	4 of Old peed CLES	Indian		TIALS:		F 1	FUNC. NHS: ye JURIS: CC Stn:	CLASS es City	S: 14	036D		TOW LION BIN: RR C	N: #: ROSSIN	IG:	Ulster 1007300 1002967
DAY	12 TO 1	1 TO 2	TO 3	3 TO 4	4 TO 5	6	7	7 TO 8	8 TO 9	9 TO 10	10 TO 11	11 TO 12	12 TO 1	1 TO 2	2 TO 3	3 TO 4	4 TO 5	6	6 TO 7	7 TO 8	8 TO 9	9 TO 10	10 TO 11	11 TO 12	DAILY TOTAL	DAILY HIGH COUN	HIGH
ss m t st t ss m t st t t t t t t t t t	55 53 67	51 38 27	31 40 35	33 40 36	97 74 74	213 221 215	433 399 345	517 538 515	538 543 539	461 426 480	399 459 450	442 436 508	498 502 520	480 510 514	550 550 563	696 701 743	802 795 793	818 852 813	556 557 553	396 474 379	340 377 360	245 295 294	162	125	9194	852 813	17
	58	39	35	36	82	216	392	523	540	KDAY 456	436	462	507	501	on 6AI 554	713	797	828				278	181				
<u>Co</u>	unted 4	2	72						ī -	Hi						E	actor		Adjust	ment F					AAD	r	
	TIDIR CONSTRUCTION: CONSTRUCTI	TION: DIR CODE: DIR COUNT: 0' S LANE 1: SB S LANE 2: SB T TAKEN BY: 12 TO 1 DAY S M T W T F S S M T W T T R T R T R T R T R T R T R T R T	TION: Southb DIR CODE: 2 OF COUNT: 07/25/20 S LANE 1: SB Travel S LANE 2: SB Travel T TAKEN BY: ORG 12	ETION: Southbound DIR CODE: 2 OF COUNT: 07/25/2017 S LANE 1: SB Travel Lane S LANE 2: SB Travel Lane T TAKEN BY: ORG CODE: 12	TION: Southbound DIR CODE: 2 OF COUNT: 07/25/2017 SLANE 1: SB Travel Lane SLANE 2: SB Travel Lane T TAKEN BY: ORG CODE: TST IN	TION: Southbound FA DIR CODE: 2 W OF COUNT: 07/25/2017 S LANE 1: SB Travel Lane S LANE 2: SB Travel Lane T TAKEN BY: ORG CODE: TST INITIAL 12	TION: Southbound FACTOR DIR CODE: 2 WK OF YOR COUNT: 07/25/2017 S LANE 1: SB Travel Lane S LANE 2: SB Travel Lane T TAKEN BY: ORG CODE: TST INITIALS: BEIL 12	TION: Southbound FACTOR GROUWK OF YR: DIR CODE: 2 WK OF YR: OF COUNT: 07/25/2017 S LANE 1: SB Travel Lane S LANE 2: SB Travel Lane T TAKEN BY: ORG CODE: TST INITIALS: BEK 12	TION: Southbound FACTOR GROUP: 30 DIR CODE: 2	ETION: Southbound FACTOR GROUP: 30 FOR COUNT: 07/25/2017 SLANE 1: SB Travel Lane SLANE 2: SB Travel Lane T TAKEN BY: ORG CODE: TST INITIALS: BEK 12	TION: Southbound FACTOR GROUP: 30 REC. S DIR CODE: 2 WK OF YR: 30 PLACE REC. S DIR CODE: 2 WK OF YR: 30 PLACE REC. S LANE 1: SB Travel Lane ADDL COUNT: OT/25/2017 S LANE 2: SB Travel Lane COUNT: TAKEN BY: ORG CODE: TST INITIALS: BEK PROCEST TO	TION: Southbound FACTOR GROUP: 30 REG. SERIAL DIR CODE: 2 WK OF YR: 30 PLACEMENT: 30 P	TION: Southbound DIR CODE: 2 UNK OF YR: 30 PLACEMENT: 675 N @ REF MARKER: ADDL DATA: Class S COUNT TYPE: VEHI PROCESSED BY: O TO T	TION: Southbound DIR CODE: 2 WK OF YR: 30 PLACEMENT: 675 Not Old Old Old Counted Factors and Directors and Directo	TION: Southbound FACTOR GROUP: 30 REC. SERIAL #: 2804 PLACEMENT: 675* N of Old Indian OF COUNT: 07/25/2017 SLANE 1: SB Travel Lane COUNT TYPE: VEHICLES PROCESSED BY: ORG CODE: TST INITIALS: BEK ADDL DATA: Class Speed COUNT TYPE: VEHICLES PROCESSED BY: ORG CODE: TST INITIALS: BEK ADDL DATA: Class Speed COUNT TYPE: VEHICLES PROCESSED BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG COUNTINE TYPE: VEHICLES ADDITION TO	TION: Southbound FACTOR GROUP: 30 REC. SERIAL #: 2804 PLACEMENT: 675 N of Old Indian Rd DIO COUNT: 07725/2017 @ REF MARKER: ADDL DATA: Class Speed COUNT TYPE: VEHICLES COUNT TYPE: VEHICLES PROCESSED BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: TST INITIALS:	TION: Southbound FACTOR GROUP: 30 REC. SERIAL #: 2804 PLACEMENT: 675 N of Old Indian Rd OPTO COUNT: 07725/2017 OPTO COUNT: 07725/2017	TION: Southbound FACTOR GROUP: 30 REC, SERIAL #: 2804 PLACEMENT: 675 N of Old Indian Rd @REMARKER: ADDL DATA: Class Speed COUNT TYPE: VEHICLES RODE OF COUNT TYPE: VEHICLES	TION: Southbound	TITION: Southbound FACTOR GROUP: 30 WK OF YR: 30 WK OF YR: 30 WK OF YR: 30 PLACEMENT 675 N of Old Indian Rd WK OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF YR: 30 PLACEMENT 675 N of Old Indian Rd WR OF	TITION: Southbound FACTOR GROUP: 30 REC. SERIAL #: 2804 DID R CODE: 2 UK OF YR: 30 PLACEMENT: 575 N of Old Indian Rd WK OF YR: 30 PLACEMENT: 575 N of Old Indian Rd QR REF MARKER: ADDL DATA: Class Speed COUNT: 07/25/2017 SLANE 2: SS Travel Lane SLANE 3: SS Travel 3: SS Tr	TITON: Southbound FACTOR GROUP: 30 REC. SERIAL #2804 2804 2804 2807	TITON: Southbound FACTOR GROUP: 30 REC. SERIAL #: 2804 NEC.	TITON: Southbound FACTOR GROUP: 30 REC. SERIAL #x 2804 FUNC. CLASS: 14 NHS: year of CoUNT: 9725/2017 WK OF YR: 30 PACAMEMENT 975 N of Old Indian Rd JUNIS: City RHS: year of COUNT: 9725/2017 WK OF YR: 30 PACAMEMENT 975 N of Old Indian Rd JUNIS: City RHS: year of COUNT: 9725/2017 BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D TAKKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: TST INITIALS: BEK RHS: year of COUNT: TYPE: VEHICLES BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D TAKEN BY: ORG CODE: TST INITIALS: BEK BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D PACAMEMENT 975 N of Old Indian Rd JUNIS: City CC. Str. BATCH 10P UILS-880038D CC. Str. BATCH 10P UILS-880038D TO	TITON: Southbound FACTOR GROUP: 30 REC. SERIAL #: 2904 FLUNC. CLASS: 14 NOT TOWN OF COUNT 07725/2017 WK OF YR: 30 PLACEMENT: 675'N N TOWN INFO WK OF YR: 30	TITON: Southhound FACTOR GROUP: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 REC. SENIAL & 2804 FINIX CLASS: 14 TOWN: UNK OF YR: 30 TOWN: UNK OF YR: 30	TION Southhound FACTOR GROUP: 30 PACTOR GRO

ROUTE #:US 9W STATION: 860036 ROAD NAME: STATE DIR CODE: 2 FROM: Orange/Ulster Co Line PLACEMENT: 675' N of Old Indian Rd

TO: MILTON TURNPIKE

COUNTY: DATE OF COUNT: 07/25/2017

Ulster

County of Ulster Classification Count Average Weekday Data Report

					1411766 007		001
	0.98	0.97	AXLE CORRECTION FACTOR		MITIALS BEK	0036 CODE TOT	TATION NO
25.1	23.30%	26.88%	TRUCKS AND BUSES (F3-F13)	1002967	HPMS NO	14	UNC-CLASS
8.2	7.20%	9.35%	HEAVY VEHICLES (F4-F13)		NO OF LANES	030532	ND MILEPOINT
37.	18631	19260	I NUMBER OF AXLES				EF.MARKEP
100	9096	9326	1 NUMBER OF VEHICLES		m	WILTON TURNER	O
TOTAL	South	North	DIRECTION		3	Öranger"Lister Col.	ROM.
			MONTH July			Ulster	COUNTY NAME
2000	STATION		YEAR 2017		ROAD NAME	₩6 SO	OUTE #

R OF VEHICLES		TOTAL VEHICLES TOTAL AXLES GRAND TOTAL VEHICLES GRAND TOTAL AXLES	ENDING HOUR DIRECTION South	TOTAL VEHICLES	ENDING HOUR DIRECTION North	NO OF	VEHICLE CLASS
	TRAFF	HICLES HICLES HICLES	1:00 2:00 3:00 5:00 6:00 6:00 7:00 8:00 11:00 11:00 12:00 12:00 15	AXLES	100 200 300 500 500 700 800 700 11:0	NO OF AXLES	CLASS
	IC FLO	61 122 106 212	040000000000000000000000000000000000	90	00000000000000000000000000000000000	2	2
(TRAFFIC FLOW BY DIRECTION	6916 13832 13690 27380	48 26 27 28 28 29 40 40 40 40 40 40 317 317 317 317 317 317 317 317 317 317	6774 13548	57 39 27 28 39 98 310 556 556 556 357 344 344 344 444 444 444 444 444 444 44	2	F2
1	(ECLION	1464 2928 3099 6198	12 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1635 3270	10 10 10 10 10 10 10 10 10 10 10 10 10 1	N	F3
		97 242 235 588	0-	138 345	001100000000000000000000000000000000000	2 5	7
		374 748 865 1730	5588118988812888811998280000	491 982	2 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	FS
		27 81 82 246	~000~000~000~000~	165 65		ω	F6
F7. 4. F8. 4. F9. 5. F10. 6. F12. 6. F13. 7.	755 7 55	6 24 9 36 VEH	000000000000000000000000000000000000000	12 4	000000000000000000000000000000000000000	4	F7
7. 4 or More 8. 4 or Less 9. 5 Axle Do 10. 6 or More 11. 5 or Less 12. 6 Axle Mu 13. 7 or More 13. 7 or More	Motorcycles Autos* 2 Axle, 4-Tire Buses 2 Axle, 6-Tire 3 Axle Single	68 238 125 438 ICLE CL	000000440000000000000000000000000000000	57 200		3 5	₹
or More Axle Single Unit Trucks or Less Axle Vehicles, One Unit is a Truck Axle Double Unit Vehicles, One Unit is a Truck or More Double Unit Vehicles, One Unit is a Truck or Less Axle Multi-Unit Trucks Axle Multi-Unit Trucks or More Axle Multi-Unit Trucks	Motorcydes Autos* 2 Ade, 4-Tire Pickups, Vans, Motorhomes* Buses 2 Ade, 6-Tire Single Unit Trucks 3 Ade Single Unit Trucks	288 82 1 288 410 6 125 202 9 438 1010 54 VEHICLE CLASSIFICATION CODES:	→ N O N → G A D N O D D N N D A D → → → → → → →	120 600	& N 1 & 1 & 7 & 7 & 9 & 9 & 9 & 9 & 9 & 8 & 8 & N 1 N N 1 1	Ŋ	F9
le Unit Trucks bles, One Unit i bles, One Unit Vehicles, One Unit Vehicles, O -Unit Trucks cks -Unit Trucks	s, Vans, Mot Jnit Trucks	1 6 9 54 50 CODES	000000000000000000000000000000000000000	48 cs	000000000000000000000000000000000000000	ເກ	F10
t is a Truc) Unit is a One Unit i	torhomes'	 oeoe	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	5	F11
k Truck s a Truck	•	0000		00	000000000000000000000000000000000000000	o	F12
		0000		00		8 75	F13
		9096 18631 18422 37891	59 36 36 36 80 217 392 227 392 539 539 456 456 436 602 546 436 602 556 447 713 566 447 713 713 713 713 713 714 715 717 717 717 717 717 717 717 717 717	9326 19260	75 52 52 53 54 42 42 45 746 52 746 52 63 63 63 63 63 63 63 72 63 72 63 72 63 72 63 73 63 74 64 74 74 74 74 74 74 74 74 74 74 74 74 74		TOTAL

TRAFFIC FLOW BY DIRECTION

				NI	JMB	ER O	FVE	HICL	ES
				0	200	400	600	800	1000
South	DIRECTION HOUR North 8	- North		1 3 5 7 9	+	+	+		
춦	HOUR 8			7		de	1	7	
828	PEAK H COUNT 765	South	ENDING HOUR	11		(<u></u>	•	
P.M.	PEAK HOUR DATA JUNT 2-WAY 765 A.M.		HOUR	1 <u>1</u> 1 <u>3</u> 1 <u>5</u> 1 <u>7</u>		9		1	
1 00	HOUR 8			17 19 21 23	1	1			
1550	HOUR COUNT 8 1289			23	/				

FUNCTIONAL CLASS CODES:	* INCLUDING THOSE HAULING TRAILERS
	HAULING TRAI

RURAL 01 URBAN SYSTEM

09	8	07	8	02	8	5
19 LOCAL SYSTEM	17 MINOR COLLECTOR	17 MAJOR COLLECTOR	16 MINOR ARTERIAL	14 PRINCIPAL ARTERIAL-OTHER	12 PRINCIPAL ARTERIAL-EXPRESSWAY	こうないのですることにはっていることに

Page 1 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

860036

Road name:
Orange/Ulster Co Line
MILTON TURNPIKE
North

Start date: End date: County: Town:

Tue 07/25/2017 08:00 Fri 07/28/2017 08:45

Ulster

55

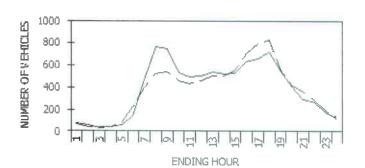
Count duration: Functional class: Factor group: Batch ID; Count taken by: Processed by:

14 30 ULS-860036D Org: TST Init: BEK Org: TST Init: BEK

73 hours

Direction: Lanes: 1, 2

To:


Speed limit: LION#:

Speeas,	mpn
---------	-----

							Spe	eds, mp	h													
Hour	0.0- 30,0	30,1- 35,0	35.1- 40.0	40.1 . 45.0	45.1- 50,0	50,1- 55.0	55,1- 60,0	60.1- 65.0	65.1- 70.0	70.1- 75,0	75.1 - 80,0	80.1-	85.1-	% Exc	% Exc	% Ехс	% Exc	% Ехс				
11001	55,5	00.0	40.0	40,0	50.0	55.0	00,0	05,0	70.0	75,0	00,0	85.0	115.0	55.0	60.0	65,0	70.0	75,0	Avg	50th%	85th%	Total
1:00	1	0	0	3	13	25	22	8	3	0	0	0	0	44.0	14.7	4.0	0.0	0.0	52.6	54.2	60,0	75
2:00	3	2	3	3	7	15	12	6	1	0	0	0	0	36.5	13,5	1.9	0.0	0.0	46,6	52,7	59,7	52
3:00	0	0	1	1	8	8	10	5	1	0	0	0	0	47.1	17.6	2,9	0.0	0.0	53.1	54.4	61,0	34
4:00	2	0	1	2	4	16	9	5	1	0	0	0	0	37,5	15.0	2.5	0.0	0.0	49.1	53,5	60,0	40
5;00		0	1	3	12	13	16	6	1	٥	0	0	0	43.4	13.2	1.9	0.0	0.0	51.1	53.7	59.8	53
6:00		1	1	4	17	41	43	26	7	1	0	0	0	53.1	23.4	-5.5	0.7	0.0	52.3	55.6	62.4	145
7:00		2	1	9	32	87	159	116	45	10	1	0	0	70,4	36.6	11.9	2.3	0.2	55.5	58.1	84.4	470
8:00		1	4	16	62	151	228	181	77	19	3	1	0	66,3	36.6	13.0	3.0	0.5	53.9	57.8	64.6	768
9:00		0	4	18	66	182	234	166	48	10	0	0	0	61.2	29.9	7.8	1.3	0.0	53.6	56.8	63.4	748
10:00		1	3	14	63	136	176	96	24	3	0	0	0	56.7	23.3	5.1	0.8	0,0	53.2	56.1	62.3	527
11:00		2	6	21	67	144	147	78	20	4	0	0	0	49.9	20.4	4.8	O.B	0.0	52.4	55,0	61.8	499
12:00		0	4	23	77	140	155	74	16	3	1	0	0	49.2	18.6	4.0	0.8	0.2	51.9	54.9	61.3	506
13:00		2	4	17	77	156	173	77	20	5	0	0	0	50,9	18.9	4.6	0.9	0.0	52.9	55.2	61.4	540
14:00		1	3	22	77	163	155	66	18	1	1	0	0	46.1	16.4	3.8	0.4	0.2	51.3	54.4	60,6	523
15:00		1	3	14	65	169	155	90	21	3	1	0	0	50.7	21.6	4.7	0.8	0.2	52.9	55.2	62.0	533
16:00		2	3	14	61	178	204	120	30	5	0	0	0	56,9	24.6	5.5	0,8	0.0	53.4	56,1	62.6	631
17:00 18:00		3	1 6	15	64 52	171	227	130	29	8	2	0	0	59.6	25.5	5.9	1.5	0.3	53.7	56.5	62.7	664
19:00		0	3	12 7	42	190 . 135	264 192	143	36	5	1	0	0	62.0	25.6	5.8	0.8	0.1	54.0	56.7	62.7	724
20:00		0	2	11	38	115	149	120 69	32 17	9	0	0	0	64.2	29.3	7.5	1.8	0.0	54.7	57.1	63.3	550
21:00		1	2	11	49	90	91	36	5	2	1	0	0	58,0	21.8	5.1	1.0	0.2	53.8	58.2	62.1	412
22:00		1	3	14	42	94	75	24	5	- 1	1	a	0	45,8 40,2	14.9 11.7	2.7	1.0	0.3	51.6	54.4	60,0	295
23:00		Ď	3	9	31	59	48	17	4	0	0	a	0	39.7	12.1	2.7 2.3	0.8 0.0	0.4	51.7	53.7	59.5	264
24:00		0	0	4	21	43	39	13	6	0	0	0	0	45.3	14.8	4.7	0.0	0.0 0.0	51.4 52.7	53.5 54.4	59.5	174
	_	_	-	•			•		•	•	·	•	•	40.0	14.0	4.1	0.0	0,0	32.7	34.4	60.0	128
Avg. Daily Total	210	20	62	267	1047	2521	2983	1672	467	92	13	1	0	55,9	24.0	6,1	1.1	0.1	53.1	56.0	62.6	9355
Percent	2.2%	0.2%	0.7%	2.9%	11.2%	26,9%	31.9%	17.9%	5.0%	1.0%	0.1%	0.0%	0.0%	50,0	2-7.0	0,,	1	0.1	55.1	30.0	02.0	8333
Cum, Percent	2.2%	2.5%	3.1%	6.0%	17.2%	44.1%	76.0%	93,9%	98.9%	99.9%	100.0%	100.0%	100.0%									
Average hour	9	1	3	11	44	105	124	70	19	4	1	0	0									390

TRAFFIC FLOW BY DIRECTION

North South	Avg	j. Speed 53.1 32.4	50th% Speed 56.0 49.8	85th9	% Speed 62.6 59.6
Direction North	Hour 8	Peak H Count 768	lour Data 2-way A.M.	Hour 8	Count 1290
South	18	824	P.M.	18	1548

-- North

- - South

Ulster

55

Tue 07/25/2017 08:00 Fri 07/28/2017 08:45 Page 2 of 2 Date: 08/09/2017

Station:

860036

Route #: US 9W Road name: From: Orange/Ulster Co

To: MILTO Direction: South

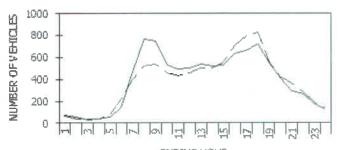
Lanes: 1, 2

6 Start date: end date: e/Ulster Co Line County:

Orange/Ulster Co Line County
MILTON TURNPIKE Town:

Speed limit: LION#: Count duration: Functional class: Factor group: Batch ID: Count taken by: Processed by:

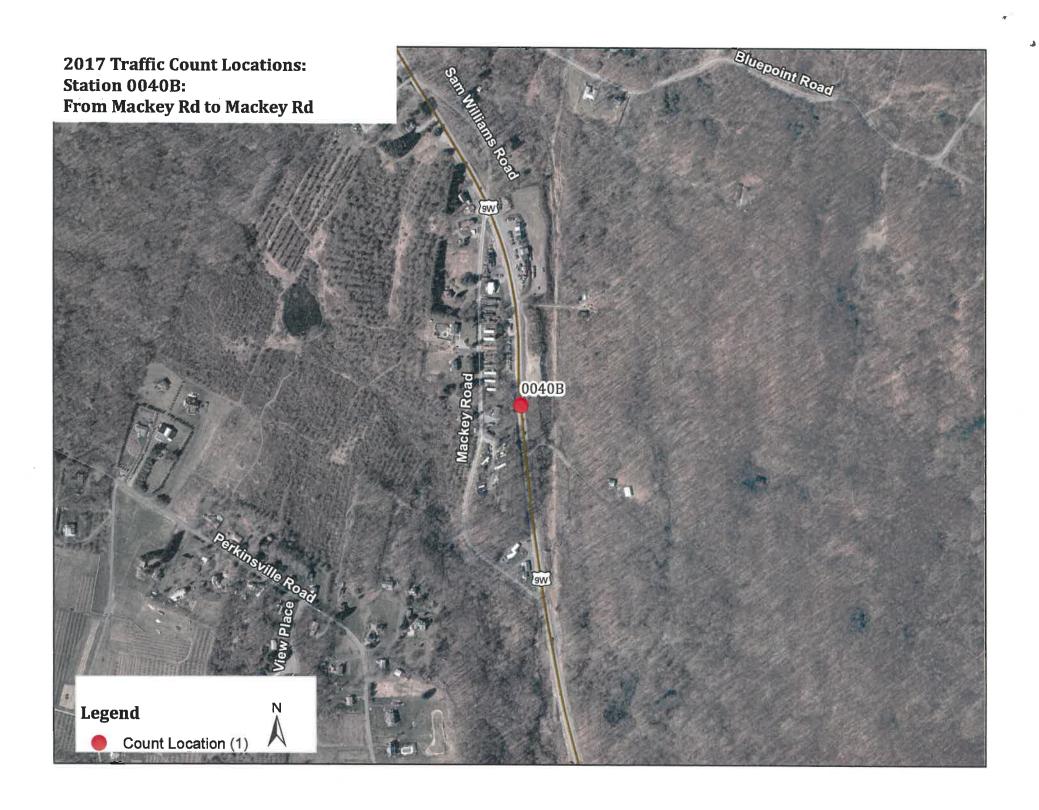
14 30 ULS-860036D Org: TST Init: BEK Org: TST Init: BEK


73 hours

Speeds, mph

							She	eus, mp	11													
	0.0-	30.1-	35,1-	40,1-	45,1-	50,1-	55.1-	60.1-	65,1-	70.1-	75,1-	80,1-	85.1-	% Exc	% Exc	% Exc	% Exc	% Exc				
Hour	30.0	35,0	40,0	45.0	50.0	55,0	60,0	65.0	70,0	75.0	80.0	85.0	115.0	55.0	60.0	65,0	70.0	75.0	Avg	50th%	85th%	Total
Tiodi	00.0	00,0	10,0			,-				,-					77.7							
1:00	28	0	0	3	6	9	12	3	D	0	Đ	0	0	24.6	4.9	0.0	0.0	0.0	30.1	44.2	57.5	61
2:00	16	0	0	2	4	9	5	2	1	0	D	0	0	20,5	7.7	2,6	0.0	0.0	31.5	46.9	57.2	39
3:00	13	1	0	1	2	7	10	3	1	0	0	0	0	36,8	10.5	2,6	0.0	0.0	34.0	51.5	59.2	38
4:00	15	0	1	1	2	3	10	2	2	1	0	0	0	40.5	13.5	8.1	2.7	0,0	32.2	48.8	59.8	37
5:00	44	0	0	1	2	8	15	11	3	0	0	0	0	34.5	16.7	3.6	0.0	0.0	29.0	28.7	60.7	84
6:00	105	0	0	2	6	18	44	31	14	2	0	0	0	41.0	21.2	7.2	0.9	0.0	30.6	48.4	62.3	222
7:00	187	0	2	2	14	32	72	66	20	1	1	0	0	40.3	22.2	5.5	0.5	0.3	30.6	47.7	62.2	397
8:00	205	0	2	7	21	54	123	88	18	3	1	0	0	44.6	21.1	4.2	0.8	0.2	33.0	52.5	61.9	522
9:00	166	0	1	11	43	92	132	72	14	3	1	1	0	41.6	17.0	3.5	0.9	0.4	35.8	52.6	60.8	536
10:00	138	1	4	15	47	81	114	52	6	0	٥	0	0	37.6	12.7	1.3	0.0	0.0	35.7	51.5	59.6	458
11:00	173	1	3	15	43	72	97	30	3	0	D	0	0	29.7	7,6	0.7	0.0	0.0	32.1	48.1	58.4	437
12:00	181	1	3	13	50	78	97	35	5	0	0	0	D	29.6	8.6	1.1	0.0	0.0	32.3	48.4	58.5	463
13:00	211	1	4	15	43	92	99	35	6	0	0	0	0	27.7	8.1	1.2	0.0	0,0	31,5	47,6	58.3	506
14:00	208	1	5	23	45	79	100	32	6	2	D	0	D	27.9	8.0	1.6	0.4	0.0	31.5	46.6	58.3	501
15:00	217	1	4	17	49	88	113	51	10	2	1	0	D	32.0	11.6	2.4	0.5	0.2	32.4	48,9	59,2	553
16:00	267	2	4	20	57	121	149	72	13	3	0	0	0	33.5	12.4	2,3	0,4	0.0	33.0	50,2	59.4	708
17:00	286	0	5	18	65	126	182	91	18	1	0	0	0	36,9	13,9	2.4	0,1	0.0	33.7	50.9	59,8	792
18:00	308	0	1	21	49	101	205	117	19	1	1	1	D	41.7	16.9	2.7	0.4	0.2	33.5	51.7	60,7	824
19:00	228	1	4	В	36	78	127	59	11	1	0	0	0	35.8	12.8	2.2	0.2	0.0	32.D	50.0	59.8	553
20:00	178	0	2	12	31	65	88	34	8	1	0	0	2	31.6	10.7	2.6	0.7	0.5	31.5	48.0	59,0	421
21:00	168	0	2	11	29	66	59	23	5	1	0	0	D	24.2	8,0	1.6	0.3	0.0	30.2 30.6	45.2	57.9 57.9	364 282
22:00	126	1	1	9	23	48	55	15	3	1	0	0	0	26.2	6.7	1.4	0.4	0.0	30.5	45.9 48.4	58,8	184
23:00	84	0	1	3	15	28	34	16	2 2	_ 0	T 0	0	0	28.8 28.2	10.3 9.9	1.6 1.5	0,5 0.0	0.5 0.0	30.5	45.4	58.7	131
24:00	58	0	2	4	9	21	24	11	2	U	U	U	U	20,2	9.5	1.5	0.0	0.0	30.0	43.8	30.7	131
Ave. Delly Total	2010	44	64	234	691	1376	1966	951	190	23	6	2	2	34,5	12.9	2.4	0.4	0.1	32.4	49.8	59.8	9113
Avg. Daily Total 3 Percent 3		11 0.1%	51 0.6%	2.6%	7.6%	15.1%	21.6%	10.4%	2.1%	0.3%	0.1%	0,0%	0.0%	34,5	12.5	2.4	0.4	0.1	52.4	45.0	33.0	0113
Cum. Percent 3		39.7%	40.3%	42.9%	50.4%	65,5%	87.1%	97,6%	99,6%	99,9%	100.0%	100.0%	100.0%									
Average hour		39.7%	40.3%	42.9%	29	57	82	40	89.076	99,970 4	0 0.078	00,078	0									380
Average nour	100	U	_	10	25	57	02	40			U	U	U									200

TRAFFIC FLOW BY DIRECTION


North South	Avg	53.1 32.4	50th% Speed 56.0 49.8	85th%	62.6 59.6
Direction	Hour	Peak I Count	Hour Data 2-way	Hour	Count
North South	8 18	768 824	A.M. P.M.	8 18	1290 1548

- North

- - South

ENDING HOUR

STATION: 860040

County of Ulster Traffic Count Hourly Report

ROUTE #: US 9W ROAD NAME: FROM: MILTON TURNPIKE TO: AFTER CHAPEL HILL RD COUNTY: Ulster DIRECTION: Northbound FACTOR GROUP: 30 FUNC, CLASS: 14 REC, SERIAL#: CM37 TOWN: STATE DIR CODE: 6 WK OF YR: 30 PLACEMENT: 1025' N of Macket Rd S Ent NHS: no LION#: DATE OF COUNT: 07/25/2017 @ REF MARKER: JURIS: City BIN: NOTES LANE 1: NB travel lane ADDL DATA: Class Speed CC Stn: RR CROSSING: **COUNT TYPE: VEHICLES** BATCH ID: ULS-860040B HPMS SAMPLE: 2223756 COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: ULS INITIALS: DS 2 3 8 9 5 6 7 8 9 10 11 5 10 11 12 TO DAILY DAILY 5 2 6 9 2 3 6 7 8 9 10 11 12 1 3 4 5 7 8 10 11 12 DAILY HIGH HIGH AM PM DAY S DATE TOTAL COUNT **HOUR** S 2 3 M W 8 9 S 10 М 11 Т 12 W 13 Т 14 15 S S 16 17 M 18 Т 19 W 20 Т 21 22 23 24 25 S š M 478 526 480 540 504 533 403 117 26 W 43 32 57 161 468 785 759 596 494 522 569 514 541 616 640 702 530 372 328 291 164 126 785 27 Т 537 278 247 9373 794 68 44 38 36 62 146 471 754 794 569 486 503 574 549 597 565 649 717 400 176 113 28 54 76 38 51 62 158 447 29 30 S S 31 AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 60 155 466 771 772 570 502 502 561 522 547 598 646 705 533 392 291 249 170 119 9327 70 47 36 AVERAGE WEEKDAY Seasonal/Weekday **ESTIMATED** DAYS HOURS WEEKDAYS WEEKDAY Axle Adj. High Hour % of day Factor Adjustment Factor Counted Counted Hours Counted **AADT** 8% 1.000 1.093 4 73 4 73 772 8533

ROUTE #:US 9W STATION: 860040

ROAD NAME: STATE DIR CODE: 6 FROM: MILTON TURNPIKE PLACEMENT: 1025' N of Macket Rd S Ent TO: AFTER CHAPEL HILL RD

COUNTY: **DATE OF COUNT: 07/25/2017**

Uister

County of Ulster Traffic Count Hourly Report

DATE DAY	PAILY DAILY HIGH HIGH HOUR
DATE DAY AM PM DATE DAY AM PM DAILY F TOTAL CC DAILY F TOTAL CC DAILY F TOTAL CC TOT	IIGH HIGH
DATE DAY AM TOTAL CC 1 S 2 S 3 M 4 T 5 W 6 T 7 F 8 S 9 S 10 M 11 T 12 W	
4 T 5 W 6 T 7 F 8 S 9 S 10 M 11 T 12 W	
14 F 15 S 16 S 17 M 18 T 19 W 20 T 21 F 22 S 23 S 24 M 25 T 26 W 59 55 25 36 85 204 397 496 505 440 417 453 507 497 580 709 810 858 582 481 366 282 179 120 9143 27 T 54 38 40 39 65 203 387 511 454 495 431 478 522 530 560 739 830 837 585 409 358 309 211 122 9207 29 S 30 S 31 M	858 17 837 17
AVERAGE WEEKDAY HOURS (Axie Factored, Mon 6AM to Fri Noon) ADT 60 42 33 38 76 200 379 502 483 461 404 454 510 516 573 719 830 849 574 431 348 279 192 124 9077	
DAYS HOURS WEEKDAYS WEEKDAY AVERAGE WEEKDAY Axle Adj. Seasonal/Weekday ESTIMATED	
Counted Counted Hours High Hour % of day Factor Adjustment Factor 4 73 4 73 849 9% 1,000 1,093 AADT 8305 8305 8305 849	

ROUTE #:US 9W STATION: 860040 ROAD NAME; STATE DIR CODE: 7

FROM: MILTON TURNPIKE
PLACEMENT: 1025' N of Macket Rd S Ent

TO: AFTER CHAPEL HILL RD

COUNTY: DATE OF COUNT: 07/25/2017

Uister

County of Ulster Classification Count Average Weekday Data Report

COUNTY NAME
REGION CODE
FROM
TO
TO
TO
MARKER
END MILEPOINT
FUNC-CLASS.
STATION NO:
COUNT TAKEN BY
PROCESSED BY: 0040
ORG CODE: TST INITIALS: BEK
ORG CODE: ULS INITIALS: DS US 9W ROAD
UISTER

B
WILTON TURNPIKE
AFTER CHAPEL HILL RD 0790 ROAD NAME: NO OF LANES
HPMS NO.
LION# BATCH ID: ULS-860040B 2 2223756 NUMBER OF VEHICLES
NUMBER OF AXLES
% HEAVY VEHICLES (F4-F13)
% TRUCKS AND BUSES (F3-F13)
AXLE CORRECTION FACTOR DIRECTION YEAR 2017 MONTH July North 9315 19046 5.60% 18.39% 0.98 STATION: 9071 18577 5.85% 19.98% 0.98 860040 TOTAL

	0					
	TOTAL VEHICLES TOTAL AXLES GRAND TOTAL VEHICLES GRAND TOTAL AXLES	ENDING HOUR DIRECTION South	TOTAL VEHICLES TOTAL AXLES	ENDING HOUR DIRECTION North	NO OF AXLES	VEHICLE CLASS
	AXLES AXLES	2.00 2.00 3.00 3.00 5.00 6.00 6.00 8.00 8.00 8.00 8.00 8.00 8	AXLES	2400	AXLES	CLASS
	39 78 73 146	0-1-10-00-00-00-00-00-00-00-00-00-00-00-	684	1110NW1NW4NON11NN1N00000	N	I
	7220 14440 14788 29576	51 28 28 28 28 28 29 28 29 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	7568 15136	59 30 30 30 30 30 30 30 30 30 63 30 63 30 63 30 41 30 41 41 41 41 41 41 41 41 41 41 41 41 41	N	F2
	1281 2562 2472 4944	12223357421114877762877744577	1191 2382	1126 883 883 883 883 883 883 883 883 883 88	2	Ξ
	100 250 192 480	040004000000000000000000000000000000000	92 230	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5	F4
	264 528 522 1044	222466666666666722110	258 516	12265647729964487718820002	2	FI US
	204 8 66 22 204 8 66 22	0000-0-1-1-1-10000000000000000000000000	138	000000	ω	F6
7	19 76 21 84 VEL	000000000000000000000000000000000000000	ωN	000000000000000000000000000000000000000	4	F7
E4 Motorouslos	47 69 7 164 345 42 18 13 13 194 135 90 00 675 90 VEHICLE CLASSIFICATION CODES:	0	47 164	000000000000000000000000000000000000000	3.5	₩.
Ď	69 345 135 675 SSIFICATIO		66 330		Un	Fg
	7 42 15 90 N CODES	000000000000000000000000000000000000000	48 80	00000000000000	თ	F10
	0000		o e		51	F11
	0000		00	000000000000000000000000000000000000000	on,	F12
	5 .66 3	000000000000000000000000000000000000000	26	000000000000000000000000000000000000000	8.75	F13
	9071 18577 18386 37623	59 34 34 37 37 37 37 37 483 483 483 483 483 483 493 573 573 573 573 573 573 573 573 573 57	9315 19046	74 45 46 42 46 46 46 46 46 46 46 46 47 46 46 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48		TOTAL

TRAFFIC FLOW BY DIRECTION

South 18 849 P.M. 18	DIRECTION HOUR COUNT 2-WAY HOUR CONorth 9 771 A.M. 8	- NorthSouth	1 <u>7</u> 1 <u>9</u> 2 <u>1</u>	200 +	400 +	800	TRAFFIC FLOW BY DIRECTION
1653	COUNT 1272		23	1]
SOURCE: NYSDOT DATA SERVIC		02 14 PRINCIPAL ARTERIAL-OTHER 06 16 MINOR ARTERIAL 07 17 MAJOR COLLECTOR 08 17 MINOR COLLECTOR 09 19 LOCAL SYSTEM	RURAL URBAN SYSTEM 01 11 PRINCIPAL ARTERIAL-INTERSTATE 02 12 PRINCIPAL ARTERIAL-EXPRESSIVAY	FUNCTIONAL CLASS CODES:	* INCLUDING THOSE HAULING TRAILERS	F7. 4 or More Ayle Single Unit Trucks F8. 4 or Less Ayle Vehicles, One Unit is a Truck F9. 5 Ayle Double Unit Vehicles, One Unit is a Truck F10. 6 or More Double Unit Vehicles, One Unit is a Truck F11. 5 or Less Ayle Multi-Unit Trucks F12. 6 Ayle Multi-Unit Trucks F13. 7 or More Ayle Multi-Unit Trucks	

NUMBER OF VEHICLES

	7	q
	С	
	CIVIC	2
		٦
	-	3
	5	2
	-	-
	2	2
1	ż	,
	- 5	4
	Ε	
	?	>
	ŏ	ń
	0	٦
	>	۲
	٠,	J
	τ	3
	П	'n
	CIT	
		:
!		

RAL	
URBAN	
SYSTE	

17 MA IOR COLLECTOR	16 MINOR ARTERIAL	14 PRINCIPAL ARTERIAL-OTHER	12 PRINCIPAL ARTER	11 PRINCIPAL ARTER	
Se		RIAL-OTHER	ERIAL-EXPRESSWAY	RIAL-INTERSTATE	

¹⁷ MAJOR COLLECTOR 17 MINOR COLLECTOR 19 LOCAL SYSTEM

Page 1 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

To:

Direction:

860040

Road name:

MILTON TURNPIKE AFTER CHAPEL HILL RD

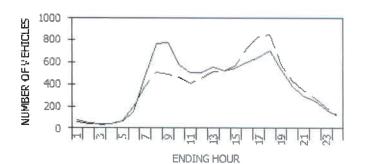
Start date: End date:

Tue 07/25/2017 06:00 Fri 07/28/2017 07:45 Ulster

County: Town:

Speed limit: 55 LION#:

Count duration: Functional class: Factor group: Batch ID: Count taken by: Processed by:


74 hours 14 30 ULS-860040B Org: TST Init: BEK Org: ULS Init: DS

Speeds, mph.

							Spe	eas, mp	n													
	0,0-	30,1-	35.1-	40.1-	45.1-	50.1-	55.1-	60,1-	65.1-	70,1-	75.1-	80.1-	85.1-	% Exc								
Hour	30,0	35.0	40.0	45.0	50.0	55.0	60,0	65.0	70,0	75.0	80.0	85.0	115.0	55.0	60.0	65.0	70.0	75,0	Avg	50th%	85th%	Total
	_	_		_																		
1:00	0	0	4	9	25	22	9	1	0	0	0	0	0	14,3	1.4	0.0	0.0	0.0	48.7	49.4	54,9	70
2:00 3:00	0	0	2	8 6	17	15	4	0	0	0	0	0	0	8.7	0.0	0.0	0.0	0.0	48.2	48.9	54.1	46
4:00	0	0	3	_	11	11	4	1	0	1	0	0	0	17.1	5.7	2.9	2.9	0.0	49.4	49.8	56.0	35
5:00 5:00	0	4	2	5 9	13	14	5	1	1	0	0	0	0	16.7	4.8	2.4	0.0	0,0	49.1	50.0	55.8	42
6:00		4	- 4	11	17 38	19 60	12 34	1 5	4	0	0	0	0	21.3	1.6	0.0	0.0	0.0	49.2	50.4	56.7	61
7:00	3	1	7	34	156	184	34 71	10	1	0	0	0	0	26.0	3.9	0.6	0.0	0.0	50.9	52.0	57.5	154
8:00	3	9	31	119	309	232	63	10	0	0	0	0	0	17.4	2.2	0.0	0.0	0.0	50.0	50.9	55.8	465
9:00	1	7	43	131	320	227	38	5	0	0	0	0	0	8,8 5.6	0.6 0.6	0.0 0.0	0.0 0.0	0.0	47.7	48.7	54.0	771
10:00	9	12	31	98	203	170	42	-4	1	0	0	n	0	8.2	0.9	0.0	0.0	0.0 0.0	47.4 46.4	48.2	53.4	772 570
11:00	Ö	5	22	103	183	148	35	5	'n	0	0	٥	0	8.0	1.0	0.2	0.0	0.0	47.6	48.4 48.3	53.9 53.9	501
12:00	ō	1	12	83	207	155	38	4	1	0	0	a	0	8.6	1.0	0.2	0.0	0.0	48,4	48.8	54.0	501
13:00	1	4	35	120	212	160	26	2	Ď	0	0	a	0	5,0	0,4	0.0	0.0	0.D	47.0	47.9	53,3	560
14:00	5	6	32	112	214	127	24	2	0	ō	0	ō	a	5.0	0.4	0.0	0.0	0.0	46.2	47.5	53,0	522
15:00	5	В	20	122	210	148	32	2	0	0	0	0	٥	6.2	0.4	0.0	0.0	0.0	48.6	47.9	53.4	547
16:00	0	1	21	128	259	158	29	3	0	0	0	0	ō	5.3	0.5	0,0	0.0	0,0	47.5	47.9	53.2	599
17:00	3	10	35	110	237	201	44	5	D	Ö	0	0	0	7.6	0.8	0.0	0.0	0,0	47.3	48.5	53,9	645
18:00	3	В	26	150	268	209	37	4	0	0	0	0	0	5,8	0.6	0,0	0.0	0.0	47.2	48.1	53,5	705
19:00	2	6	15	65	212	176	55	3	0	0	0	0	0	10.9	0.6	0.0	0.0	0.0	48.4	49.3	54,4	534
20:00	0	0	7	63	140	139	37	5	0	1	0	0	а	11,0	1,5	0.3	0.3	0.0	49.0	49,6	54.5	392
21:00	1	1	7	61	120	75	21	4	0	0	0	٥	0	8,6	1,4	0,0	0.0	0.0	47.6	48.2	53,8	290
22:00	1	6	12	59	95	57	19	2	0	0	0	0	0	8.4	0.8	0.0	0.0	0.0	46.6	47.6	53.6	251
23:00	D	1	8	34	58	48	16	4	1	0	0	D	0	12,4	2.9	0.6	0.0	0.0	48.1	48.7	54.6	170
24:00	0	1	9	16	39	37	11	5	1	0	0	0	0	14.3	5.0	0.8	0.0	0.0	48.4	49.3	54.9	119
Avg. Daily Total	36	89	389	1656	3563	2792	708	83	6	2	0	0	0	8.5	1.0	0.1	0.0	0.0	47.6	48,5	54.0	9322
Percent		1.0%	4.2%	17.8%	38.2%	30.0%	7.6%	0.9%	0.1%	0.0%	0.0%	0.0%	0.0%									
Cum. Percent		1.3%	5,5%	23.3%	61.5%	91.5%	99.0%	99.9%	100.0%	100.0%	100.0%	100:0%	100.0%									
Average hour	2	4	16	69	148	116	29	3	0	0	0	0	0									388

TRAFFIC FLOW BY DIRECTION

North South	Avg	J. Speed 47.6 52.2	50th% Speed 48.5 52.7	85th9	6 Speed 54.0 58.1
Direction North South	Hour 9 18	Peak I Count 772 848	Hour Data 2-way A.M. P.M.	Hour 8 18	Count 1273 1553

- North

--- South

Page 2 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

Direction:

To:

860040

Road name:

MILTON TURNPIKE AFTER CHAPEL HILL RD South

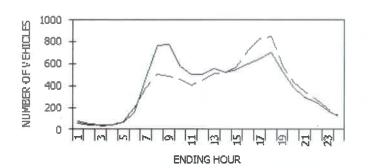
Start date: End date:

Tue 07/25/2017 06:00 Fri 07/28/2017 07:45

County: Town: Ulster

Speed limit: LION#: 55

Count duration: Functional class: Functional class: Factor group: Batch ID: Count taken by: Processed by:


30 ULS-860040B Org: TST Init: BEK Org: ULS Init: DS

74 hours

							Spe	eds, mp	h													
	0.0-	30,1-	35.1-	40.1-	45,1-	50,1-	55,1-	60,1-	65,1-	70,1-	75,1-	80,1-	85.1-	% Exc								
Hour		35.0	40.0	45.0	50.0	55.0	60,0	65,0	70.0	75.0	80.0	85.0	115.0	55,0	60.0	65,0	70.0	75,0	Avg	50th%	85th%	Total
1:00	0	D	0	2	12	18	19	6	1	0	0	0	0	44.8	12.1	1.7	0.0	0.0	53.5	54.2	59.6	58
2:00	0	0	0	2	8	17	12	3	0	0	0	0	0	35.7	7.1	0,0	0,0	0.0	52,8	53.3	58,7	42
3:00	0	0	0	0	3	10	15	3	1	Q	0	0	0	59.4	12,5	3.1	0,0	0.0	55.4	56,0	59,8	32
4:00	0	0	0	1	6	11	15	5	1	0	0	0	0	53,8	15.4	2.6	0.0	0.0	54.5	55,6	60,2	39
5:00	0	D	0	1	8	19	32	12	3	0	D	0	0	62.7	20.0	4.0	0.0	0.0	55.7	56.5	61.6	75
6:00	0	۵	1	3	11	51	81	44	6	3	0	0	0	67,0	26.5	4.5	1,5	0.0	56.4	57.1	62.7	200
7:00	0	D	0	2	33	142	155	43	4	1	D	0	0	53,4	12.6	1.3	0.3	0.0	55.0	55,5	59.8	380
8:00	0	0	1	В	92	202	155	40	4	0	0	0	0	39.6	8.8	8.0	0.0	0.0	53.4	53.8	59.0	502
9:00	1	0	1	16	116	191	130	24	4	0	0	0	0	32.7	5.8	8,0	0.0	0.0	52.3	52,9	58.3	483
10:00	0	2	4	20	126	192	97	18	1	0	D	0	D	25.2	4.1	0.2	0.0	0.0	51.5	52.1	57.5	480
11:00	0	0	2	19	111	177	75	18	1	0	D	0	0	23.3	4.7	0.2	0.0	0:0	51.6	52.0	57.3	403
12:00	0	0	2	19	130	190	98	14	1	0	D	0	0	24,9	3,3	0,2	0.0	0.0	51.6	52,0	57.3	454
13:00	0	1	7	30	126	233	95	15	3	0	0	0	0	22.2	3,5	0.8	0.0	0.0	51.3	52,0	57.0	510
14:00	2	3	15	38	169	194	83	11	2	0	0	0	0	18.6	2.5	0.4	0.0	0.0	49.8	50.9	56.2	517
15:00	0	0	3	18	140	273	118	18	2	0	٥	0	۵	24.1	3,5	0,3	0.0	0,0	51,9	52,3	57,3	572
16:00	1	0	4	37	210	318	128	20	2	0	0	0	0	20.8	3.1	0.3	0.0	0.0	51.1	51.7	58.7	720
17:00	0	0	1	35	202	408	160	21	3	0	0	0	0	22.2	2,9	0,4	0.0	0,0	51,8	52,2	56,9	830
18:00	0	1	1	24	227	399	177	18	1	0	0	0	٥	23,1	2.2	0.1	0.0	0.0	51.8	52.2	57.0	848
19:00	0	0	0	13	106	256	162	34	3	0	0	0	0	34.7	6.4	0.5	0.0	0.0	53.1	53.3	58.5	574
20:00	0	3	2	10	71	201	117	25	2	0	0	0	0	33,4	6.3	0.5	0.0	0,0	52.8	53.3	58.4	431
21:00	0	0	1	14	73	152	90	17	1	0	0	0	0	31.0	5.2	0.3	0.0	0.0	52.4	52.9	58.2	348
22:00	0	0	0	11	71	110	66	19	2	0	O	0	0	31.2	7.5	0.7	0.0	0.0	52.3	52.7	58.5	279
23:00	0	0	0	10	40	75	48	14	3	1	0	1	0	34.9	9.9	2.6	1.0	0.5	52.8	53.1	59.0	192
24:00	0	0	0	6	21	47	39	10	1	0	0	0	0	40.3	8.9	0,8	0.0	0,0	53.2	53.8	59.1	124
Avg. Daily Total	4	10	45	339	2112	3886	2167	452	52	5	0	1	0	29.5	5.6	0.6	0.1	0.0	52.2	52.7	58.1	9073
Percent	0.0%	0.1%	0.5%	3.7%	23,3%	42.8%	23,9%	5.0%	0.6%	0.1%	0.0%	0.0%	0.0%									
Cum. Percent	0.0%	0.2%	0.7%	4.4%	27.7%	70.5%	94.4%	99.4%	99,9%	100,0%	100.0%	100.0%	100,0%									
Average hour	0	0	2	14	88	162	90	19	2	0	0	0	0									378


TRAFFIC FLOW BY DIRECTION

North South	Avg	g. Speed 47.6 52.2	50th% Speed 48.5 52.7	85th%	6 Speed 54.0 58.1
Direction North	Hour 9	Peak F Count 772	Hour Data 2-way A.M.	Hour 8	Count 1273
South	18	848	P.M.	18	1553

--- North

- - South

STATION: **860036**

County of Ulster Traffic Count Hourly Report

ROUTE #: US 9W ROAD NAME: DIRECTION: Northbound FACTOR GROUP: 30 STATE DIR CODE: 1 WK OF YR: 30 DATE OF COUNT: 07/25/2017 NOTES LANE 1: NB travel lane NOTES LANE 2: NB passing lane COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK							i C	FROM: Orange/Ulster Co Line REC. SERIAL #: CE07 PLACEMENT: 625' N of Riverview Dr @ REF MARKER: ADDL DATA: Class Speed COUNT TYPE: VEHICLES PROCESSED BY: ORG CODE: ULS INITIALS:				TO: MILTON TURNPIKE FUNC, CLASS: 14 NHS: no JURIS: City CC Stn: BATCH ID: ULS-860036B					COUNTY: TOWN: LION#: BIN: RR CROSSING: HPMS SAMPLE:			Ulster 007300 002967								
<u>DATE</u>	DAY S	12 TO 1		2 TO 3	3 TO 4	4 TO 5	5 TO 6	TO 7	7 TO 8	8 TO 9	9 TO 10	10 TO 11	11 TO 12	12 TO 1	1 TO 2	Z TO 3	3 TO 4	4 TO 5	5 TO 6	6 TO 7	7 TO 8	8 TO 9	9 TO 10	10 TO 11		DAILY TOTAL	DAILY HIGH COUNT	DAILY HIGH HOUR
1 2 3 4 5 6 7 8	SSMTWTFS																											
9 10 11 12 13 14 15 16 17 18	SMTWTFSSMTW																											
20 21 22 23 24 25 26 27 28 29 30 31	T F S S M T W T F S S M	70 81 90	48 52 64	36 34 34	43 34 48	43 45 56	151 131 138	476 441 452	692 723 685	652 699 656	459 536 497	512 486 458	494 496 504	491 564 533	520 524 569	490 543 578	633 698 650	694 722 674	749 771 775	584 550 562	439 433 439	278 344 298	237 327 278	183 159 192	139 145 141	9509 9388	771 775	17 17
		80	55	35	42	48	140	AV 456	ERAGE 700	WEE 669	KDAY 497	HOURS 485	6 (Axle 498			on 6AI 537		ri Noon 697		565	437	307	281	178	142	ADT 9341		
		AYS unted		OURS			EKDA'	_	EKDA'	Υ =	Hig	AVER gh Hou		VEEKE %	OAY of day			xle Adj. <u>Factor</u>			nal/Wee ment F				ES	TIMATE	ED	
		4		72			4		72			765			8%		•	1.000			1.093					8546		

ROUTE #:US 9W STATION: 860036

ROAD NAME: STATE DIR CODE: 1 FROM: Orange/Ulster Co Line
PLACEMENT: 625' N of Riverview Dr

TO: MILTON TURNPIKE

COUNTY: DATE OF COUNT: 07/25/2017

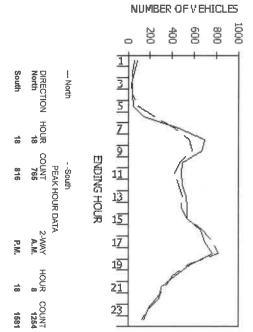
Ulster

County of Ulster Traffic Count Hourly Report

ROUTE #: US 9W ROAD NAME: FROM: Orange/Ulster Co Line TO: MILTON TURNPIKE COUNTY: Ulster DIRECTION: Southbound FACTOR GROUP: 30 REC. SERIAL #: CP20 FUNC, CLASS: 14 TOWN: STATE DIR CODE: 7 WK OF YR: 30 PLACEMENT: 625' N of Riverview Dr NHS: no LION#: DATE OF COUNT: 07/25/2017 @ REF MARKER: JURIS: City BIN: 1007300 NOTES LANE 1: SB travel lane ADDL DATA: Class Speed CC Stn: RR CROSSING: COUNT TYPE: VEHICLES BATCH ID: ULS-860036B HPMS SAMPLE: 1002967 COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: ULS INITIALS: DS 2 3 5 8 9 11 12 5 10 6 8 9 10 11 TO DAILY DAILY 5 2 3 6 8 9 10 11 12 1 3 4 5 6 7 9 8 10 11 12 DAILY HIGH HIGH DAY S DATE AM PM TOTAL COUNT HOUR 2 3 4 5 S M W 6 Т F 8 S 9 S 10 M 11 Т W 12 13 Т 14 F S 15 16 S 17 M 18 Т 19 W 20 Т 21 F 22 S S 23 24 25 26 27 МT 442 490 460 537 675 734 821 532 387 230 315 155 138 w 53 46 30 107 237 469 544 573 447 433 463 492 502 517 666 788 810 551 462 350 261 159 9106 810 17 112 52 33 426 480 40 40 80 248 574 566 443 492 519 499 554 685 780 822 534 370 354 286 192 9188 822 17 119 28 F 28 37 38 82 234 379 548 603 29 S 30 S 31 М AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 36 36 58 37 240 425 555 581 467 425 466 500 487 536 675 767 818 539 406 340 259 123 9035 AVERAGE WEEKDAY DAYS **HOURS** WEEKDAYS WEEKDAY Axle Adi. Seasonal/Weekday **ESTIMATED** Counted Hours Counted Counted High Hour % of day **Factor** Adjustment Factor **AADT** 4 72 4 72 818 9% 1.000 1.093 8266

ROUTE #:US 9W STATION: 860036

ROAD NAME: STATE DIR CODE: 7 FROM: Orange/Ulster Co Line PLACEMENT: 625' N of Riverview Dr TO: MILTON TURNPIKE


COUNTY: DATE OF COUNT: 07/25/2017

Uister

County of Ulster Classification Count Average Weekday Data Report

				DATCH ID III C BERNSER		ORG CODE ULS INITIALS DS	PROCESSED BY
	0.96	0.97	AXLE CORRECTION FACTOR		INITIALS REK	ORG CODE TST	COUNT TAKEN BY
20	22.12%	18.74%	TRUCKS AND BUSES (F3-F13)	1002967	HPMS NO	14	FUNC-CLASS
en en	7.52%	5.60%	THEAVY VEHICLES (F4-F13)		NO OF LANES	0532	END MILEPOINT
u	18736	19282	NUMBER OF AXLES				REF. MARKER
18345	9021	9324	NUMBER OF VEHICLES		m	WILTON TURNPI	d
10	South	North	DIRECTION		(5	Orange/Ulster Co	M.Cdu
8600	STATION	:	MONTH July		ROAU NAME	Uster RO	REGION CODE

	TOTAL VEHICLES TOTAL AXLES GRAND TOTAL VEHICLES GRAND TOTAL AXLES	ENDING HOUR DIRECTION South	TOTAL VEHICLES	ENDING HOUR DIRECTION North	NO OF AXLES	VEHICLE CLASS
	AXLES AXLES	200 200 300 400 500 600 600 600 600 600 600 600 600 6	AXLES	2 100 2 100 3 3 00 3 3 00 5 5 00 5 6 00 6 00 6 00 6 00 6 00 6	AXLES	CLASS
	38 76 81 162	0	848	000000000000000000000000000000000000000	2	7
	6988 13976 14522 29044	50 28 28 28 28 28 28 430 301 430 302 302 302 302 302 302 302 302 302 3	7534 15068	66 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	2	F2
	1317 2634 2542 5084	12 3 3 5 5 5 6 8 8 7 3 7 8 7 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4	1225 2450	9 1 2 3 5 5 5 5 5 5 5 5 6 7 7 7 8 7 7 7 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8	2	F3
	115 288 187 468		72 180	- C O C C C C C C C C C C C C C C C C C	25	F4
	289 578 502 1004	- 20 20 20 20 20 20 20 20 20 20 20 20 20	213 4 26	222575575555555555555	2	TI UI
	43 129 109 327	000000000000000000000000000000000000000	66 198	0-1000-1000-00-00-00-00-00-00-00-00-00-0	ω	îs oi
F1.	11 44 56 VEH		12 &	000000000000000000000000000000000000000	4	F7
Motorcycle	63 220 99 346 CLE CLAS	000000000000000000000000000000000000000	36 126		35	Fæ
th .	152 760 249 1245 SIFICATIO	の13284877おけれないののいめちゅう328	97 485	N - W W O O N / O W O / / / M O O O O W N	(h	F9
	11 63 152 5 44 220 760 30 14 99 249 25 56 346 1245 150 VEHICLE CLASSIFICATION CODES:	000000000000000000000000000000000000000	20 120	000004444444	o	F10
	0000	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	თ	F11
	0000	000000000000000000000000000000000000000	0 0	000000000000000000000000000000000000000	6	F12
	0 15 131	000000000000000000000000000000000000000	1 5	0000-00	8 75	F13
	9021 18736 18345 38018	57 36 36 37 90 425 581 462 463 463 463 463 463 463 463 463 463 463	9324 19282	80 34 42 47 47 47 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48		TOTAL

8898889

11 PRINCIPAL ARTERIAL-INTERSTATE
12 PRINCIPAL ARTERIAL-EXPRESSWAY
14 PRINCIPAL ARTERIAL-OTHER
16 MINOR ARTERIAL
17 MAJOR COLLECTOR
17 MINOR COLLECTOR
17 MINOR COLLECTOR
19 LOCAL SYSTEM

RUR	FUN	* NO	F12	F10.		E .					F2	Ξ.
P	CTIO	GO 3	6 Axd	200	5 Ax	2 4	3 Ax	2 Ax	Buses	2 A	Autos*	MOIC
RURAL URBAN	FUNCTIONAL CLASS CODES:	* INCLUDING THOSE HAULING TRAILERS	F12. 6 Axle Multi-Unit Trucks F13. 7 or More Axle Multi-Unit Trucks	More Double Unit Ve Less Axle Multi-Unit 1	e Double Unit Vehicle	4 or Nore Axie Single Unit Trucks 4 or Less Axie Vehicles, One Unit is a Truck	3 Axle Single Unit Trucks	2 Axle, 6-Tire Single Unit Trucks	Ċ	2 Axle, 4-Tire Pickups, Vans, Motorhomes*	2	Motorcycles
SYSTEM	**	IG TRAILERS	Trucks	F10. 6 or More Double Unit Vehicles, One Unit is a Truck F11. 5 or Less Axle Multi-Unit Trucks	5 Axle Double Unit Vehicles, One Unit is a Truck	t Trucks One Unit is a Truck		Trucks		ns, Motorhomes*		

TRAFFIC FLOW BY DIRECTION

SOURCE: NYSDOT DATA SERVICES BUREAU

Page 1 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

860036

Road name:

Orange/Ulster Co Line MILTON TURNPIKE

Direction: North

Lanes: 1, 2

To:

Start date: End date: County:

Town:

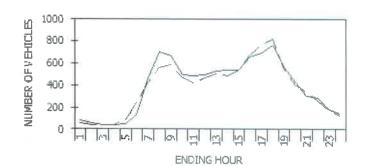
Tue 07/25/2017 09:00 Fri 07/28/2017 09:45

Ulster

Speed limit: 55 LION#:

Count duration: Functional class: Factor group: Batch ID: Count taken by: Processed by:

14 30 ULS-860036B Org: TST Init: BEK Org: ULS Init: DS


73 hours

Speeds mph

Speeds, mph																			+			
Hour	0,0- 30,0	30.1- 35.0	35.1- 40.0	40.1- 45.0	45.1- 50.0	50.1- 55.0	55.1- 60.0	60.1- 65.0	65.1- 70.0	70.1- 75.0	75.1- 80.0	80,1- 85,0	85,1- 115,0	% Exc 55.0	% Exc 60.0	% Exc 65.0	% Exc 70.0	% Exc 75.0	Avg	50th%	85th%	Total
1:00	1	1	3	21	25	16	5	5	3	1	0	0	0	17.3	11.1	4.9	1.2	0.0	47.3	48.0	56.9	81
2:00	1	1	4	15	17	10	5	1	1	1	0	0	0	14,3	5.4	3.6	1,8	0.0	45.9	47.1	54.8	58
3:00	1	2	1	6	10	9	4	2	0	٥	0	0	0	17.1	5.7	0,0	0.0	0.0	45.9	48.8	56.0	35
4:00	1	2	5	7	13	7	6	1	0	0	0	D	0	16,7	2.4	0.0	0.0	0.0	44.8	47.4	55.6	42
5:00	1	1	4	13	12	10	4	1	0	1	0	D	0	12.8	4.3	2.1	2.1	0.0	45.4	46.9	54.5	47
6:00	1	1	4	15	46	39	21	9	2	1	0	D	٥	23.7	8.6	2.2	0.7	0.0	49.6	50.4	57.9	139
7:00	O,	2	10	43	111	144	65	53	21	6	1	1	0	32.2	17.9	6.3	1.8	0.4	51.8	52.2	61.3	457
8:00	1	3	18	80	211	185	99	64	30	6	3	1	0	29.0	14.8	5.7	1.4	0.6	50.8	51.1	60.0	701
9:00	1	4	16	84	212	169	91	63	23	3	1	1	0	27.2	13.6	4,2	0.7	0.3	50.4	50.6	59.5	668
10:00	1	6	28	86	172	118	50	25	8	3	1	0	0	17.5	7.4	2.4	0.8	0.2	48.3	48.8	56.3	498
11:00	1	4	21	101	178	102	44	24	8	2	1	0	0	16.3	7.2	2.3	0.6	0.2	48.1	48.3	55.7	486
12:00	1	5	26	111	172	93	50	28	7	3	1	٥	٥	17.9	7.8	2.2	0.8	0.2	47.9	48.1	56,5	497
13:00	5	5	24	111	188	105	51	26	8	4	1	0	0	17.0	7.4	2,5	0,9	0.2	47.6	48.2	56,1	528
14:00	3	5	27	114	187	110	56	20	11	5	1	0	0	17.3	6.9	3.2	1.1	0.2	47.8	48.3	56.1	539
15:00	3	5	25	113	181	117	51	28	12	3	1	0	0	17.6	8,2	3,0	0.7	0,2	48.0	48.5	56.4	539
16:00	1	7	29	109	226	158	72	36	16	4	1	0	1	19.7	8.8	3,3	0,9	0.3	48.8	49.1	57.2	660
17:00	5	14	48	122	212	172	73	31	15	3	1	0	0	17.7	7.2	2.7	0,6	0,1	47.6	48,8	56.3	696
18:00	4	8	37	112	235	207	88	46	21	5	2	1	0	21.3	9.8	3.8	1.0	0.4	49.0	49,8	57.8	766
19:00	1	2	17	B1	179	158	63	42	15	5	1	1	0	22.5	11.3	3.9	1.2	0.4	49.9	50.1	58.4	565
20:00	1	2	16	65	152	114	47	27	8	3	1	0	0	19.7	8.9	2.8	0,9	0.2	49.2	49.5	57.2	438
21:00	2	3	14	70	109	63	30	9	5	0	0	0	1	14.7	4,9	2.0	0.3	0.3	47.4	48.0	55.0	306
22:00	1	3	14	64	97	63	22	13	4	1	0	0	0	14.2	6.4	1.8	0.4	0.0	47.6	48.1	54.9	282
23:00	0	1	8	37	68	38	16	6	3	1	0	0	0	14.6	5.6	2.2	0.6	0.0	48.1	48.2	55.0	178
24:00	1	2	9	33	47	26	15	4	4	1	0	0	0	16.9	6.3	3.5	0.7	0.0	47.2	47.8	56.0	142
Avg. Daily Total	38	89	408	1613	3060	2233	1028	564	225	62	17	5	2	20.4	9.4	3.3	0.9	0.3	48.7	49.2	57.5	9344
Percent	0.4%	1.0%	4.4%	17.3%	32.7%	23.9%	11.0%	6.0%	2.4%	0.7%	0.2%	D.1%	0.0%									
Cum. Percent	0.4%	1.4%	5.7%	23.0%	55.7%	79.6%	90.6%	96.7%	99.1%	99,7%	99.9%	100.0%	100.0%									
Average hour	2	4	17	67	128	93	43	24	9	3	1	0	0									389

TRAFFIC FLOW BY DIRECTION

North South	Avç	9. Speed 48.7 50.4	50th% Speed 49.2 51.5	85th9	Speed & 57.5 57.6
		Peak I	Hour Data		
Direction	Hour	Count	2-way	Hour	Count
North	18	766	A.M.	8	1256
South	18	818	P.M.	18	1584

- - South

- North

55

Page 2 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

860036

Road name:

Orange/Ulster Co Line MILTÓN TURNPIKE South

10

20

20

39

21

10

5

8

6

10

2

1

0

39

58

78

123

93

53

37

Ava Speed

146

155

218

240

259

144

95

181

173

227

227

298

199

156

88

99

106

97

122

106

92

50th% Speed

19

19

18

14

21

23

19

3

2

2

2

To: Direction: Start date: End date: Tue 07/25/2017 09:00 Fri 07/28/2017 09:45

County:

Ulster

Town: Speed limit: LION#:

Count duration: Functional class: Factor group: Batch ID: Count taken by:

Processed by:

30 ULS-860036B Org: TST Init: BEK Org: ULS Init: DS

73 hours

14

14:00

15:00

16:00

17:00

18:00

19:00

20:00

0

2

0

15

0

0

0

Speeds, mph

							-															
Hour	0,0 - 30,0	30.1- 35,0	35.1- 40.0	40.1- 45.0	45.1- 50.0	50.1- 55.0	55.1- 60.0	60.1- 65.0	65.1- 70.0	70.1- 75.0	75.1- 80.0	80.1- 85.0	85.1- 115,0	% Exc 55,0	% Exc 60.0	% Exc 65.0	% Exc 70,0	% Exc 75,0	Avg	50th%	85th%	Total
1:00	0	0	1	7	15	19	11	4	1	0	0	0	o	27.6	8,6	1.7	0.0	0.0	50.9	51.6	58.4	58
2;00	0	0	1	3	11	11	7	2	0	0	0	0	0	25,7	5.7	0.0	0.0	0.0	50.6	51.2	57.7	35
3:00	0	0	0	4	8	8	8	6	1	0	0	0	0	42.9	20.0	2.9	0,0	0,0	52,6	53,5	61,5	35
4:00	0	0	0	4	7	10	8	6	1	0	0	0	0	41,7	19,4	2.8	0.0	0.0	52.8	53.6	61.4	36
5:00	0	0	1	2	19	30	26	9	2	0	0	0	0	41.6	12.4	2.2	0.0	0.0	53.3	53.8	59.6	89
6:00	0	0	1	8	34	89	76	26	5	1.	0	0	0	45.0	13.3	2.5	0.4	0.0	53.9	54.4	59.8	240
7:00	0	1	3	10	63	153	138	48	7	1	0	0	a	45.8	13.2	1.9	0.2	0.0	53.9	54.5	59.8	424
8:00	0	0	10	30	101	227	146	37	4	0	0	0	0	33.7	7.4	0.7	0.0	0.0	52.3	53.1	58.6	555
9:00	1	1	6	55	163	202	117	34	3	0	0	0	0	26.5	6,4	0.5	0.0	0.0	50.9	51.7	57.9	582
10:00	1	1	9	50	120	168	99	19	2	1	0	0	0	25.7	4.7	0,6	0.2	0.0	50.6	51.7	57.6	470
11:00	1	1	14	46	123	151	72	15	3	0	0	0	0	21.1	4.2	0.7	0.0	0.0	49.9	51.0	56.9	428
12:00	2	4	10	53	140	154	82	18	2	0	0	0	0	21.9	4.3	0.4	0.0	0.0	49.7	50.8	57.0	465
13:00	0	0	12	60	140	171	98	18	1	0	0	0	0	23,4	3,8	0.2	0.0	0.0	50,3	51,2	57.2	500

0

0

0

0

1

0

0

0

٥

0

0

0

0

0

0

D

0

0

0

0

0

0

0

22.4

22,5

18,8

14,6

17.7

24,5

27.8

4.3

4.1

3,1

2,0

2.8

4.8

5.2

0.4

0.6

0.4

0.1

0.2

0.6

0.5

0.0

0.0

0,1

0.0

0.1

0.2

0.0

0.0

0.0

0,0

0.0

0.1

0.0

0.0

50.6

49.4

49,6

47.0

49.8

50.7

51.3

51.3

50.6

50,4

49.1

50,6

51.6

52.2

57.1

57.1

56,3

55.0

56,0

57.5

57.9

486

537

676

766

818

539

406

376

21:00	٥	1	2	20	88	133	74	21	1	0	0	0	0	28.2	6.5	0,3	0,0	0.0	51,7	52.3	58,1	340
22:00	٥	0	6	24	76	91	48	13	1	0	0	D	0	23.9	5.4	0.4	0.0	0.0	50.6	51.3	57.5	259
23:00	0	1	2	10	49	57	37	11	1	0	0	D	0	29.2	7.1	0.6	0.0	0.0	51.4	52.0	58.3	168
24:00	0	0	2	15	26	37	28	12	2	1	0	D	0	35.0	12.2	2.4	0.8	0.0	51.7	52.6	59.4	123
Avg. Daily Total	22	38	205	882	2440	3172	1785	432	50	6	_ 1	0	0	25,2	5.4	0.6	0.1	0.0	50.4	51.5	57.6	9033
Percent	0.2%	0.4%	2.3%	9.8%	27.0%	35.1%	19.8%	4.8%	0.6%	0.1%	0.0%	0.0%	0.0%									
Cum, Percent	0.2%	0.7%	2.9%	12.7%	39.7%	74.8%	94.6%	99.4%	99.9%	100.0%	100,0%	100.0%	100.0%									

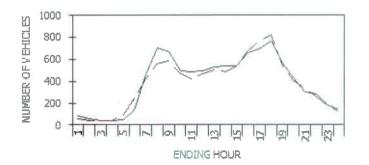
0

0

0

0

0


D

Average hour 2 37 102 132 74 18 TRAFFIC FLOW BY DIRECTION

2

85th% Speed

	7747	, opecu	JULI / U OPECU	OOUIT	o opecu
North	_	48.7	49.2		57.5
South		50.4	51.5		57.6
		Peak !	Hour Data		
Direction	Hour	Count	2-way	Hour	Count
North	18	766	A.M.	8	1256
South	18	818	P.M.	18	1584
		0.0			

--- North

- - South

STATE DIR CODE: 6

STATION: 860036

DATE OF COUNT: 07/25/2017

County of Ulster Traffic Count Hourly Report

ROUTE #: US 9W ROAD NAME: FROM: Orange/Ulster Co Line COUNTY: TO: MILTON TURNPIKE Ulster DIRECTION: Northbound FACTOR GROUP: 30 REC. SERIAL #: DE23 FUNC, CLASS: 14 TOWN: STATE DIR CODE: 6 WK OF YR: 30 PLACEMENT: 35' S of Hudson Bank NHS: no LION#: DATE OF COUNT: 07/25/2017 @ REF MARKER: JURIS: City BIN: 1007300 NOTES LANE 1: NB travel lane ADDL DATA: Class Speed CC Stn: RR CROSSING: **COUNT TYPE: VEHICLES** BATCH ID: ULS-processed HPMS SAMPLE: 1002967 COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: ULS INITIALS: DS 12 10 12 6 10 11 TO DAILY DAILY 5 2 2 3 4 6 7 8 9 10 11 12 1 3 4 5 6 7 8 9 10 11 12 DAILY HIGH HIGH AM PM DAY S DATE TOTAL COUNT HOUR 1 2 3 S M Т 5 W 6 7 8 S S 9 10 M 11 Т W 12 Т 13 F 14 SSM 15 16 17 18 Т 19 W Т 20 21 22 23 24 25 26 F S Š M Т 491 518 528 520 616 705 714 608 291 178 141 525 531 W 544 495 494 580 713 737 565 437 348 307 167 9646 746 7 69 50 32 42 48 158 489 746 670 554 566 696 139 27 Т 78 45 34 36 49 144 465 757 705 505 466 526 529 597 603 660 684 768 575 442 312 295 192 134 9601 768 17 28 F 63 32 46 59 143 468 726 682 29 S 30 S 31 M AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 80 53 33 52 148 474 743 686 513 495 513 546 561 563 657 701 740 583 441 317 282 179 138 9539 AVERAGE WEEKDAY DAYS **HOURS** WEEKDAYS WEEKDAY Seasonal/Weekday **ESTIMATED** Axle Adj. Adjustment Factor High Hour Counted Counted Counted **Hours** % of day Factor **AADT** 72 72 743 8% 1,000 1,093 8727 ROAD NAME: ROUTE #:US 9W FROM: Orange/Uister Co Line TO: MILTON TURNPIKE COUNTY: Ulster

PLACEMENT: 35' S of Hudson Bank

County of Ulster Traffic Count Hourly Report

ROUTE #: us 9W ROAD NAME: FROM: Orange/Ulster Co Line TO: MILTON TURNPIKE COUNTY: Ulster DIRECTION: Southbound FACTOR GROUP: 30 REC. SERIAL #: DE23 FUNC, CLASS: 14 TOWN: STATE DIR CODE: 7 WK OF YR: 30 PLACEMENT: 35' S of Hudson Bank NHS: no LION#: DATE OF COUNT: 07/25/2017 @ REF MARKER: JURIS: City BIN: 1007300 NOTES LANE 1: SB travel lane ADDL DATA: Class Speed CC Stn: RR CROSSING: **COUNT TYPE: VEHICLES** BATCH ID: ULS-processed HPMS SAMPLE: 1002967 COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: ULS INITIALS: DS 5 8 10 12 6 7 5 9 10 11 TO DAILY DAILY 2 3 5 6 7 9 2 8 10 11 12 3 5 8 9 10 11 12 DAILY HIGH HIGH DATE DAY S AM PM COUNT HOUR TOTAL 1234567 S М Т W F 8 S 9 S 10 М 11 Т 12 13 14 15 W Т F S 16 17 S M 18 Т 19 20 21 22 23 24 25 26 27 28 29 30 W Т F S s M Т 494 501 565 684 795 862 566 415 329 141 W 245 455 556 578 485 449 491 547 513 566 668 834 870 569 483 363 273 173 105 9505 870 17 Т 55 34 39 256 420 569 41 81 559 506 444 514 552 541 837 572 731 880 569 399 385 298 207 9613 880 17 124 F 26 37 41 83 237 374 539 604 S 31 M AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 61 36 36 89 246 416 555 580 495 439 499 538 518 568 694 822 871 568 432 359 271 181 123 9438 AVERAGE WEEKDAY DAYS **HOURS** WEEKDAYS WEEKDAY Axle Adi. Seasonal/Weekday **ESTIMATED** Counted Counted Counted Hours High Hour % of day **Factor** Adjustment Factor **AADT** 4 72 72 871 9% 1,000 1.093 8635

ROUTE #:US 9W **STATION: 860036** ROAD NAME: STATE DIR CODE: 7 FROM: Orange/Uister Co Line PLACEMENT: 35' S of Hudson Bank

TO: MILTON TURNPIKE

COUNTY: DATE OF COUNT: 07/25/2017

Uister

County of Ulster Classification Count Average Weekday Data Report

				BATCH ID IN S ASSESSED		000000000000000000000000000000000000000	DECOURAGED BY
0.01	0.01	6.6	000000000000000000000000000000000000000		INITIALS BEK	ORG CODE TST INITIALS BEK	COUNT TAKEN BY
0.97	0 97	0 97	AXI E CORRECTION FACTOR			0036	STATION NO
19.83%	20.20%	19.47%	% TRUCKS AND BUSES (F3-F13)	1002967	HPMS NO	4	FUNC-CLASS.
6.83%	6.82%	6.85%	% HEAVY VEHICLES (F4-F13)	2	NO OF LANES	0532	END MILEPOINT
39120	19412	19708	NUMBER OF AXLES				RET-MARKER
18932	9413	9519	NUMBER OF VEHICLES		â	MILTON TURNPIKE	07
TOTAL	South	North	DIRECTION		Cine	. ⊃range/Ulster Co	FROM
		:				(Jb)	REGION CODE
000000			MONTH July			Ulster	COUNTY NAME
200020	STATION		YEAR 2017		ROAD NAME	74.6 SD	ROUTE #

	TOTAL VEHICLES TOTAL AXLES GRAND TOTAL VEHICLES GRAND TOTAL AXLES	ENDING HOUR DIRECTION South	TOTAL VEHICLES	ENDING HOUR DIRECTION North	NO OF AXLES	VEHICLE CLASS
	XLES NXLES	2:00 3:00 4:00 5:00 6:00 6:00 7:00 7:00 7:00 7:00 7:00 7	AXLES	2 100 2 100 3 300 3 300 3 300 3 300 5 500 6 500 6 500 6 600 6 6000 6 600 6 6000 6 600	AXLES	CLASS
	108 108 204	0	48	000000000000000000000000000000000000000	Ν.	I
	7458 14916 15076 30152	52 29 29 20 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	7618 15236	67 44 43 31 31 31 31 31 31 31 31 31 31 31 31 31	2	F2
	1259 2518 2460 4920	1227 233 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1201 2402	8 4 4 5 5 6 8 8 9 9 8 8 8 9 7 7 7 7 7 7 7 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 9 8 8 8 9	2	F3
	110 275 215 538	<u></u>	105 262	0-1-1-WN0-0-0-0-0-0-1-1-0-0-1-0-0-1-0-1-0-1-0-1	25	F4
	310 620 603 1206	124693111111111111111111111111111111111111	293 586	244767666282271183222522002	2	F5
	37 111 86 258	000001240400400000000000000000000000000	49 147	00001-0404444000000	ω	F6
ŋ	13 52 15 60 VEH	000000040404000000000000000000000000000	ωN	000000000000000000000000000000000000000	4	F7
E1 Motorcycles	9 49 109 10 1172 545 60 1172 521 26 114 221 26 0 399 1105 156 VEHICLE CLASSIFICATION CODES:	000000000000000000000000000000000000000	65 228		3 5	F
п	109 545 221 1105 SIFICATIO	αοαωνωαυπτό [†] ονοποπουνα4αν∟∟ω	112 560	1222233659699017978432121	ψı	Fg
	10 60 26 156 N CODES:	000000	16 96	00000001110100000	6	F10
	0000	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	CH	F11
	0000	000000000000000000000000000000000000000	00	000000000000000000000000000000000000000	on	F12
	122 122	00000-00000000-000000	88 10	000000	8.75	F13
	9413 19412 18932 39120	60 36 36 40 40 89 89 436 436 436 436 436 436 436 436 436 436	9519 19708	80 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54		TOTAL

TRAFFIC FLOW BY DIRECTION

				N.	UMBI	ER O	FVE	HICL	ES
				0	200	8	600	800	1000
				11/	+	+	+	+	-
South	DIREC North	- North		3					
	NOIL	5			1				
_	DIRECTION HOUR North 8			<u>5</u> (and in	-	.7.1	
ᄚ	Ϲ Ω		m	9				7	
868	COUNT 740	South	ENDING HOUR	11		4			
		South PEAK HOUR DATA	E E	13)			
		R DAT,	Ä	1 <u>3</u>			1		
P.M.	2-WAY A.M.	B		17			1	1	
-				19		,	a de la companya della companya della companya de la companya della companya dell		
=	HOUR 8			21		¢ a			
1606	COUNT 1293			23	/				
**	- '								

Motorcycles Autos* 2 Axle, 4-Tire Buses 2 Axle, 6-Tire	n Ti	F4	F3.	F2.	FI.
	2 Axle, 6-Tire	Buses	2 Axle, 4-Tire	Autos*	Motorcycles

- Motorcycles
 Autos*
 2 Axie, 4-Tire Pickups, Vans, Motorhomes*

- F.5. 2 Axis, 6-Tire Single Unit Trucks
 F.5. 2 Axis Single Unit Trucks
 F.7. 4 or More Axie Single Unit Trucks
 F.7. 4 or Less Axie Vehicles, One Unit is a Truck
 F.9. 5 Axie Double Unit Vehicles, One Unit is a Truck
 F.10. 6 or More Double Unit Vehicles, One Unit is a Truck
 F.11. 5 or Less Axie Multi-Unit Trucks
 F.12. 6 Axie Multi-Unit Trucks
 F.13. 7 or More Axie Multi-Unit Trucks

FUNCTIONAL CLASS CODES: * INCLUDING THOSE HAULING TRAILERS

9898882 RURAL 11 PRINCIPAL ARTERIAL-INTERSTATE
12 PRINCIPAL ARTERIAL-EXPRESSWAY
14 PRINCIPAL ARTERIAL-OTHER
16 MINOR ARTERIAL
17 MAJOR COLLECTOR
17 MINOR COLLECTOR
17 MINOR COLLECTOR
19 LOCAL SYSTEM URBAN SYSTEM

County of Ulster Speed Count Average Weekday Report

Page 1 of 2 Date: 08/09/2017

Station: Route #: US 9W From:

860036

Road name: Orange/Ulster Co Line MILTON TURNPIKE Start date: End date: County: Town:

Tue 07/25/2017 09:00 Fri 07/28/2017 09:45

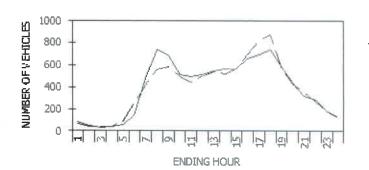
Ulster

Speed limit: 40 LION#:

Count duration: Functional class: Factor group: Batch ID:

73 hours 14 30 ULS-processed Org: TST Init: BEK Org: ULS Init: DS

To: Direction: North


Count taken by: Processed by:

Speeds, mph	S	peed	S, I	mp	h
-------------	---	------	------	----	---

							She	cus, mp	"1													
Hour	0.0- 20.0	20.1- 25.0	25.1- 30,0	30.1- 35.0	35,1- 40,0	40.1- 45.0	45,1- 50,0	50.1- 55.0	55.1- 60.0	60.1- 65.0	65.1- 70.0	70.1- 75.0	75,1- 95,0	% Exc 45.0	% Exc 50,0	% Exc 55,0	% Exc 60.0	% Exc 65.0	Avg	50th%	85th%	Total
1:00	1	0	0	3	21	36	14	3	0	1	1	0	0	23.8	6.3	2.5	2.5	1.3	40.9	42.1	47.6	80
2:00	0	0	0	3	18	20	7	3	0	0	D	0	0	19.6	5.9	0.0	0.0	0,0	40.9	41,2	46.7	51
3:00	0	0	0	2	7	12	10	1	0	0	0	0	0	34.4	3.1	0.0	0.0	0.0	42.1	43.0	48.2	32
4:00	٥	0	0	2	12	14	10	2	1	0	0	0	٥	31.7	7.3	2.4	0.0	0.0	42.0	42.4	48.5	41
5:00	1	0	1	3	10	18	14	5	0	0	0	0	0	36.5	9.6	0.0	0.0	0.0	40.5	43.1	49.0	52
6:00	0	1	0	3	26	56	47	12	2	1	0	0	0	41.9	10.1	2.0	0.7	0.0	43.3	44.0	49.3	148
7:00	0	0	0	14	98	196	139	24	2	0	0	0	0	34.9	5.5	0.4	0.0	0.0	42.7	43.2	48.4	473
8:00	2	1	2	28	184	340	160	24	2	0	0	0	0	25.0	3.5	0.3	0,0	0.0	41.5	42.3	47.4	743
9:00	4	4	7	42	171	311	130	15	1	0	0	0	D	21.3	2.3	0.1	0.0	0.0	40.4	41.9	46,7	685
10:00	1	1	7	36	144	228	83	13	1	0	0	0	D	18.9	2.7	0.2	0.0	0.0	40.5	41.5	46.2	514
11:00	2	2	10	28	143	209	89	11	0	0	0	0	D	20.2	2.2	0,0	0,0	0.0	40.2	41.5	48.5	494
12:00	3	3	6	48	150	224	66	11	2	0	0	0	0	15.4	2,5	0.4	0.0	0.0	39.6	41.1	45.2	513
13:00 14:00	1	2	9	39	166	243	74	11	1	0	0	0	0	15.8	2,2	0.2	0,0	0.0	40.1	41.2	45.3	545
15:00	2	3	7	42	170	247	81	9	2	0	0	0	0	16.4	2.0	0.4	0.0	0.0	40.2	41.2	45.5	561
16:00	2	3	6	40 56	166 189	229 291	100	14	0	U	0	0	0	20.5	2.7	0.2	0.0	0.0	40.2	41,4	46,6	562
17:00	3	1	9	34	185	311	98 138	13	0	0	0	0	0	16.9	2.0	0.0	0.0	0.0	40.1	41,3	45,7	658
18:00	3	3	10	53	194	322	137	19 16	4	0	0	0	0	22.4 20.8	2.7	0.0	0.0	0.0	40.8	41.9	46,9	700
19:00	2	2	9	28	119	253	146	22	1	0	0	0	0	20,8	2.3 4.0	0.1	0.0	0.0	40.4	41.7	46.8	739
20:00	1	3	3	8	78	210	121	16	1	0	0	0	0	31.3	3.9	0.2 0.2	0.0 0.0	0.0 0.0	41.4 42.2	42.6 43.1	47.8 48.0	582
21:00	i .	0	1	15	89	148	55	7	'n	a	0	0	0	19.6	2,2	0,0	0.0	0.0	40.9	41.8	46.4	441 316
22:00	1	1	2	12	66	141	51	5	1	a	0	0	0	20.4	2.1	0.4	0.0	0.0	41.0	42.1	46.5	280
23:00	1	1	0	6	43	85	34	8	1	0	ō	0	o	24.0	5.0	0.6	0.0	0.0	41.3	42.3	47.4	179
24:00	à	Ö	1	2	37	60	31	6	ò	ā	0	0	0	27.0	4.4	0.0	0.0	0.0	42.0	42.4	47.7	137
		-	-	_		-		_	_	_			•	21.0	-17	0.0	0.0	0.0	72.0	72.7	71.1	107
Avg. Daily Total	32	32	97	547	2486	4204	1835	270	20	2	1	0	0	22.3	3.1	0,2	0.0	0.0	40.8	41.9	47.0	9526
Percent	0.3%	0.3%	1.0%	5.7%	26.1%	44.1%	19.3%	2.8%	0.2%	0.0%	0.0%	0.0%	0.0%						,,,,	*****	*****	0020
Cum. Percent	0.3%	0.7%	1.7%	7.4%	33,5%	77.7%	96.9%	99,8%	100.0%	100.0%	100.0%	100.0%	100.0%									
Average hour	1	1	4	23	104	175	76	11	1	0	0	0	0									397

TRAFFIC FLOW BY DIRECTION

North South	Avg	J. Speed 40.8 36.3	50th% Speed 41.9 37.9	85th%	6 Speed 47.0 43.4
Direction North South	Hour 8 18	Peak H Count 743 871	Hour Data 2-way A.M. P.M.	Hour 8 18	Count 1297 1610

--- North

- - South

County of Ulster Speed Count Average Weekday Report

Page 2 of 2 Date: 08/09/2017

Station: Route #: US 9W

From:

To:

860036

Road name: Orange/Ulster Co Line MILTON TURNPIKE

Start date: End date:

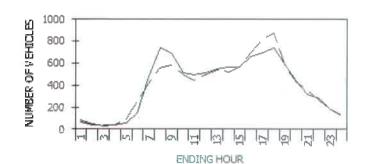
Tue 07/25/2017 09:00 Fri 07/28/2017 09:45

Ulster

County:
Town:
Speed limit:
LION#: 40

Count duration: Functional class: Factor group:
Batch ID:
Count taken by:
Processed by:

73 hours 14 30 ULS-processed Org: TST Init: BEK Org: ULS Init: DS


Direction: South

Speeds	i, mph
--------	--------

							Spe	eds, mp	oh .													
Hour	0,0- 20,0	20,1- 25,0	25.1- 30.0	30,1- 35,0	35.1- 40.0	40.1- 45.0	45.1- 50.0	50.1- 55.0	55.1- 60.0	60,1- 65,0	65.1- 70.0	70.1- 75,0	75.1- 95.0	% Exc 45.0	% Exc 50.0	% Exc 55,0	% Exc 60.0	% Exc 65,0	Avg	50th%	85th%	Total
1:00	1	0	2	9	28	15	4	1	1	0	0	0	0	9.8	3.3	1,6	0,0	0.0	37.1	38.4	44.0	61
2:00	۵	0	1	10	13	6	4	2	0	0	0	0	0	16.7	5.6	0.0	0.0	0.0	37,7	37.7	45.8	38
3:00	0	0	1	6	12	11	5	1	0	0	0	a	0	16.7	2.8	0.0	0.0	0.0	39.0	39.6	45.8	38
4:00	0	0	1	5	12	14	5	2	1	0	0	٥	0	20.0	7,5	2,5	0.0	0.0	40,0	40.8	47.0	40
5:00	1	0	1	10	32	29	11	4	1	0	0	0	0	18.0	5.6	1.1	0.0	0.0	39.0	40.1	46.3	89
6:00	0	0	3	27	74	103	33	6	1	0	0	a	0	16.2	2.8	0.4	0.0	0.0	40.1	41.0	45.5	247
7:00	3	0	2	32	153	166	54	5	1	0	0	a	0	14.4	1.4	0.2	0.0	0.0	39.6	40.6	45.0	416
8:00	8	7	21	82	228	163	39	6	0	0	0	0	0	8.1	1.1	0.0	0.0	0.0	36.8	38.5	43.9	554
9:00	9	9	35	126	242	127	28	4	0	0	0	a	0	5.5	0.7	0,0	0.0	0.0	35.5	37.3	42.9	580
10:00	5	6	22	103	212	117	26	2	1	0	0	0	0	5,9	0.6	0.2	0.0	0.0	36.3	37.7	43.1	494
11:00	6	1	21	91	180	110	28	2	0	0	0	0	0	6.8	0.5	0,0	0.0	0.0	36.4	37.8	43.4	439
12:00	9	12	31	94	194	131	26	2	0	0	0	0	0	5.6	0.4	0.0	0.0	0.0	35.5	37.7	43.3	499
13:00	10	В	22	132	228	112	23	2	0	0	0	0	٥	4.7	0.4	0,0	0,0	0.0	35,3	37.2	42.6	537
14:00	10	9	26	92	214	132	32	3	0	0	0	0	0	6.8	0.6	0.0	0.0	0.0	35.8	37.9	43.4	518
15:00	8	10	21	132	223	141	29	2	1	0	D	0	0	5.6	0,5	0,2	0,0	0.0	35,9	37.6	43.2	567
16:00	10	11	63	185	263	134	25	2	0	0	0	0	٥	3.9	0.3	0,0	۵,۵	0.0	34,7	36.5	42.2	693
17:00	3	4	41	208	384	158	21	3	0	0	0	0	0	2.9	0.4	0.0	0.0	0.0	36.1	37.1	41.9	822
18:00	21	24	46	188	401	162	26	2	0	1	0	0	0	3.3	0.3	0.1	0,1	0.0	34,6	37.0	41.9	871
19:00	11	4	20	87	240	166	34	4	1	1	0	0	0	7.0	1.1	0.4	0.2	0.0	36.6	38.4	43.7	568
20:00	4	4	16	61	175	135	34	4	0	0	0	0	0	8.8	0.9	0.0	0,0	0.0	37.4	38,8	44.1	433
21:00	2	2	5	71	144	106	23	5	0	0	0	0	0	7.8	1.4	0.0	0.0	0.0	37.6	38.5	43.8	358
22:00	1	0	9	48	119	74	16	3	1	0	0	0	0	7.4	1.5	0.4	0.0	0.0	37.6	38.3	43.7	271
23:00	1	1	6	24	82	49	17	2	0	0	0	0	0	10.4	1.1	0.0	0.0	0.0	37.8	38.6	44.2	182
24:00	0	0	2	22	46	35	13	4	1	0	0	0	0	14.6	4.1	0.8	0.0	0.0	38.8	39.1	45.0	123
Ave. Doily Total	123	112	418	1845	3899	2396	556	70	10						0.0	0.4	0.0	0.5	20.0	27.0	45.4	0404
Avg. Daily Total		112						73	10	2	0	0	0	6.8	0.9	0.1	0.0	0.0	36.3	37.9	43.4	9434
Percent		1.2%	4.4%	19.6%	41.3%	25,4%	5.9%	0.8%	0.1%	0.0%	0.0%	0.0%	0.0%									
Cum. Percent		2.5%	6.9%	26.5%	67.8%	93.2%	99,1%	99,9%	100.0%	100.0%	100.0%	100.0%	100.0%									
Average hour	5	5	17	77	162	100	23	3	0	0	0	0	0									393

TRAFFIC FLOW BY DIRECTION

North South	Avg	J. Speed 40.8 36.3	50th% Speed 41.9 37.9	85th9	% Speed 47.0 43.4
Direction North South	Hour 8 18	Peak F Count 743 871	Hour Data 2-way A.M. P.M.	Hour 8 18	Count 1297 1610

--- North

- - South

2. HCM Intersection Analysis Route 9W & Milton Turnpike

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ĭ	f)		ř	∱ β	
Traffic Volume (vph)	45	26	29	59	27	14	46	621	51	29	754	31
Future Volume (vph)	45	26	29	59	27	14	46	621	51	29	754	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	12	11	11	11
Total Lost time (s)		5.0			5.0		6.0	7.0		6.0	7.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	0.95	
Frt		0.96			0.98		1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1653			1677		1616	1681		1616	3212	
Flt Permitted		0.82			0.77		0.29	1.00		0.20	1.00	
Satd. Flow (perm)		1381			1334		494	1681		333	3212	
Peak-hour factor, PHF	0.83	0.83	0.83	0.77	0.77	0.77	0.82	0.82	0.82	0.89	0.89	0.89
Adj. Flow (vph)	54	31	35	77	35	18	56	757	62	33	847	35
RTOR Reduction (vph)	0	17	0	0	7	0	0	2	0	0	2	0
Lane Group Flow (vph)	0	103	0	0	123	0	56	817	0	33	880	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		3			7		2	5		6	1	
Permitted Phases	3			7			5	5		1	1	
Actuated Green, G (s)		9.9			9.9		46.0	41.9		41.8	39.8	
Effective Green, g (s)		9.9			9.9		46.0	41.9		41.8	39.8	
Actuated g/C Ratio		0.14			0.14		0.64	0.58		0.58	0.55	
Clearance Time (s)		5.0			5.0		6.0	7.0		6.0	7.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		190			183		380	980		229	1780	
v/s Ratio Prot							c0.01	c0.49		0.00	0.27	
v/s Ratio Perm		0.07			c0.09		0.09			0.08		
v/c Ratio		0.54			0.67		0.15	0.83		0.14	0.49	
Uniform Delay, d1		28.8			29.4		6.9	12.1		16.9	9.8	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		3.1			9.4		0.2	8.3		0.3	1.0	
Delay (s)		32.0			38.8		7.1	20.4		17.2	10.8	
Level of Service		C			D		Α	C		В	B	
Approach LOS		32.0			38.8			19.6			11.0	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			17.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.78									
Actuated Cycle Length (s)			71.8		um of los	٠,			18.0			
Intersection Capacity Utilization	on		56.1%	IC	CU Level	of Service	9		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	+	•	•	†	<i>></i>	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		J.	ĵ.		¥	∱ }	
Traffic Volume (vph)	48	27	30	60	28	15	47	661	52	32	819	34
Future Volume (vph)	48	27	30	60	28	15	47	661	52	32	819	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	12	11	11	11
Total Lost time (s)		5.0			5.0		6.0	7.0		6.0	7.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	0.95	
Frt		0.96			0.98		1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1654			1676		1616	1682		1616	3212	
Flt Permitted		0.81			0.77		0.26	1.00		0.16	1.00	
Satd. Flow (perm)		1377			1325		446	1682		267	3212	
Peak-hour factor, PHF	0.83	0.83	0.83	0.77	0.77	0.77	0.82	0.82	0.82	0.89	0.89	0.89
Adj. Flow (vph)	58	33	36	78	36	19	57	806	63	36	920	38
RTOR Reduction (vph)	0	20	0	0	9	0	0	3	0	0	3	0
Lane Group Flow (vph)	0	107	0	0	124	0	57	866	0	36	955	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		3			7		2	5		6	1	
Permitted Phases	3			7			5	5		1	1	
Actuated Green, G (s)		9.8			9.8		42.3	39.7		42.3	39.7	
Effective Green, g (s)		9.8			9.8		42.3	39.7		42.3	39.7	
Actuated g/C Ratio		0.14			0.14		0.60	0.57		0.60	0.57	
Clearance Time (s)		5.0			5.0		6.0	7.0		6.0	7.0	
Vehicle Extension (s)		3.0			3.0		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)		192			185		312	952		211	1819	
v/s Ratio Prot							c0.01	c0.52		0.01	0.30	
v/s Ratio Perm		0.08			c0.09		0.10			0.10		
v/c Ratio		0.56			0.67		0.18	0.91		0.17	0.52	
Uniform Delay, d1		28.1			28.6		8.6	13.6		18.4	9.4	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		3.5			9.2		0.1	14.2		0.1	1.1	
Delay (s)		31.6			37.9		8.7	27.8		18.5	10.5	
Level of Service		C			D		Α	С		В	В	
Approach Delay (s)		31.6			37.9			26.6			10.8	
Approach LOS		С			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			20.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.83									
Actuated Cycle Length (s)			70.1		um of lost	٠,			18.0			
Intersection Capacity Utilization	on		57.1%	IC	CU Level	of Service	9		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	4	†	<i>></i>	>	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	₽		ሻ	∱ ∱	
Traffic Volume (vph)	60	29	33	67	31	19	52	829	58	42	1091	64
Future Volume (vph)	60	29	33	67	31	19	52	829	58	42	1091	64
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	12	11	11	11
Total Lost time (s)		5.0			5.0		6.0	7.0		6.0	7.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	0.95	
Frt		0.96			0.98		1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1654			1672		1616	1684		1616	3204	
Flt Permitted		0.78			0.75		0.15	1.00		0.10	1.00	
Satd. Flow (perm)		1326			1282		247	1684		170	3204	
Peak-hour factor, PHF	0.83	0.83	0.83	0.77	0.77	0.77	0.82	0.82	0.82	0.89	0.89	0.89
Adj. Flow (vph)	72	35	40	87	40	25	63	1011	71	47	1226	72
RTOR Reduction (vph)	0	19	0	0	9	0	0	3	0	0	4	0
Lane Group Flow (vph)	0	128	0	0	143	0	63	1079	0	47	1294	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		3		_	7		2	5		6	1	
Permitted Phases	3	11.0		7	11.0		5	5		1	1	
Actuated Green, G (s)		11.0			11.0		43.0	39.9		43.0	39.9	
Effective Green, g (s)		11.0			11.0		43.0	39.9		43.0	39.9	
Actuated g/C Ratio		0.15			0.15		0.60	0.55		0.60	0.55	
Clearance Time (s)		5.0			5.0		6.0	7.0		6.0	7.0	
Vehicle Extension (s)		3.0			3.0		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)		202			195		206	933		163	1775	
v/s Ratio Prot		0.10			oO 11		c0.01	c0.64		0.01	0.40	
v/s Ratio Perm v/c Ratio		0.10 0.64			c0.11		0.17 0.31	1.16		0.16 0.29	0.73	
Uniform Delay, d1		28.6			29.1		14.6	16.1		30.1	12.0	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		6.4			13.2		0.3	82.7		0.4	2.7	
Delay (s)		35.0			42.3		14.9	98.8		30.4	14.7	
Level of Service		55.0 D			42.3 D		14.7 B	70.0 F		30.4 C	В	
Approach Delay (s)		35.0			42.3			94.2		J	15.2	
Approach LOS		D			D			F			В	
Intersection Summary												
HCM 2000 Control Delay			50.1	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		1.02									
Actuated Cycle Length (s)			72.0		um of lost				18.0			
Intersection Capacity Utilizat	tion		65.8%	IC	CU Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

3. HCS Arterial LOS Calculations for Proposed Lane Reconfiguration

Without Proposed Lane Reconfiguration With Proposed Lane Reconfiguration

Without Proposed Lane Reconfiguration

Segment 1: Hudson Bluff to Chestnut

Segment 2: Chestnut Road to St. James Road

Segment 3: New Road to Perkinsville Road

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and Duscale
Lane width 12.0 ft % Trucks crawling 0.0
Seament length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 740 veh/h Opposing direction volume, Vo 812 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.5 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.899 0.917 Grade adj. factor,(note-1) fg 0.98 0.99 840 pc/h Directional flow rate, (note-2) vi 894 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.8 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 40.1 mi/h Percent Free Flow Speed, PFFS 73.2

Percent Time-Spent-Follow	ving		
Direction Analysis(d) PCE for trucks, ET 1.0 PCE for RVs, ER 1.0 Heavy-vehicle adjustment factor, fHV 1.000	0	pposing 1.0 1.0 1.000	(0)
Grade adjustment factor, (note-1) fg 0.99		1.00	
	oc/h	812	pc/h
Base percent time-spent-following, (note-4) BPTSFd			_
Adjustment for no-passing zones, fnp	25.7		
Percent time-spent-following, PTSFd	79.5 %	;	
Level of Service and Other Perform	nance Meas	ures	
Level of service, LOS	D		
Volume to capacity ratio, v/c	0.47		
Peak 15-min vehicle-miles of travel, VMT15		veh-mi	
Peak-hour vehicle-miles of travel, VMT60		veh-mi	
Peak 15-min total travel time, TT15		veh-h	
Capacity from ATS, CdATS		veh/h	
Capacity from PTSF, CdPTSF		veh/h	
Directional Capacity	1591	veh/h	
Passing Lane Analysis	S		
Total length of analysis segment, Lt		0.9	mi
Length of two-lane highway upstream of the passing	ı lane. Lu		mi
Length of passing lane including tapers, Lpl	j ranc, ra	0.4	mi
Average travel speed, ATSd (from above)		40.1	mi/h
Percent time-spent-following, PTSFd (from above)		79.5	/
Level of service, LOSd (from above)		D	
Average Travel Speed with Pass	sing Lane_		
Downstream length of two-lane highway within effect	ctive		
length of passing lane for average travel spee		1.70	mi
Length of two-lane highway downstream of effective			
length of the passing lane for average travel Adj. factor for the effect of passing lane		l -1.70	mi
on average speed, fpl		1.11	
Average travel speed including passing lane, ATSpl		42.0	
Percent free flow speed including passing lane, PF		76.5	%
	_		·
Percent Time-Spent-Following with			
Downstream length of two-lane highway within effect		,th	
of passing lane for percent time-spent-followi	_	5.37	mi
Length of two-lane highway downstream of effective		of	
the passing lane for percent time-spent-follow	ving, Ld	-5.37	mi
Adj. factor for the effect of passing lane			
on percent time-spent-following, fpl		0.62	
Percent time-spent-following			
including passing lane, PTSFpl		66.1	%
Level of Service and Other Performance Measu	res with	Passing 1	Lane
Level of service including passing lane, LOSpl	D		
Peak 15-min total travel time, TT15		veh-h	
320.02 32.03, 1113	•		

______ Bicycle Level of Service _____

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	740.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.34
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and Duscale
Lane width 12.0 ft % Trucks crawling 0.0
Seament length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 740 veh/h Opposing direction volume, Vo 812 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.5 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.899 0.917 Grade adj. factor,(note-1) fg 0.98 0.99 840 pc/h Directional flow rate, (note-2) vi 894 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.8 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 40.1 mi/h Percent Free Flow Speed, PFFS 73.2

PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV I.00 Grade adjustment factor, (note-1) fg Directional flow rate, (note-2) vi Base percent time-spent-following, (note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd Level of Service and Other Performance Measures Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF 100 1.00 1.0	Percent T:	ime-Spent-Follow:	ing		
PCE for trucks, ET 1.0 1.0 PCE for NrWs, RR 1.0 1.0 Reavy-vehicle adjustment factor, fHV 1.000 1.000 Grade adjustment factor (note-1) fg 0.99 1.00 Directional flow rate, (note-2) vi 747 pc/h 812 pc/h Bady-vehicle adjustment factor, fntore-1) fg 0.99 1.00 Directional flow rate, (note-2) vi 747 pc/h 812 pc/h Badjustment for no-passing zones, fnp 25.7 Percent time-spent-following, PTSPd 79.5 % Level of Service and Other Performance Measures Level of service, LOS Volume to capacity ratio, v/c 0.47 Peak 15-min vehicle-miles of travel, VMT15 166 veh-mi Peak-hour vehicle-miles of travel, VMT60 666 veh-mi Peak 15-min total travel time, TT15 4.1 veh-h Capacity from ATS, CdATS 1591 veh/h Capacity from PTSF, CdPTSF 1700 veh/h Directional Capacity Passing Lane Analysis Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 79.5 Eevel of service, LOSd (from above) 79.5 Level of service, LOSd (from above) 79.5 Level of service hose for average travel speed, Lde 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane, ATSpl 42.0 Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Ld -5.37 mi Length of two-lane highway ownstream of effective length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Length of two-lane highway ownstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Length of two-lane highway downstream of effective length of	Direction	Analysis(d)	0	pposing	(0)
PCE FOR NYS, ER Heavy-vehicle adjustment factor, fHV 1.000 1.000 Grade adjustment factor, (note-1) fg 0.99 1.00 Directional flow rate, (note-2) vi 747 pc/h 812 pc/h Base percent time-spent-following, (note-4) BPTSFd 67.2 % Adjustment for no-passing zones, fnp 25.7 Percent time-spent-following, PTSFd 79.5 % Level of Service and Other Performance Measures Level of service, LOS Volume to capacity ratio, v/c 0.47 Peak 15-min vehicle-miles of travel, VMT15 166 veh-mi Peak-hour vehicle-miles of travel, VMT60 666 veh-mi Peak-hour vehicle-miles of travel, VMT60 666 veh-mi Peak-hour Tender of the vehicle o		_			
Heavy-vehicle adjustment factor, (HV 1.000 1.000 Grade adjustment factor, (note-1) fg 0.99 1.000 Directional flow rate, (note-2) vi 747 pc/h 812 pc/h Base percent time-spent-following, (note-4) BPTSFd 67.2 % Adjustment for no-passing zones, fnp 25.7 Percent time-spent-following, PTSPd 79.5 % Percent Time-Spent-Pollowing with Passing Lane Powerspent Percent Passing Lane Percent Time-Spent-Pollowing, Ld 5.37 mi Length of two-lane highway downstream ferfective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream ferfective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream ferfective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream ferfective length of passing lane for percent time-spent-following, Ld 5.37 mi Leng	PCE for RVs, ER	1.0		1.0	
Drade adjustment factor, (note-1) fg 0.99 1.00 pirectional flow rate, (note-2) vi 747 pc/h 812 pc/h Base percent time-spent-following, (note-4) BPTSFd 67.2 % Adjustment for no-passing zones, fnp 25.7 Percent time-spent-following, PTSFd 79.5 % Percent time-spent-following apasing lane, PTSFd 79.5 % Percent time-spent-following apasing lane, PTSFD 79.5 % Percent time-spent-following spassing lane, PTSFD 79.5 % Percent time-spent-following passing lane, PTSFD 79.5 % Percent time-spent-following, Ida 79.3 % Percent time-spent-fo				1.000	
Directional flow rate, (note-2) vi 747 pc/h 812 pc/h Base percent time-spent-following, (note-4) BPTSFG 67.2 \$ Adjustment for no-passing zones, fnp 25.7 Percent time-spent-following, FTSFG 79.5 \$ Level of Service and Other Performance Measures Level of service, LOS Volume to capacity ratio, v/c 0.47 Peak 15-min vehicle-miles of travel, VMT15 166 veh-mi Peak 15-min vehicle-miles of travel, VMT60 666 veh-mi Peak 15-min total travel time, TT15 4.1 veh-h Capacity from ATS, CdATS 1591 veh/h Capacity from PTSF, CdFTSF 1700 veh/h Directional Capacity Passing Lane Analysis Total length of analysis segment, Lt 0.9 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSG (from above) 40.1 mi/h Percent time-spent-following, FTSFG (from above) 79.5 Level of service, LOSG (from above) D Downstream length of two-lane highway within effective Length of passing lane for average travel speed, Lde 1.70 mi Length of passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane On average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 76.5 % Percent time-spent-following, passing lane, AFSpl 76.5 % Percent free flow speed including passing lane, AFSpl 76.5 % Percent time-spent-following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of two-lane highway lane on p				1.00	
Base percent time-spent-following, (note-4) BPTSFd 67.2 % Adjustment for no-passing zones, fnp 25.7 Percent time-spent-following, PTSFd 79.5 % Level of Service and Other Performance Measures			c/h		pc/h
Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd Percent time-spent-following, PTSFd Level of Service and Other Performance Measures Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT60 Peak 15-min vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Peak-hour PTSF, CGATS Peak 15-min total travel time, TT15 Percent time-spent-following, PTSPd (from above) Percent time-spent-following, PTSPd (from above) Percent time-spent-following, PTSPd (from above) Percent time-spent-following thin effective Pength of passing lane for average travel speed, Lde 1.70 Percent time-spent plane for average travel speed, Lde 1.70 Percent for the effect of passing lane Percent free flow speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, ATSpl 76.5 Percent free flow speed including passing lane, ATSpl 76.5 Percent free flow speed including passing lane, PFFSpl 76.5 Percent free flow speed including passing lane, PFFSpl 76.5 Percent free flow speed including passing lane, ATSpl 42.0 Percent time-spent-following, Lde 5.37 Percent free flow speed including passing lane, PFFSpl 76.5 Percent time-spent-following, Lde 5.37 Percent time-spent-following, Lde		_			_
Level of Service and Other Performance Measures Level of Service, LOS Volume to capacity ratio, v/c Deak 15-min vehicle-miles of travel, VMT15 Level of Service and Other Performance Measures Deak 15-min vehicle-miles of travel, VMT15 Level of Service of Service of Service, VMT15 Level of Service of Service of Service, VMT15 Deak 15-min total travel time, TT15 Level of Service of Service of Service of Service, VMT15 Level of Service of Service of Service of Service of Service Level of Service of Servic					
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak 15-min vehicle-miles of travel, VMT15 Peak 15-min total travel time, TT15 A:1 veh-h Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, TSFd (from above) Downstream length of two-lane highway within effective length of two-lane highway downstream of effective length of two-lane highway downstream of effective length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj, factor for the effect of passing lane, ATSpl Average travel speed including passing lane, ATSpl Average travel speed speed, ATSpl Averag	Percent time-spent-following, PTSF	d	79.5 %		
Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 166 veh-mi Peak 15-min vehicle-miles of travel, VMT60 666 veh-mi Peak 15-min total travel time, TT15 4.1 veh-h Capacity from ATS, CdATS 1591 veh/h Capacity from ATS, CdATS 1591 veh/h Directional Capacity TABS 1591 veh/h Directional Capacity TABS 1591 veh/h Directional Capacity TABS 1591 veh/h Passing Lane Analysis Total length of analysis segment, Lt 0.9 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D Downstream length of two-lane highway within effective length of passing lane for average travel speed, Ld 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, ATSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of Service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Level of Service an	nd Other Performa	ance Meas	ures	
Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 166 veh-mi Peak 15-min vehicle-miles of travel, VMT60 666 veh-mi Peak 15-min total travel time, TT15 4.1 veh-h Capacity from ATS, CdATS 1591 veh/h Capacity from ATS, CdATS 1591 veh/h Directional Capacity TABS 1591 veh/h Directional Capacity TABS 1591 veh/h Directional Capacity TABS 1591 veh/h Passing Lane Analysis Total length of analysis segment, Lt 0.9 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D Downstream length of two-lane highway within effective length of passing lane for average travel speed, Ld 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, ATSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of Service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Level of service, LOS		D		
Peak 15-min vehicle-miles of travel, VMT60 666 veh-mi Peak-hour vehicle-miles of travel, VMT60 666 veh-mi Peak 15-min total travel time, TT15 4.1 veh-h Capacity from ATS, CdATS 1591 veh/h Capacity from PTSF, CdPTSF 1700 veh/h Directional Capacity 1591 veh/h Directional Capacity 1591 veh/h Passing Lane Analysis Total length of analysis segment, Lt 0.9 mi Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSG (from above) 40.1 mi/h Percent time-spent-following, PTSFG (from above) 79.5 Level of service, LOSG (from above) D Downstream length of two-lane highway within effective length of passing lane for average travel speed, Ld 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane, ATSpl 42.0 Percent free flow speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.37 m			0.47		
Peak 15-min total travel time, TT15		l. VMT15		veh-mi	
Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity Passing Lane Analysis Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Average Travel Speed with Passing Lane Downstream length of two-lane highway within effective length of passing lane for average travel speed, Ld Length of passing lane for average travel speed, Ld Length of the passing lane for average travel speed, Ld Apply for the effect of passing lane Downstream length of two-lane highway within effective length of two-lane highway downstream of effective length of troman highway downstream of effective length of the passing lane for average travel speed, Ld Apply factor for the effect of passing lane Downstream length of two-lane highway within effective length of two-lane highway within effective length of two-lane highway within effective length of passing lane for percent gravel speed including passing lane, ATSpl Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFFSpl Total length of two-lane highway within effective length of two-lane highway downstream of effective length of two-lane highway downstr					
Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity Passing Lane Analysis Passing Lane Analysis Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Average travel speed, ATSd (from above) Average Travel Speed with Passing Lane Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of two-lane highway downstream of effective length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Lde 5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following fpl Downstream length of two-lane highway downstream of effective length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Lde 5.37 mi Level of Service and Other Performance Measures with Passing Lane Level of Service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h					
Passing Lane Analysis Passing Lane Analysis Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde 1.70 mi Length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Lde 5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following, fpl 0.62 Percent time-spent-following, fpl 0.62 Percent time-spent-following passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		-			
Directional Capacity Passing Lane Analysis Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D Average Travel Speed with Passing Lane Downstream length of two-lane highway within effective length of passing lane for average travel speed, Ld 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent free flow speed including passing lane, PFFSpl 76.5 % Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h				•	
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D Average Travel Speed with Passing Lane	Directional Capacity				
Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D	Passiı	ng Lane Analysis			
Length of two-lane highway upstream of the passing lane, Lu 0.5 mi Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 40.1 mi/h Percent time-spent-following, PTSFd (from above) 79.5 Level of service, LOSd (from above) D	Total length of analysis segment, I	Lt		0.9	mi
Length of passing lane including tapers, Lpl 0.4 mi Average travel speed, ATSd (from above) 79.5 Level of service, LOSd (from above) D Average Travel Speed with Passing Lane Average Travel Speed with Passing Lane Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h			lane. Lu		
Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Average Travel Speed with Passing Lane Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde 1.70 mi Length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, PFFSpl 76.5 % Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Lde 5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, Inde 5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, Fpl 0.62 Percent time-spent-following fpl 0.62		_	10110, 10		
Percent time-spent-following, PTSFd (from above) Average Travel Speed with Passing Lane		_			
Average Travel Speed with Passing Lane					/ 11
Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h					
length of passing lane for average travel speed, Lde 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Average Travel S	Speed with Pass:	ing Lane_		
length of passing lane for average travel speed, Lde 1.70 mi Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Daniel January lands of the land binks				
Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFFSpl Percent Time-Spent-Following with Passing Lane Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde the passing lane for percent time-spent-following, Ld Adj. factor for the effect of passing lane on percent time-spent-following, fpl on percent time-spent-following including passing lane, PTSFpl Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		=		1 70	m i
length of the passing lane for average travel speed, Ld -1.70 mi Adj. factor for the effect of passing lane on average speed, fpl 1.11 Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Percent Time-Spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		_	a, Lae	1.70	m1
Adj. factor for the effect of passing lane on average speed, fpl Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h				1 70	
on average speed, fpl Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFFSpl Percent Time-Spent-Following with Passing Lane Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl on percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h			speea, La	-1.70	mı
Average travel speed including passing lane, ATSpl 42.0 Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		ing lane			
Percent free flow speed including passing lane, PFFSpl 76.5 % Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h					
Percent Time-Spent-Following with Passing Lane Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h					•
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Percent free flow speed including p	passing lane, PFI	FSpl	76.5	*
of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Percent Time-Spent	-Following with I	Passing L	ane	
of passing lane for percent time-spent-following, Lde 5.37 mi Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	Downstream length of two-lane high	way within effect	tive leng	th	
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		_			mi
the passing lane for percent time-spent-following, Ld -5.37 mi Adj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h					
Adj. factor for the effect of passing lane on percent time-spent-following, fpl Percent time-spent-following including passing lane, PTSFpl Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15 4.0 veh-h			_		mi
on percent time-spent-following, fpl 0.62 Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		_	J /	-	
Percent time-spent-following including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15 4.0 veh-h				0.62	
including passing lane, PTSFpl 66.1 % Level of Service and Other Performance Measures with Passing Lane Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h		J. 1			
Level of service including passing lane, LOSpl C Peak 15-min total travel time, TT15 4.0 veh-h	<u>-</u>			66.1	%
Peak 15-min total travel time, TT15 4.0 veh-h	Level of Service and Other Pe	erformance Measu	res with	Passing	Lane
Peak 15-min total travel time, TT15 4.0 veh-h	Level of service including passing	lane. LOSpl	C		
Disease I and a Commiss		_		veh-h	
	P4 - 3	Torrol of Comp.	•		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	740.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.34
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and public 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2
% No-passing zones 100
40 mi/hr mi % No-passing zones 100 % Access point density 40 /mi Up/down Analysis direction volume, Vd 812 veh/h Opposing direction volume, Vo 740 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.935 0.920 Grade adj. factor,(note-1) fg 0.99 0.98 877 pc/h Directional flow rate, (note-2) vi 821 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.4 mi/h 1.4 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 41.9 mi/h Percent Free Flow Speed, PFFS 74.2 કૃ

Percent Tir	me-Spent-Follow:	ing		
Direction PCE for trucks, ET PCE for RVs, ER	Analysis(d) 1.0 1.0		Opposing 1.0 1.0	(0)
Heavy-vehicle adjustment factor, fHV	V 1.000		1.000	
<pre>Grade adjustment factor,(note-1) fg</pre>			0.99	
Directional flow rate, (note-2) vi	_	c/h	747	pc/h
Base percent time-spent-following, (%	
Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	-	25.7 83.0	રુ	
Level of Service and	d Other Performa	ance Me	asures	
Lovel of garvice LOS		E		
Level of service, LOS Volume to capacity ratio, v/c		0.50		
Peak 15-min vehicle-miles of travel	VMT15	183	veh-mi	
Peak-hour vehicle-miles of travel, V		731	veh-mi	
Peak 15-min total travel time, TT15	VIII 0 0	4.4	veh-h	
Capacity from ATS, CdATS		1615	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1615	veh/h	
Passing	g Lane Analysis_			
Total length of analysis segment, Lt	t		0.9	mi
Length of two-lane highway upstream		lane,		mi
Length of passing lane including tag		·	0.1	mi
Average travel speed, ATSd (from about	ove)		41.9	mi/h
Percent time-spent-following, PTSFd	(from above)		83.0	
Level of service, LOSd (from above)			E	
Average Travel Sp	peed with Pass	ing Lan	e	
Downstream length of two-lane highwa	av within effect	ive		
length of passing lane for avera Length of two-lane highway downstrea	age travel speed		1.70	mi
length of the passing lane for a Adj. factor for the effect of passing		speed,	Ld -0.90	mi
on average speed, fpl	-5		1.11	
Average travel speed including pass:	ing lane, ATSpl		45.5	
Percent free flow speed including pa		FSpl	80.7	%
Percent Time-Spent-F	Following with I	Passing	Lane	
Downstream length of two-lane highwa	ay within effect	cive le	ngth	
of passing lane for percent time	_			mi
Length of two-lane highway downstrea	_	_		
the passing lane for percent tir				mi
Adj. factor for the effect of passing	_			
on percent time-spent-following	, fpl		0.62	
Percent time-spent-following including passing lane, PTSFpl			53.7	%
Level of Service and Other Per	rformance Measuı	res wit	h Passing	Lane
			3	
Level of service including passing Peak 15-min total travel time, TT15	lane, LOSpl	C 4.0	veh-h	
Bicycle I	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	812.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.38
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and public 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2
% No-passing zones 100
40 mi/hr mi % No-passing zones 100 % Access point density 40 /mi Up/down Analysis direction volume, Vd 812 veh/h Opposing direction volume, Vo 740 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.935 0.920 Grade adj. factor,(note-1) fg 0.99 0.98 877 pc/h Directional flow rate, (note-2) vi 821 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.4 mi/h 1.4 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 41.9 mi/h Percent Free Flow Speed, PFFS 74.2 કૃ

Percent Time-Spent-Follo	wing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg Analysis(d) 1.0 1.0 1.00 1.000		Opposing 1.0 1.0 1.000 0.99	
	pc/h d 69.6 25.7 83.0	747 %	pc/h
Level of Service and Other Perfor	mance Me	asures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.50 183 731 4.4 1615 1700 1615	veh-mi veh-mi veh-h veh/h veh/h	
Passing Lane Analysi	.s		
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	ng lane,	0.9 Lu 0.0 0.1 41.9 83.0 D	mi mi mi mi/h
Average Travel Speed with Pas	sing Lan	e	
Downstream length of two-lane highway within effective length of passing lane for average travel specified the second sec	ed, Lde	1.70	mi
length of the passing lane for average travel Adj. factor for the effect of passing lane		Ld -0.90	mi
on average speed, fpl Average travel speed including passing lane, ATSp Percent free flow speed including passing lane, F		1.11 45.5 80.7	%
Percent Time-Spent-Following with	n Passing	Lane	
Downstream length of two-lane highway within effe	ing, Lde	4.92	mi
Length of two-lane highway downstream of effective the passing lane for percent time-spent-followadj. factor for the effect of passing lane	_		mi
on percent time-spent-following, fpl Percent time-spent-following		0.62	
including passing lane, PTSFpl		53.7	%
Level of Service and Other Performance Meas	sures wit	h Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	C 4.0	veh-h	
Bicycle Level of Servi	ce		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	812.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.38
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and Dubc.
Lane width 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 783 veh/h Opposing direction volume, Vo 878 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.917 0.936 Grade adj. factor,(note-1) fg 0.99 1.00 862 pc/h Directional flow rate, (note-2) vi 938 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.7 mi/h mi/h Adjustment for no-passing zones, fnp 1.2 39.5 Average travel speed, ATSd mi/h

72.3

Percent Free Flow Speed, PFFS

CE for trucks, ET	Percer	nt Time-Spent-Follow:	ing		
CE for trucks, ET	Direction	Analysis(d)	0	pposing	(0)
### ### ##############################	PCE for trucks, ET				
rade adjustment factor, (note-1) fg 1.00 1.00 incettional flow rate, (note-2) vi 783 pc/h 878 pc/h ase percent time-spent-following, (note-4) BPTSFd 69.7 % djustment for no-passing zones, fnp 23.9 ercent time-spent-following, PTSFd 81.0 %	PCE for RVs, ER	1.0		1.0	
rade adjustment factor, (note-1) fg 1.00 1.00 irrectional flow rate, (note-2) vi 783 pc/h 878 pc/h ase percent time-spent-following, (note-4) BPTSFd 69.7 % djustment for no-passing zones, fnp 23.9 ercent time-spent-following, PTSFd 81.0 % Level of Service and Other Performance Measures evel of service, LOS	Heavy-vehicle adjustment factor	f, fHV 1.000		1.000	
ase percent time-spent-following, (note-4) BPTSFd 69.7 % djustment for no-passing zones, fnp 23.9 ercent time-spent-following, PTSFd 81.0 % Level of Service and Other Performance Measures evel of service, LOS	Grade adjustment factor, (note-1	l) fg 1.00		1.00	
djustment for no-passing zones, fnp ercent time-spent-following, PTSFd Level of Service and Other Performance Measures Level of service, LOS olume to capacity ratio, v/c eak 15-min vehicle-miles of travel, VMT15 eak-hour vehicle-miles of travel, VMT15 eak-hour vehicle-miles of travel, VMT60 eak 15-min total travel time, TT15 4.5 veh-mi eak 15-min total travel time, TT15 4.5 veh-h apacity from PTSF, CdPTSF 1700 veh/h irectional Capacity Passing Lane Analysis otal length of analysis segment, Lt ength of passing lane including tapers, Lpl verage travel speed, ATSG (from above) evel of service, LOSG (from above) Average Travel Speed with Passing Lane ownstream length of two-lane highway within effective length of passing lane for average travel speed, Ld 1.70 mi ength of the passing lane for average travel speed, Ld -1.70 mi ength of the passing lane for average travel speed, Ld -1.70 mi ength of the passing lane for average travel speed, Ld -1.70 mi ength of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl 41.4 ercent time-spent-following, flow 5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following including passing lane, PTSFpl 67.3 Level of Service and Other Performance Measur			c/h	878	pc/h
Level of Service and Other Performance Measures Level of Service and Other Performance Measures Level of Service, LOS Clume to capacity ratio, v/c Cask 15-min vehicle-miles of travel, VMT15 Level of Service, LOS Clume to capacity ratio, v/c Clume take to cut to capacity Clume to capacity ratio, v/c Clume tak-hour vehicle takes to each of the passing lane on the capacity of the passing lane for passing lane, ATSpl 41.4 Clume tak-hour vehicle ratio and the passing lane, PFFSpl 75.6 % Clume tak-hour vehicle ratio and the passing lane, PFFSpl 75.6 % Clume tak-hour vehicle ratio and other performance Measures with Passing Lane concerned time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-f	Base percent time-spent-follows	ing,(note-4) BPTSFd	69.7 %		
Level of Service and Other Performance Measures evel of service, LOS colume to capacity ratio, v/c 0.49 eak 15-min vehicle-miles of travel, VMT15 176 veh-mi eak-hour vehicle-miles of travel, VMT60 705 veh-mi eak 15-min total travel time, TT15 4.5 veh-h apacity from ATS, CdATS 1591 veh/h apacity from PTSF, CdPTSF 1700 veh/h irectional Capacity 1591 veh/h Passing Lane Analysis cotal length of analysis segment, Lt ength of passing lane including tapers, Lpl 0.4 mi verage travel speed, ATSd (from above) 39.5 mi/h everl of service, LOSd (from above) 81.0 evel of service, LOSd (from above) E Average Travel Speed with Passing Lane constream length of two-lane highway within effective length of two-lane highway downstream of effective length of thou-lane highway downstream of effective length of thou-lane highway downstream of effective length of thou-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi adj. factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane constream length of two-lane highway within effective length of passing lane for percent time-spent-following, Ld 5.12 mi dip, factor for the effect of passing lane on percent time-spent-following, Ld 5.12 mi dip, factor for the effect of passing lane on percent time-spent-following, Fpl 0.62 ercent time-spent-followin	Adjustment for no-passing zones	s, fnp	23.9		
evel of service, LOS olume to capacity ratio, V/c oak 15-min vehicle-miles of travel, VMT15 ask-hour vehicle-miles of travel, VMT60 ask-hour vehicle-miles of travel, VMT60 ask-hour vehicle-miles of travel, VMT60 705 veh-mi eak 15-min total travel time, TT15 4.5 veh-h apacity from ATS, CdATS 1591 veh/h apacity from PTSF, CdPTSF 1700 veh/h irectional Capacity Passing Lane Analysis otal length of analysis segment, Lt ength of passing lane including tapers, Lpl otal verage travel speed, ATSd (from above) evel of service, LOSd (from above) Average Travel Speed with Passing Lane ownstream length of two-lane highway within effective length of passing lane for average travel speed, Lde length of passing lane for average travel speed, Lde length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane, ATSpl 1.11 verage speed, fpl on average speed including passing lane, ATSpl All 4 ercent free flow speed including passing lane, PFFSpl 75.6 Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde for passing lane for percent time-spent-following, Lde percent time-spent-following including passing lane for percent time-spent-following, Lde on percent time-spent-following, fpl of passing lane for percent time-spent-following, Lde on percent time-spent-following including passing lane, PTSFpl Cevel of Service and Other Performance Measures with Passing Lane overland travel time, TT15 4.3 veh-h	Percent time-spent-following, I	PTSFd	81.0 %		
olume to capacity ratio, v/c eak 15-min vehicle-miles of travel, VMT15 176 veh-mi eak-hour vehicle-miles of travel, VMT60 705 veh-mi eak-hour vehicle-miles of travel, VMT60 705 veh-mi eak 15-min total travel time, TT15 4.5 veh-h apacity from ATS, CdATS apacity from PTSF, CdPTSF 1700 veh/h irectional Capacity Passing Lane Analysis otal length of analysis segment, Lt ength of passing lane including tapers, Lpl verage travel speed, ATSd (from above) evel of service, LOSd (from above) Average Travel Speed with Passing Lane ownstream length of two-lane highway within effective length of passing lane for average travel speed, Ld -1.70 mi ength of passing lane for average travel speed, Ld -1.70 mi dj, factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl Affective length of two-lane highway within effective length of passing lane for average travel speed, Ld -1.70 mi dj, factor for the effect of passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl Affective length of passing lane for percent time-spent-following, Lde ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi dj, factor for the effect of passing lane on percent time-spent-following, fpl cneght of two-lane highway high passing Lane on percent time-spent-following, fpl cneght of two-lane highway lane on percent time-spent-following including passing lane, PTSFpl Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl Beak 15-min total travel time, TT15 4.3 veh-h	Level of Service	ce and Other Performa	ance Meas	ures	
olume to capacity ratio, v/c eak 15-min vehicle-miles of travel, VMT15 176 veh-mi eak-hour vehicle-miles of travel, VMT60 705 veh-mi eak-hour vehicle-miles of travel, VMT60 705 veh-mi eak 15-min total travel time, TT15 4.5 veh-h apacity from ATS, CdATS apacity from PTSF, CdPTSF 1700 veh/h irectional Capacity Passing Lane Analysis otal length of analysis segment, Lt ength of passing lane including tapers, Lpl verage travel speed, ATSd (from above) evel of service, LOSd (from above) Average Travel Speed with Passing Lane ownstream length of two-lane highway within effective length of passing lane for average travel speed, Ld -1.70 mi ength of passing lane for average travel speed, Ld -1.70 mi dj, factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl Affective length of two-lane highway within effective length of passing lane for average travel speed, Ld -1.70 mi dj, factor for the effect of passing lane, ATSpl 41.4 ercent free flow speed including passing lane, ATSpl Affective length of passing lane for percent time-spent-following, Lde ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi dj, factor for the effect of passing lane on percent time-spent-following, fpl cneght of two-lane highway high passing Lane on percent time-spent-following, fpl cneght of two-lane highway lane on percent time-spent-following including passing lane, PTSFpl Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl Beak 15-min total travel time, TT15 4.3 veh-h	Level of service, LOS		E		
eak 15-min vehicle-miles of travel, VMT15	Volume to capacity ratio, v/c		0.49		
eak-hour vehicle-miles of travel, VMT60 705 veh-mi eak 15-min total travel time, TT15 4.5 veh-h apacity from ATS, CdATS 1591 veh/h apacity from ATS, CdATS 1591 veh/h irectional Capacity 1700 veh/h irectional Capacity 1591 veh/h 1591 veh/h irectional Capacity 1591 veh/h 1591		cavel, VMT15	176	veh-mi	
eak 15-min total travel time, TT15 apacity from ATS, CdATS apacity from PTSF, CdPTSF apacity from PTSF, CdPTSF irectional Capacity Passing Lane Analysis cotal length of analysis segment, Lt ength of two-lane highway upstream of the passing lane, Lu 0.5 mi ength of passing lane including tapers, Lpl overage travel speed, ATSd (from above) ercent time-spent-following, PTSFd (from above) average travel speed with Passing Lane cownstream length of two-lane highway within effective length of passing lane for average travel speed, Ld -1.70 mi ength of the passing lane for average travel speed, Ld -1.70 mi dj, factor for the effect of passing lane on average speed, pll verage travel speed including passing lane, ATSpl average travel speed including passing lane, PFFSpl recent free flow speed including passing lane, PFFSpl of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway within effective length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi ownstream length of two-lane highway within effective length of two-lane highway downstream of effective length of two-lane highway formstream of				veh-mi	
apacity from ATS, CdATS apacity from PTSF, CdPTSF Passing Lane Analysis cotal length of analysis segment, Lt ength of two-lane highway upstream of the passing lane, Lu 0.5 mi ength of passing lane including tapers, Lpl 0.4 mi ercent time-spent-following, PTSFd (from above) 39.5 mi/h ercent time-spent-following, PTSFd (from above) 81.0 evel of service, LOSd (from above) E Average Travel Speed with Passing Lane cownstream length of two-lane highway within effective length of passing lane for average travel speed, Ld 1.70 mi ength of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane, ATSpl 1.11 verage travel speed including passing lane, ATSpl 4.1.4 ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane cownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane for percent time-spent-following, Ld -5.12 mi ength of two-lane highway downstream of effective length of passing lane, PTSFpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service in					
Passing Lane Analysis Passing Lane Analysis otal length of analysis segment, Lt 0.9 mi ength of passing lane including tapers, Lpl 0.4 mi verage travel speed, ATSd (from above) 81.0 ercent time-spent-following, PTSFd (from above) 81.0 ercent time-spent LoSd (from above) 81.0 ercent time-spent passing lane for average travel speed, Ld 1.70 mi ength of passing lane for average travel speed, Ld 1.70 mi ength of two-lane highway within effective length of the passing lane for average travel speed, Ld 1.70 mi ength of the passing lane for average travel speed, Ld 1.70 mi ength of the passing lane for average travel speed, Ld 1.70 mi ength of the passing lane for average travel speed, Ld 1.70 mi ength of the passing lane for average pravel speed, Ld 1.70 mi ength of the passing lane for average pravel speed, Ld 1.70 mi ength of the passing lane for average pravel speed, Ld 1.70 mi ength of the passing lane for average pravel speed, Ld 1.70 mi ength of the effect of passing lane, ATSpl 1.11 verage travel speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of the passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 5.12 mi ength of two-lane highway downstream of effective length of the passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSp	Capacity from ATS, CdATS				
Passing Lane Analysis otal length of analysis segment, Lt ength of passing lane including tapers, Lpl verage travel speed, ATSd (from above) evel of service, LOSd (from above) length of passing lane including tapers, Lpl overage travel speed, ATSd (from above) evel of service, LOSd (from above) Average Travel Speed with Passing Lane ownstream length of two-lane highway within effective length of passing lane for average travel speed, Lde length of the passing lane for average travel speed, Ld -1.70 mi dj, factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl length of two-lane highway within effective length of two-lane highway downstream of effective length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde of passing lane for percent time-spent-following, Lde on percent time-spent-following, fpl on percent time-spent-following, fpl on percent time-spent-following, fpl Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSPl Deak 15-min total travel time, TT15 4.3 veh-h				•	
cotal length of analysis segment, Lt ength of two-lane highway upstream of the passing lane, Lu 0.5 mi ength of passing lane including tapers, Lpl 0.4 mi verage travel speed, ATSd (from above) 39.5 mi/h ercent time-spent-following, PTSFd (from above) 81.0 evel of service, LOSd (from above) E	Directional Capacity				
ength of two-lane highway upstream of the passing lane, Lu 0.5 mi ength of passing lane including tapers, Lpl 0.4 mi verage travel speed, ATSd (from above) 39.5 mi/h ercent time-spent-following, PTSFd (from above) 81.0 evel of service, LOSd (from above) E	Pa	assing Lane Analysis			
ength of two-lane highway upstream of the passing lane, Lu 0.5 mi ength of passing lane including tapers, Lpl 0.4 mi verage travel speed, ATSd (from above) 39.5 mi/h ercent time-spent-following, PTSFd (from above) 81.0 evel of service, LOSd (from above) E	Total length of analysis segmen	nt, Lt		0.9	mi
ength of passing lane including tapers, Lpl 0.4 mi verage travel speed, ATSd (from above) 39.5 mi/h ercent time-spent-following, PTSFd (from above) 81.0 evel of service, LOSd (from above) E			lane, Lu		
werage travel speed, ATSd (from above) ercent time-spent-following, PTSFd (from above) evel of service, LOSd (from above) Average Travel Speed with Passing Lane ownstream length of two-lane highway within effective length of passing lane for average travel speed, Lde 1.70 mi ength of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl on percent time-spent-following, fpl ercent time-spent-following including passing lane, PTSFpl Accepted the passing Lane Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl Deak 15-min total travel time, TT15 Accepted the passing Lane 39.5 mi/h 11.0 81.					
ercent time-spent-following, PTSFd (from above) evel of service, LOSd (from above)					
Average Travel Speed with Passing Lane					
length of passing lane for average travel speed, Lde 1.70 mi ength of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane on average speed, fpl 1.11 verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h					
length of passing lane for average travel speed, Lde 1.70 mi ength of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane on average speed, fpl 1.11 verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane Ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	Average Trav	vel Speed with Pass:	ing Lane_		
length of passing lane for average travel speed, Lde 1.70 mi ength of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane on average speed, fpl 1.11 verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane Ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	Downstream length of two-lane h	nighway within effect	-ive		
ength of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl verage travel speed including passing lane, PFFSpl verage travel speed including passing lane, percent time-spent-following, Ld verage travel speed including passing lane of passing lane for percent time-spent-following, Ld verage travel speed, Ld verage travel spe	_	_		1 70	m i
length of the passing lane for average travel speed, Ld -1.70 mi dj. factor for the effect of passing lane on average speed, fpl 1.11 verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h			a, Euc	1.70	1111
dj. factor for the effect of passing lane on average speed, fpl verage travel speed including passing lane, ATSpl ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane Ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld dj. factor for the effect of passing lane on percent time-spent-following, fpl on percent time-spent-following including passing lane, PTSFpl 0.62 Ercent time-spent-following including passing lane, PTSFpl 0.73 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl Deak 15-min total travel time, TT15 4.3 veh-h			speed. Id	-1 70	mi
on average speed, fpl verage travel speed including passing lane, ATSpl ercent free flow speed including passing lane, PFFSpl 75.6 % Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld dj. factor for the effect of passing lane on percent time-spent-following, fpl on percent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl Deak 15-min total travel time, TT15 4.3 veh-h			эрсса, да	1.70	1111
verage travel speed including passing lane, ATSpl 41.4 ercent free flow speed including passing lane, PFFSpl 75.6 %		passing rane		1 11	
Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h		passing lane ATSpl			
Percent Time-Spent-Following with Passing Lane ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h			rsn1		%
ownstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	_		_		
of passing lane for percent time-spent-following, Lde 5.12 mi ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	Percent Time-Sp	pent-Following with I	Passing L	ane	
ength of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	Downstream length of two-lane h	nighway within effect	tive leng	th	
the passing lane for percent time-spent-following, Ld -5.12 mi dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	of passing lane for percent	t time-spent-following	ng, Lde	5.12	mi
dj. factor for the effect of passing lane on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl beak 15-min total travel time, TT15 4.3 veh-h	Length of two-lane highway dowr	nstream of effective	length o	f	
on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	the passing lane for percer	nt time-spent-follow:	ing, Ld	-5.12	mi
on percent time-spent-following, fpl 0.62 ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h		-			
ercent time-spent-following including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h				0.62	
including passing lane, PTSFpl 67.3 % Level of Service and Other Performance Measures with Passing Lane evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	Percent time-spent-following	- -			
evel of service including passing lane, LOSpl D eak 15-min total travel time, TT15 4.3 veh-h	-	SFpl		67.3	%
eak 15-min total travel time, TT15 4.3 veh-h	Level of Service and Othe	er Performance Measu	res with	Passing	Lane
eak 15-min total travel time, TT15 4.3 veh-h	Level of service including page	sing lane I.Ognl	ח		
				veh-h	
Bicycle Level of Service	real 15 mill cocal clavel cline,	1119	1.0	V C11 11	
	Bicy	ycle Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	783.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.37
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and Duscale
Lane width 12.0 ft % Trucks crawling 0.0
Seament length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 783 veh/h Opposing direction volume, Vo 878 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.917 0.936 Grade adj. factor,(note-1) fg 0.99 1.00 862 pc/h Directional flow rate, (note-2) vi 938 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.7 mi/h mi/h Adjustment for no-passing zones, fnp 1.2 39.5 Average travel speed, ATSd mi/h

72.3

Percent Free Flow Speed, PFFS

Percent	Time-Spent-Follow:	ing		
Direction	Analysis(d)	0	pposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor,	fHV 1.000		1.000	
Grade adjustment factor, (note-1)			1.00	
Directional flow rate, (note-2) v	_	c/h	878	pc/h
Base percent time-spent-following	_			
Adjustment for no-passing zones,	_	23.9		
Percent time-spent-following, PT	TSFa	81.0 %		
Level of Service	e and Other Performa	ance Meas	ures	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.49		
Peak 15-min vehicle-miles of tra	avel, VMT15	176	veh-mi	
Peak-hour vehicle-miles of trave	el, VMT60	705	veh-mi	
Peak 15-min total travel time, T	TT15	4.5	veh-h	
Capacity from ATS, CdATS		1591	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1591	veh/h	
Pas	ssing Lane Analysis			
Total length of analysis segment	t, Lt		0.9	mi
Length of two-lane highway upstr		lane, Lu		mi
Length of passing lane including		,	0.4	mi
Average travel speed, ATSd (from	= = =		39.5	mi/h
Percent time-spent-following, PT			81.0	
Level of service, LOSd (from abo	ove)		D	
Average Trave	el Speed with Pass	ing Lane_		
Downstream length of two-lane hi	ahway within effect	tive		
length of passing lane for a			1.70	mi
Length of two-lane highway downs	_	a, <u>_</u> a,	_ , ,	
length of the passing lane f		speed, Ld	-1.70	mi
Adj. factor for the effect of pa		-F,		
on average speed, fpl	J == =		1.11	
Average travel speed including p	passing lane, ATSpl		41.4	
Percent free flow speed includir			75.6	%
Percent Time-Spe	ent-Following with 1	Passing L	ane	
Downstroom longth of the long his	ab	-d 1	+ h	
Downstream length of two-lane hi				m i
of passing lane for percent				mi
Length of two-lane highway downs		_		m i
the passing lane for percent Adj. factor for the effect of pa	_	тиу, ьа	-5.12	mi
on percent time-spent-follow	_		0.62	
on percent time-spent-follow Percent time-spent-following	AT113, TPT		0.02	
including passing lane, PTSF	⁷ pl		67.3	%
Level of Service and Other	Performance Measu	res with	Passing	Lane
Level of service including passi	ng lane I.Ognl	С		
Peak 15-min total travel time, T	_		veh-h	
Bicvo	cle Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	783.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.37
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

Percent Free Flow Speed, PFFS

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and public 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2
% No-passing zones 100
40 mi/hr % No-passing zones 100 Access point density 40 Up/down % /mi Analysis direction volume, Vd 878 veh/h Opposing direction volume, Vo 783 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.950 0.935 Grade adj. factor,(note-1) fg 1.00 0.99 924 pc/h Directional flow rate, (note-2) vi 846 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.3 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 41.2 mi/h

73.2

કૃ

Percent Ti	me-Spent-Follow:	ing		
Direction	Analysis(d)	Op	posing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fH	V 1.000		1.000	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	878 pc	c/h	783	pc/h
Base percent time-spent-following, (note-4) BPTSFd	72.0 %		
Adjustment for no-passing zones, fn	р	23.9		
Percent time-spent-following, PTSFd		84.6 %		
Level of Service an	d Other Performa	ance Measu	ıres	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.54		
Peak 15-min vehicle-miles of travel	, VMT15	198 v	eh-mi	
Peak-hour vehicle-miles of travel,			eh-mi	
Peak 15-min total travel time, TT15			eh-h	
Capacity from ATS, CdATS			eh/h	
Capacity from PTSF, CdPTSF			eh/h	
Directional Capacity			reh/h	
Passin	g Lane Analysis			
Total length of analysis segment, L	t		0.9	mi
Length of two-lane highway upstream		lane. Lu		mi
Length of passing lane including ta	_	rane, ra	0.1	mi
Average travel speed, ATSd (from ab			41.2	mi/h
Percent time-spent-following, PTSFd			84.6	
Level of service, LOSd (from above)			E	
		.		
Average Travel S	peed with Passi	ing Lane		
Downstream length of two-lane highw	_			
length of passing lane for aver	_	d, Lde	1.70	mi
Length of two-lane highway downstre				
length of the passing lane for		speed, Ld	-0.90	mi
Adj. factor for the effect of passi	ng lane			
on average speed, fpl			1.11	
Average travel speed including pass			44.8	
Percent free flow speed including p	assing lane, PFI	FSpl	79.6	%
Percent Time-Spent-	Following with D	Passing La	ine	
Downstream length of two-lane highw	ay within effect	tive lengt	h	
of passing lane for percent tim	_			mi
Length of two-lane highway downstre				
the passing lane for percent ti		_	-3.65	mi
Adj. factor for the effect of passi	_	- ·		
on percent time-spent-following			0.62	
Percent time-spent-following	· •			
including passing lane, PTSFpl			55.0	%
Level of Service and Other Pe	rformance Measu	res with F	assing	Lane
Level of service including passing	lane. LOSpl	D		
Peak 15-min total travel time, TT15	_		reh-h	
	T 1 5 5 '	_		
Bicycle	Level of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	878.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.42
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and public 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2
% No-passing zones 100
40 mi/hr % No-passing zones 100 Access point density 40 Up/down % /mi Analysis direction volume, Vd 878 veh/h Opposing direction volume, Vo 783 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.950 0.935 Grade adj. factor,(note-1) fg 1.00 0.99 924 pc/h Directional flow rate, (note-2) vi 846 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.3 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 41.2 mi/h Percent Free Flow Speed, PFFS 73.2 કૃ

Percent	Time-Spent-Follow	ing		
Direction	Analysis(d)	Or	posing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor,	fHV 1.000		1.000	
Grade adjustment factor, (note-1)			1.00	
Directional flow rate, (note-2) v		c/h	783	pc/h
Base percent time-spent-following	_	72.0 %		_
Adjustment for no-passing zones,		23.9		
Percent time-spent-following, PT	SFd	84.6 %		
Level of Service	and Other Perform	ance Meası	ıres	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.54		
Peak 15-min vehicle-miles of tra-	vel. VMT15		reh-mi	
Peak-hour vehicle-miles of trave			zeh-mi	
Peak 15-min total travel time, T			zeh-h	
Capacity from ATS, CdATS	113		reh/h	
Capacity from PTSF, CdPTSF			reh/h	
Directional Capacity			eh/h	
Pas	sing Lane Analysis			
Total length of analysis segment	T.+		0.9	mi
Length of two-lane highway upstr		lane III		mi
Length of passing lane including		Talle, Lu	0.0	mi
Average travel speed, ATSd (from			41.2	mi/h
Percent time-spent-following, PT			84.6	1111 / 11
Level of service, LOSd (from abo			04.0 D	
Level of Service, Losa (from abo	ve)		D	
Average Trave	l Speed with Pass	ing Lane		
Downstream length of two-lane his	ghway within effec	tive		
length of passing lane for a			1.70	mi
Length of two-lane highway downs				
length of the passing lane f		speed, Ld	-0.90	mi
Adj. factor for the effect of pa	ssing lane			
on average speed, fpl			1.11	
Average travel speed including p			44.8	
Percent free flow speed including	g passing lane, PF	FSpl	79.6	%
Percent Time-Spe	nt-Following with	Passing La	ane	
Downstream length of two-lane his	ghway within effec	tive lengt	h	
of passing lane for percent	time-spent-followi	ng, Lde	4.45	mi
Length of two-lane highway downs				
the passing lane for percent		_	-3.65	mi
Adj. factor for the effect of pa	_	- ·		
on percent time-spent-follow			0.62	
Percent time-spent-following	J. 1		-	
including passing lane, PTSF	pl		55.0	રુ
Level of Service and Other	Performance Measu:	res with I	assing	Lane
Level of service including passi:	ng lane. LOSpl	С		
Peak 15-min total travel time, T			reh-h	
Ricyc	le Level of Servic	e		
bicyc	TO DOLOTE	·		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	878.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.42
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ mi/hr % No-passing zones 100 Access point density 40 /mi Up/down % Analysis direction volume, Vd 963 veh/h Opposing direction volume, Vo 1152 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.936 0.936 Grade adj. factor,(note-1) fg 1.00 1.00 1029 pc/h Directional flow rate, (note-2) vi 1231 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.6 mi/h mi/h Adjustment for no-passing zones, fnp 1.0

Average travel speed, ATSd

Percent Free Flow Speed, PFFS

36.1

66.1

mi/h

Percent Time-Spent-Follow	ing		
Direction Analysis(d)	1	Opposing	(0)
PCE for trucks, ET 1.0		1.0	
PCE for RVs, ER 1.0		1.0	
Heavy-vehicle adjustment factor, fHV 1.000		1.000	
Grade adjustment factor, (note-1) fg 1.00		1.00	
	c/h	1152	pc/h
Base percent time-spent-following, (note-4) BPTSFd		%	-
Adjustment for no-passing zones, fnp	16.6		
Percent time-spent-following, PTSFd	86.3	%	
Level of Service and Other Perform	ance Mea	sures	
Level of service, LOS	E		
Volume to capacity ratio, v/c	0.61		
Peak 15-min vehicle-miles of travel, VMT15	217	veh-mi	
Peak-hour vehicle-miles of travel, VMT60	867	veh-mi	
Peak 15-min total travel time, TT15	6.0	veh-h	
Capacity from ATS, CdATS	1591	veh/h	
Capacity from PTSF, CdPTSF	1700	veh/h	
Directional Capacity	1591	veh/h	
Passing Lane Analysis	<u></u>		
Total length of analysis segment, Lt		0.9	mi
Length of two-lane highway upstream of the passing	lane. I		mi
Length of passing lane including tapers, Lpl		0.4	mi
Average travel speed, ATSd (from above)		36.1	mi/h
Percent time-spent-following, PTSFd (from above)		86.3	/ 11
Level of service, LOSd (from above)		E	
Average Travel Speed with Pass	ing Lane		
Downstream length of two-lane highway within effect	ıt i ve		
length of passing lane for average travel spee		1.70	mi
Length of two-lane highway downstream of effective			
length of the passing lane for average travel		d -1.70	mi
Adj. factor for the effect of passing lane			
on average speed, fpl		1.11	
Average travel speed including passing lane, ATSpl		37.7	
Percent free flow speed including passing lane, PF		69.1	%
Percent Time-Spent-Following with	Passing	Lane	
Downstream length of two-lane highway within effec	tive len	ath	
of passing lane for percent time-spent-followi			mi
Length of two-lane highway downstream of effective			
the passing lane for percent time-spent-follow	_		mi
Adj. factor for the effect of passing lane	1119, Hu	5.00	11111
on percent time-spent-following, fpl		0.62	
Percent time-spent-following		0.02	
including passing lane, PTSFpl		71.7	%
Level of Service and Other Performance Measu	res with	Passing :	Lane
Lovel of garvine including pageing lane 100ml	┎		
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E 5.8	veh-h	
rear 10-min cocar clavel clme, 1110	٥.٥	∧ ∈11_11	

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	963.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.48
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and Dusco
Lane width 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100
40 mi/hr % No-passing zones 100 Access point density 40 /mi Up/down % Analysis direction volume, Vd 963 veh/h Opposing direction volume, Vo 1152 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.936 0.936 Grade adj. factor,(note-1) fg 1.00 1.00 1029 pc/h Directional flow rate, (note-2) vi 1231 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.6 mi/h mi/h Adjustment for no-passing zones, fnp 1.0

Average travel speed, ATSd

Percent Free Flow Speed, PFFS

36.1

66.1

mi/h

Percent T	ime-Spent-Follow:	ing		
Direction	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.0	` ,
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fi			1.000	
Grade adjustment factor, (note-1) fe			1.00	
Directional flow rate, (note-2) vi		c/h	1152	pc/h
Base percent time-spent-following,	—		%	P 0 / 11
Adjustment for no-passing zones, fi		16.6	0	
Percent time-spent-following, PTSF	_	86.3	%	
Level of Service a	nd Other Performa	ance Mea	asures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.61		
Peak 15-min vehicle-miles of trave	1	217	veh-mi	
Peak-hour vehicle-miles of travel,		867	veh-mi	
Peak 15-min total travel time, TT1	j	6.0	veh-h	
Capacity from ATS, CdATS		1591	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1591	veh/h	
Passi	ng Lane Analysis_			
Total length of analysis segment,	Lt		0.9	mi
Length of two-lane highway upstream		lane. I		mi
Length of passing lane including to		10110, 1	0.4	mi
Average travel speed, ATSd (from a	_		36.1	mi/h
Percent time-spent-following, PTSF			86.3	1111/11
Level of service, LOSd (from above			E	
Average Travel	Speed with Passi	ing Lane		
Downstream length of two-lane high	way within effect	tive		
length of passing lane for aver	rage travel speed	d, Lde	1.70	mi
Length of two-lane highway downstro	eam of effective			
length of the passing lane for		speed, I	⊿d -1.70	mi
Adj. factor for the effect of pass		_ ,		
on average speed, fpl	5		1.11	
Average travel speed including past	sing lane, ATSpl		37.7	
Percent free flow speed including		FSpl	69.1	%
	-	_		
Percent Time-Spent	-Following with I	Passing	Lane	
Downstream length of two-lane high	way within effect	tive ler	ngth	
of passing lane for percent time	_			mi
Length of two-lane highway downstro				
the passing lane for percent t		_		mi
Adj. factor for the effect of pass	_	5, ==	- ,	
on percent time-spent-following			0.62	
Percent time-spent-following	J, -F-		J. J.	
including passing lane, PTSFpl			71.7	%
Level of Service and Other Po	erformance Measu	res with	n Passing :	Lane
T1 -6 ' - 1 - 1 - 1 - 1	1 707 3	F.		
Level of service including passing	_	D	, ,	
Peak 15-min total travel time, TT1	5	5.8	veh-h	
Bicycle	Level of Service	e _		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	963.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.48
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ mi/hr % No-passing zones 100 Access point density 40 Up/down % /mi Analysis direction volume, Vd 1152 veh/h Opposing direction volume, Vo 963 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.950 0.950 Grade adj. factor,(note-1) fg 1.00 1.00 1213 pc/h Directional flow rate, (note-2) vi 1014 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.3 mi/h mi/h Adjustment for no-passing zones, fnp 1.1

37.9

67.3

mi/h

Average travel speed, ATSd

Percent Ti	me-Spent-Follow:	ing		
Direction	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, f			1.000	
Grade adjustment factor, (note-1) fg			1.00	
Directional flow rate, (note-2) vi	_	c/h	963	pc/h
Base percent time-spent-following, (%	
Adjustment for no-passing zones, fr	_	16.6		
Percent time-spent-following, PTSFC	1	90.1	ે	
Level of Service an	nd Other Performa	ance Mea	sures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.71		
Peak 15-min vehicle-miles of travel	. VMT15	259	veh-mi	
Peak-hour vehicle-miles of travel,		1037	veh-mi	
Peak 15-min total travel time, TT15		6.8	veh-h	
Capacity from ATS, CdATS	•	1615	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1615	veh/h	
Passir	ng Lane Analysis_			
matal lamath of and the	L		0 0	2
Total length of analysis segment, I		7 -	0.9	mi
Length of two-lane highway upstream		lane, L		mi
Length of passing lane including ta			0.1	mi
Average travel speed, ATSd (from ab			37.9	mi/h
Percent time-spent-following, PTSFo			90.1	
Level of service, LOSd (from above)			E	
Average Travel S	Speed with Pass	ing Lane	<u></u>	
Downstream length of two-lane highw	vav within effect	cive		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre		a, 200	_ , ,	
length of the passing lane for		speed. I	d -0 90	mi
Adj. factor for the effect of passi		peca, r	.a 0.30	
on average speed, fpl	ing ranc		1.11	
Average travel speed including pass	sing lane ATSpl		41.2	
Percent free flow speed including p		7Sn]	73.2	%
		_		
Percent Time-Spent-	-Following with I	Passing	Lane	
Downstream length of two-lane highw	vay within effect	cive len	ıgth	
of passing lane for percent tim	_			mi
Length of two-lane highway downstre				
the passing lane for percent ti		_		mi
Adj. factor for the effect of passi	_	J		
on percent time-spent-following			0.62	
Percent time-spent-following	,, _F _			
including passing lane, PTSFpl			59.2	%
Level of Service and Other Pe	erformance Measu	res with	Passing	Lane
Level of service including passing	lane IOSnl	D		
Peak 15-min total travel time, TT15	_	6.3	veh-h	
reak 15-min total travel time, TTI5	,	0.3	∧ ⊆ 11−11	
Bicycle	Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1152.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.56
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ mi/hr % No-passing zones 100 Access point density 40 Up/down % /mi Analysis direction volume, Vd 1152 veh/h Opposing direction volume, Vo 963 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.950 0.950 Grade adj. factor,(note-1) fg 1.00 1.00 1213 pc/h Directional flow rate, (note-2) vi 1014 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.3 mi/h mi/h Adjustment for no-passing zones, fnp 1.1

37.9

67.3

mi/h

Average travel speed, ATSd

Percent T	ime-Spent-Follow:	ing		
Direction	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fi	HV 1.000		1.000	
Grade adjustment factor, (note-1) fe	g 1.00		1.00	
Directional flow rate, (note-2) vi	1152 pc	c/h	963	pc/h
Base percent time-spent-following,	(note-4) BPTSFd	81.1	%	
Adjustment for no-passing zones, fi	np	16.6		
Percent time-spent-following, PTSF	d	90.1	%	
Level of Service as	nd Other Performa	ance Mea	sures	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.71		
Peak 15-min vehicle-miles of trave	1, VMT15	259	veh-mi	
Peak-hour vehicle-miles of travel,		1037	veh-mi	
Peak 15-min total travel time, TT1		6.8	veh-h	
Capacity from ATS, CdATS	-	1615	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1615	veh/h	
Passi	ng Lane Analysis			
Total length of analysis segment,	Lt		0.9	mi
Length of two-lane highway upstream		lane. T		mi
Length of passing lane including to		ranc, r	0.1	mi
Average travel speed, ATSd (from all	_		37.9	mi/h
Percent time-spent-following, PTSF			90.1	1111/11
Level of service, LOSd (from above			D	
Average Travel	Speed with Pass:	ing Lane		
Downstream length of two-lane high	=			
length of passing lane for ave:	_	d, Lde	1.70	mi
Length of two-lane highway downstr				
length of the passing lane for		speed, I	$_{1}d -0.90$	mi
Adj. factor for the effect of pass	ing lane			
on average speed, fpl			1.11	
Average travel speed including past			41.2	
Percent free flow speed including p	passing lane, PFI	FSpl	73.2	%
Percent Time-Spent	-Following with I	Passing	Lane	
Downstream length of two-lane high	way within effect	tive len	ıgth	
of passing lane for percent time	me-spent-followin	ng, Lde	3.60	mi
Length of two-lane highway downstro				
the passing lane for percent to		_		mi
Adj. factor for the effect of pass	_			
on percent time-spent-following			0.62	
Percent time-spent-following	-· -		-	
including passing lane, PTSFpl			59.2	%
Level of Service and Other Po	erformance Measui	res with	n Passing	Lane
Level of service including passing	lane LOSnl	D		
Peak 15-min total travel time, TT1	_	6.3	veh-h	
rear 15 min cocar craver crime, 111.	-	J.J	A C11 11	
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1152.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.56
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

	HCS7 Multilane	Highway Report		
Project Information				
Analyst	BFJ Planning	Date		
Agency		Analysis Year	2017	
Jurisdiction	NYS	Time Period Analyzed		
Project Description	Existing Conditions PM Pea	k Hour	•	
Direction 1 Geometric Data				
Direction 1	Northbound			
Number of Lanes (N), In	2	Terrain Type	Rolling	
Segment Length (L), ft	-	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	53.7	Total Ramp Density (TRD), ramps/mi	-	
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-	
Median Type	-	Total Lateral Clearance (TLC), ft	-	
Access Point Density, pts/mi	-	Free-Flow Speed (FFS), mi/h	53.7	
Direction 1 Adjustment Factor	ors			
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975	
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968	
Driver Population CAF	0.968			
Direction 1 Demand and Cap	acity			
Volume(V) veh/h	721	Heavy Vehicle Adjustment Factor (fHV)	0.658	
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	548	
Total Trucks, %	26.00	Capacity (c), pc/h/ln	2048	
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1982	
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.28	
Direction 1 Speed and Densi	ty			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	52.4	
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	10.5	
Median Type Adjustment (fM)	-	Level of Service (LOS)	А	
Access Point Density Adjustment (fA)	-			
Direction 1 Bicycle LOS	Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vol.),veh/h	360	Effective Speed Factor (St)	4.79	
Effective Width of Volume (Wv), ft	12	Bicyle LOS Score (BLOS)	16.57	
Average Effective Width (We), ft	12	Bicycle Level of Service (LOS)	F	
L		I	I	

	HCS7 Multilane	Highway Report			
Project Information	Project Information				
Analyst	BFJ Planning	Date			
Agency		Analysis Year	2017		
Jurisdiction	NYS	Time Period Analyzed			
Project Description	Existing Conditions PM Pea	k Hour	<u>'</u>		
Direction 2 Geometric Data					
Direction 2	Southbound				
Number of Lanes (N), In	2	Terrain Type	Rolling		
Segment Length (L), ft	-	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	55.0	Total Ramp Density (TRD), ramps/mi	0.00		
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6		
Median Type	Undivided	Total Lateral Clearance (TLC), ft	6.00		
Access Point Density, pts/mi	18.0	Free-Flow Speed (FFS), mi/h	47.6		
Direction 2 Adjustment Factor	ors				
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975		
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968		
Driver Population CAF	0.968				
Direction 2 Demand and Cap	acity				
Volume(V) veh/h	828	Heavy Vehicle Adjustment Factor (fHV)	0.704		
Peak Hour Factor	1.00	Flow Rate (V _p), pc/h/ln	588		
Total Trucks, %	21.00	Capacity (c), pc/h/ln	1928		
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1866		
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.32		
Direction 2 Speed and Densi	ty .				
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.4		
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	12.7		
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	В		
Access Point Density Adjustment (fA)	4.5				
Direction 2 Bicycle LOS	Direction 2 Bicycle LOS				
Flow Rate in Outside Lane (vol.),veh/h	414	Effective Speed Factor (St)	4.79		
Effective Width of Volume (Wv), ft	12	Bicyle LOS Score (BLOS)	13.22		
Average Effective Width (We), ft	12	Bicycle Level of Service (LOS)	F		
L	1				

Generated: 09/28/2018 12:32:05

	HCS7 Multilane	Highway Report			
Project Information	Project Information				
Analyst	BFJ Planning	Date			
Agency		Analysis Year	2017		
Jurisdiction	NYS	Time Period Analyzed			
Project Description	Existing Conditions PM Pea	k Hour			
Direction 1 Geometric Data					
Direction 1	Northbound				
Number of Lanes (N), In	2	Terrain Type	Rolling		
Segment Length (L), ft	-	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	53.7	Total Ramp Density (TRD), ramps/mi	-		
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-		
Median Type	-	Total Lateral Clearance (TLC), ft	-		
Access Point Density, pts/mi	-	Free-Flow Speed (FFS), mi/h	53.7		
Direction 1 Adjustment Factor	ors				
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975		
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968		
Driver Population CAF	0.968				
Direction 1 Demand and Cap	acity				
Volume(V) veh/h	764	Heavy Vehicle Adjustment Factor (fHV)	0.658		
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	580		
Total Trucks, %	26.00	Capacity (c), pc/h/ln	2048		
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1982		
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.29		
Direction 1 Speed and Densi	ty		-		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	52.4		
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	11.1		
Median Type Adjustment (fм)	-	Level of Service (LOS)	В		
Access Point Density Adjustment (fA)	-				
Direction 1 Bicycle LOS	Direction 1 Bicycle LOS				
Flow Rate in Outside Lane (vol.),veh/h	382	Effective Speed Factor (St)	4.79		
Effective Width of Volume (Wv), ft	12	Bicyle LOS Score (BLOS)	16.60		
Average Effective Width (We), ft	12	Bicycle Level of Service (LOS)	F		

Generated: 09/28/2018 12:31:09

	HCS7 Multilane	Highway Report			
Project Information	Project Information				
Analyst	BFJ Planning	Date			
Agency		Analysis Year	2017		
Jurisdiction	NYS	Time Period Analyzed			
Project Description	Existing Conditions PM Pea	k Hour	<u>'</u>		
Direction 2 Geometric Data					
Direction 2	Southbound				
Number of Lanes (N), In	2	Terrain Type	Rolling		
Segment Length (L), ft	-	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	55.0	Total Ramp Density (TRD), ramps/mi	0.00		
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6		
Median Type	Undivided	Total Lateral Clearance (TLC), ft	6.00		
Access Point Density, pts/mi	18.0	Free-Flow Speed (FFS), mi/h	47.6		
Direction 2 Adjustment Factor	ors				
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975		
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968		
Driver Population CAF	0.968				
Direction 2 Demand and Cap	acity				
Volume(V) veh/h	894	Heavy Vehicle Adjustment Factor (fHV)	0.704		
Peak Hour Factor	1.00	Flow Rate (V _p), pc/h/ln	635		
Total Trucks, %	21.00	Capacity (c), pc/h/ln	1928		
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1866		
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.34		
Direction 2 Speed and Densi	ty .				
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.4		
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	13.7		
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	В		
Access Point Density Adjustment (fA)	4.5				
Direction 2 Bicycle LOS	Direction 2 Bicycle LOS				
Flow Rate in Outside Lane (vol.),veh/h	447	Effective Speed Factor (St)	4.79		
Effective Width of Volume (Wv), ft	12	Bicyle LOS Score (BLOS)	13.26		
Average Effective Width (We), ft	12	Bicycle Level of Service (LOS)	F		
			<u> </u>		

Generated: 09/28/2018 12:31:25

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	BFJ Planning	Date	
Agency		Analysis Year	2017
Jurisdiction	NYS	Time Period Analyzed	
Project Description	Existing Conditions PM Pea	k Hour	
Direction 1 Geometric Data			
Direction 1	Northbound		
Number of Lanes (N), In	2	Terrain Type	Rolling
Segment Length (L), ft	-	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	53.7	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Access Point Density, pts/mi	-	Free-Flow Speed (FFS), mi/h	53.7
Direction 1 Adjustment Facto	rs		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Capa	acity		
Volume(V) veh/h	942	Heavy Vehicle Adjustment Factor (fHV)	0.658
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	716
Total Trucks, %	26.00	Capacity (c), pc/h/ln	2048
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1982
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.36
Direction 1 Speed and Densit	у		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	52.4
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	13.7
Median Type Adjustment (fM)	-	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	-		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	471	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	12	Bicyle LOS Score (BLOS)	16.70
Average Effective Width (We), ft	12	Bicycle Level of Service (LOS)	F

Generated: 09/28/2018 12:29:24

HCS7 Multilane Highway Report				
Project Information				
Analyst	BFJ Planning	Date		
Agency		Analysis Year	2017	
Jurisdiction	NYS	Time Period Analyzed		
Project Description	Existing Conditions PM Pea	k Hour	<u>'</u>	
Direction 2 Geometric Data				
Direction 2	Southbound			
Number of Lanes (N), In	2	Terrain Type	Rolling	
Segment Length (L), ft	-	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	55.0	Total Ramp Density (TRD), ramps/mi	0.00	
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6	
Median Type	Undivided	Total Lateral Clearance (TLC), ft	6.00	
Access Point Density, pts/mi	18.0	Free-Flow Speed (FFS), mi/h	47.6	
Direction 2 Adjustment Factor	ors			
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975	
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968	
Driver Population CAF	0.968			
Direction 2 Demand and Cap	acity			
Volume(V) veh/h	1170	Heavy Vehicle Adjustment Factor (fHV)	0.704	
Peak Hour Factor	1.00	Flow Rate (V _p), pc/h/ln	831	
Total Trucks, %	21.00	Capacity (c), pc/h/ln	1928	
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1866	
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.45	
Direction 2 Speed and Densi	ty .			
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.4	
Total Lateral Clearance Adj. (fLLC)	1.3	Density (D), pc/mi/ln	17.9	
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	В	
Access Point Density Adjustment (fA)	4.5			
Direction 2 Bicycle LOS	Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	585	Effective Speed Factor (St)	4.79	
Effective Width of Volume (Wv), ft	12	Bicyle LOS Score (BLOS)	13.39	
Average Effective Width (We), ft	12	Bicycle Level of Service (LOS)	F	
			·	

Generated: 09/28/2018 12:29:02

Phone:

Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 18 12.0 ft % Trucks crawling 0.0 0.9 mi Truck crawl speed 0.0 Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 10Access point density 38 Grade: Length Access point density 38 /mi Up/down Analysis direction volume, Vd 688 veh/h Opposing direction volume, Vo 860 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.1 1.0 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 0.982 1.000 Grade adj. factor,(note-1) fg 1.00 1.00 701 pc/h Directional flow rate, (note-2) vi 860 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 634 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.0 mi/h mi/h Adjustment for no-passing zones, fnp 0.5 Average travel speed, ATSd 41.4 mi/h Percent Free Flow Speed, PFFS 76.7 કૃ

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET 1.0 PCE for RVs, ER 1.0 Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00		Opposing 1.0 1.0 1.000)
Directional flow rate,(note-2) vi 688 pc Base percent time-spent-following,(note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	e/h 65.2 14.8 71.8	860 %	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.40 155 619 3.7 1700 1700	veh-mi veh-mi veh-h veh/h veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 41.4 71.8 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two-take highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	- 0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	8
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	688.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.86
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 18 12.0 ft % Trucks crawling 0.0 0.9 mi Truck crawl speed 0.0 Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 10Access point density 38 Grade: Length Access point density 38 /mi Up/down Analysis direction volume, Vd 688 veh/h Opposing direction volume, Vo 860 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.1 1.0 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 0.982 1.000 Grade adj. factor,(note-1) fg 1.00 1.00 701 pc/h Directional flow rate, (note-2) vi 860 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 634 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.0 mi/h mi/h Adjustment for no-passing zones, fnp 0.5 Average travel speed, ATSd 41.4 mi/h Percent Free Flow Speed, PFFS 76.7 કૃ

Percent Time-Spent-Follow:	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00		Opposing 1.0 1.0 1.000 1.000	
Directional flow rate, (note-2) vi 688 por Base percent time-spent-following, (note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	c/h 65.2 14.8 71.8	860 %	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	C 0.40 155 619 3.7 1700 1700	veh-mi veh-mi veh-h veh/h veh/h veh/h	
Passing Lane Analysis			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 41.4 71.8 C	mi mi mi mi/h
Average Travel Speed with Pass:	ing Lan	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with I	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	-	mi
the passing lane for percent time-spent-follows Adj. factor for the effect of passing lane	_		mi
on percent time-spent-following, fpl Percent time-spent-following including passing lane, PTSFpl		_	%
Level of Service and Other Performance Measur	res wit	th Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	688.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.86
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 16 12.0 ft % Trucks crawling 0.0 0.9 mi Truck crawl speed 0.0 Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type - mi % No-passing zones 20 - % Access point density 38 Grade: Length Access point density 38 /mi Up/down Analysis direction volume, Vd 860 veh/h Opposing direction volume, Vo 688 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.1 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 0.984 Grade adj. factor,(note-1) fg 1.00 1.00 860 pc/h Directional flow rate, (note-2) vi 699 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 47 mi/h Observed total demand, (note-3) V 821 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.4 mi/h 0.6 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 40.6 mi/h Percent Free Flow Speed, PFFS 76.1

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00		Opposing 1.0 1.0 1.000	
Directional flow rate, (note-2) vi 860 pc Base percent time-spent-following, (note-4) BPTSFd	70.4 17.9 80.3	688	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	E 0.51 193 774 4.7 1700 1700	veh-mi veh-mi veh-h veh/h veh/h veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 40.6 80.3 E	mi mi mi mi/h
Average Travel Speed with Passi	ing Lan	ıe	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two falls highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	- 0.0	%
Percent Time-Spent-Following with F	Passing	Jane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	-	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		_	%
Level of Service and Other Performance Measur	res wit	h Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	860.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	8.87
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 16 12.0 ft % Trucks crawling 0.0 0.9 mi Truck crawl speed 0.0 Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type - mi % No-passing zones 20 - % Access point density 38 Grade: Length Access point density 38 /mi Up/down Analysis direction volume, Vd 860 veh/h Opposing direction volume, Vo 688 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.1 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 0.984 Grade adj. factor,(note-1) fg 1.00 1.00 860 pc/h Directional flow rate, (note-2) vi 699 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 47 mi/h Observed total demand, (note-3) V 821 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.4 mi/h 0.6 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 40.6 mi/h Percent Free Flow Speed, PFFS 76.1

Percent Tim	e-Spent-Follow:	ing		
Direction	Analysis(d)	C)pposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV			1.000	
Grade adjustment factor, (note-1) fg			1.00	
	_	c/h	688	pc/h
Base percent time-spent-following,(n			Ś	
Adjustment for no-passing zones, fnp		17.9		
Percent time-spent-following, PTSFd		80.3	Ś	
Level of Service and	Other Performa	ance Meas	sures	
Level of service, LOS		С		
Volume to capacity ratio, v/c		0.51		
Peak 15-min vehicle-miles of travel,	VMT15	193	veh-mi	
Peak-hour vehicle-miles of travel, V	MT60	774	veh-mi	
Peak 15-min total travel time, TT15		4.7	veh-h	
Capacity from ATS, CdATS		1700	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1700	veh/h	
Passing	Lane Analysis			
Total length of analysis segment, Lt			0.9	mi
Length of two-lane highway upstream		lane I.		mi
Length of passing lane including tap		Talle, II	_	mi
Average travel speed, ATSd (from abo	_		40.6	mi/h
Percent time-spent-following, PTSFd			80.3	/ 11
Level of service, LOSd (from above)	(IIOm above)		C	
Average Travel Sp	eed with Pass:	ing Lane_		
Downstream length of two-lane highwa	_			
length of passing lane for avera		d, Lae	_	mi
Length of two-lane highway downstrea			1	
length of the passing lane for a		speed, Lo	d –	mı
Adj. factor for the effect of passin	g lane			
on average speed, fpl	1 2 7 7 7		_	
Average travel speed including passi		n a 1	-	0.
Percent free flow speed including pa	ssing lane, Pri	-SDI	0.0	%
Percent Time-Spent-F	ollowing with 1	Passing I	Jane	
Downstream length of two-lane highwa	y within effect	tive lend	gth	
of passing lane for percent time	_		- -	mi
Length of two-lane highway downstrea	_		of	
the passing lane for percent tim			_	mi
Adj. factor for the effect of passin	_			
on percent time-spent-following,	_		_	
Percent time-spent-following				
including passing lane, PTSFpl			_	%
Level of Service and Other Per	formance Measu	res with	Passing	Lane
Level of service including passing l	ane. LOSpl	E		
Peak 15-min total travel time, TT15	~c, nobbi		veh-h	
Bicycle L	evel of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	860.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	8.87
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Highway Route 9W From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 18 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 10 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 737 veh/h Opposing direction volume, Vo 941 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.1 1.0 PCE for RVs, ER 1.0 1.0 1.000 Heavy-vehicle adj. factor,(note-5) fHV 0.982 Grade adj. factor, (note-1) fg 1.00 1.00 751 pc/h Directional flow rate, (note-2) vi 941 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 634 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.0 mi/h mi/h Adjustment for no-passing zones, fnp 0.5 Average travel speed, ATSd 40.4 mi/h

74.8

Percent Time-Spent-Followi	ng		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00	(1-	Opposing 1.0 1.0 1.000	
Base percent time-spent-following,(note-4) BPTSFd	68.4 13.8 74.5	941	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.43 166 663 4.1 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 40.4 74.5 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lan	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	⁷ Spl	- 0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	-	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	737.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.89
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Highway Route 9W From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 18 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 10 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 737 veh/h Opposing direction volume, Vo 941 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.1 1.0 PCE for RVs, ER 1.0 1.0 1.000 Heavy-vehicle adj. factor,(note-5) fHV 0.982 Grade adj. factor, (note-1) fg 1.00 1.00 751 pc/h Directional flow rate, (note-2) vi 941 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 634 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.0 mi/h mi/h Adjustment for no-passing zones, fnp 0.5

40.4

74.8

mi/h

Average travel speed, ATSd

Percent Time-Spent-Followi	ng		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00	(1-	Opposing 1.0 1.0 1.000	
Base percent time-spent-following,(note-4) BPTSFd	68.4 13.8 74.5	941	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.43 166 663 4.1 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 40.4 74.5 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lan	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	⁷ Spl	- 0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	-	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	737.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.89
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Highway Route 9W From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 16 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 20 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 941 veh/h Opposing direction volume, Vo 737 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.1 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 0.984 Grade adj. factor,(note-1) fg 1.00 1.00 941 pc/h 749 Directional flow rate, (note-2) vi pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 47 mi/h Observed total demand, (note-3) V 821 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.4 mi/h 0.6 mi/h Adjustment for no-passing zones, fnp 39.7 Average travel speed, ATSd mi/h

74.4

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00		Opposing 1.0 1.0 1.000	
Directional flow rate, (note-2) vi 941 pc Base percent time-spent-following, (note-4) BPTSFd	73.7 16.6 83.0	737 % %	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	E 0.55 212 847 5.3 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 39.7 83.0 E	mi mi mi mi/h
Average Travel Speed with Passi	ing Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two-lane highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	th Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	941.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	8.92
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Highway Route 9W From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 16 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 20 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 941 veh/h Opposing direction volume, Vo 737 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.1 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 0.984 Grade adj. factor,(note-1) fg 1.00 1.00 941 pc/h 749 Directional flow rate, (note-2) vi pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 47 mi/h Observed total demand, (note-3) V 821 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.4 mi/h 0.6 mi/h Adjustment for no-passing zones, fnp 39.7 Average travel speed, ATSd mi/h

74.4

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00		Opposing 1.0 1.0 1.000	
	73.7 16.6 83.0	737	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.55 212 847 5.3 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 39.7 83.0 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two fame highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-following Adj. factor for the effect of passing lane on percent time-spent-following, fpl	ing, Lo	d – –	mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	941.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	8.92
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: _____Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 18 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 10 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 942 veh/h Opposing direction volume, Vo 1275 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.0 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 1.000 Grade adj. factor,(note-1) fg 1.00 1.00 942 pc/h Directional flow rate, (note-2) vi 1275 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 634 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.9 mi/h mi/h Adjustment for no-passing zones, fnp 0.5

36.2

67.2

mi/h

કૃ

Average travel speed, ATSd

Percent Time-Spent-Followi	ng		
Direction Analysis(d) PCE for trucks, ET 1.0 PCE for RVs, ER 1.0 Heavy-vehicle adjustment factor, fHV 1.000		Opposing 1.0 1.0 1.000	
Grade adjustment factor, (note-1) fg 1.00 Directional flow rate, (note-2) vi 942 pc Base percent time-spent-following, (note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	2/h 78.6 9.7 82.7	1.00 1275 %	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	E 0.55 212 848 5.9 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 36.2 82.7 E	mi mi mi mi/h
Average Travel Speed with Passi	ng Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
<pre>length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl</pre>	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	Spl	- 0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u></u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	942.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	10.02
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 18 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 10 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 942 veh/h Opposing direction volume, Vo 1275 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.0 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 1.000 Grade adj. factor,(note-1) fg 1.00 1.00 942 pc/h Directional flow rate, (note-2) vi 1275 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 634 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.9 mi/h mi/h Adjustment for no-passing zones, fnp 0.5 Average travel speed, ATSd 36.2 mi/h

67.2

કૃ

Percent Time-Spent-Followi	ing		
Direction Analysis(d) PCE for trucks, ET 1.0 PCE for RVs, ER 1.0 Heavy-vehicle adjustment factor, fHV 1.000		Opposing 1.0 1.0 1.000	
Base percent time-spent-following, (note-4) BPTSFd Adjustment for no-passing zones, fnp	2/h 78.6 9.7 82.7	1.00 1275 %	pc/h
Level of Service and Other Performa	ance Me	easures	
Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF	D 0.55 212 848 5.9 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 36.2 82.7 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	- 0.0	%
Percent Time-Spent-Following with P	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	942.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	10.02
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 16 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 20 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 1275 veh/h Opposing direction volume, Vo 942 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.0 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 1.000 Grade adj. factor,(note-1) fg 1.00 1.00 1275 pc/h Directional flow rate, (note-2) vi 942 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 47 mi/h Observed total demand, (note-3) V 821 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.4 mi/h mi/h Adjustment for no-passing zones, fnp 0.5

35.7

66.9

mi/h

Average travel speed, ATSd

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET 1.0 PCE for RVs, ER 1.0 Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00		Opposing 1.0 1.0 1.000	
Directional flow rate,(note-2) vi 1275 pc Base percent time-spent-following,(note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	83.7 11.4 90.3	942	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	E 0.75 287 1147 8.0 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 35.7 90.3 E	mi mi mi mi/h
Average Travel Speed with Passi	ing Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two falls highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	ch Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1275.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.07
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To New Road to Perkinsville Road Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 16 12.0 ft % Trucks crawling 0.0
0.9 mi Truck crawl speed 0.0
Level % Recreational vehicles 2 Lane width Segment length mi/hr Terrain type mi % No-passing zones 20 %Access point density 38 /mi Grade: Length Up/down Analysis direction volume, Vd 1275 veh/h Opposing direction volume, Vo 942 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.0 1.0 PCE for RVs, ER 1.0 1.0 Heavy-vehicle adj. factor,(note-5) fHV 1.000 1.000 Grade adj. factor,(note-1) fg 1.00 1.00 1275 pc/h Directional flow rate, (note-2) vi 942 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 47 mi/h Observed total demand, (note-3) V 821 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 53.4 mi/h mi/h Adjustment for no-passing zones, fnp 0.5

35.7

66.9

mi/h

Average travel speed, ATSd

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET 1.0 PCE for RVs, ER 1.0 Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00		Opposing 1.0 1.0 1.000	1
Directional flow rate,(note-2) vi 1275 po Base percent time-spent-following,(note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	83.7 11.4 90.3	942 % %	pc/h
Level of Service and Other Performa	ance Me	easures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.75 287 1147 8.0 1700 1700		
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	0.9 Lu - - 35.7 90.3 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lar	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two fame highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with F	Passing	g Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	e –	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	ing, Lo	d – –	mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	th Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1275.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.07
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

With Proposed Lane Reconfiguration

Segment 1: Hudson Bluff to Chestnut

Segment 2: Chestnut Road to St. James Road

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and Duscale
Lane width 12.0 ft % Trucks crawling 0.0
Seament length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 740 veh/h Opposing direction volume, Vo 812 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.5 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.899 0.917 Grade adj. factor,(note-1) fg 0.98 0.99 840 pc/h Directional flow rate, (note-2) vi 894 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.8 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 40.1 mi/h Percent Free Flow Speed, PFFS 73.2

Percent Time-Spent-Follows	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg Analysis(d) 1.0 1.0 0.99	Oī	pposing (1.0 1.0 1.00 1.00 1.00	(0)
	c/h 67.2 % 25.7 79.5 %	812	pc/h
Level of Service and Other Performa	ance Meas	ıres	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	666 4.1 1591 1700	veh-mi veh-mi veh-h veh/h veh/h	
Passing Lane Analysis			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane, Lu	0.9 0.4 0.4 40.1 79.5	mi mi mi mi/h
Average Travel Speed with Pass:	ing Lane		
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective length of the passing lane for average travel and Adj. factor for the effect of passing lane on average speed, fpl Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFD	d, Lde speed, Ld		mi mi
			•
Percent Time-Spent-Following with Downstream length of two-lane highway within effects	tive leng	th	
of passing lane for percent time-spent-following Length of two-lane highway downstream of effective the passing lane for percent time-spent-following ti	length o	5.37 E -5.27	mi mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl Percent time-spent-following		0.62	
including passing lane, PTSFpl		62.7	%
Level of Service and Other Performance Measur	res with 1	Passing I	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	D 3.9	veh-h	

______ Bicycle Level of Service _____

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	740.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.34
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and Duscale
Lane width 12.0 ft % Trucks crawling 0.0
Seament length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 740 veh/h Opposing direction volume, Vo 812 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.5 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.899 0.917 Grade adj. factor,(note-1) fg 0.98 0.99 840 pc/h Directional flow rate, (note-2) vi 894 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.8 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 40.1 mi/h Percent Free Flow Speed, PFFS 73.2

Percent Time-Sp	ent-Follow:	ing		
Direction Ar	nalysis(d)	0	pposing	(0)
PCE for trucks, ET	1.0		1.0	(- /
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	1
Grade adjustment factor, (note-1) fg	0.99		1.00	
Directional flow rate, (note-2) vi		c/h	812	pc/h
Base percent time-spent-following, (note-	_			P 0 / 11
Adjustment for no-passing zones, fnp	i, biibia	25.7		
Percent time-spent-following, PTSFd		79.5 %		
Level of Service and Oth	ner Performa	ance Meas	ures	
		_		
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.47		
Peak 15-min vehicle-miles of travel, VMT			veh-mi	
Peak-hour vehicle-miles of travel, VMT60)		veh-mi	
Peak 15-min total travel time, TT15			veh-h	
Capacity from ATS, CdATS		1591	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1591	veh/h	
Passing Lar	ne Analysis			
Total length of analysis segment, Lt			0.9	mi
Length of two-lane highway upstream of t	he nagging	lane I.II		mi
Length of passing lane including tapers,		Tane, La	0.4	mi
	тЪт			
Average travel speed, ATSd (from above)	.m. abarra\		40.1	mi/h
Percent time-spent-following, PTSFd (from	m above)		79.5	
Level of service, LOSd (from above)			D	
Average Travel Speed	with Pass:	ing Lane_		
Downstream length of two-lane highway wi	thin effect	tive		
length of passing lane for average t			1.70	mi
Length of two-lane highway downstream of	-	,		
length of the passing lane for avera		speed. Id	-1.60	mi
Adj. factor for the effect of passing la		orcou, Lu		
on average speed, fpl			1.11	
Average travel speed including passing I	ane ATSnl		42.4	
Percent free flow speed including passing		FSpl	77.4	%
referre free frow speed including pubbli	ig raile, iii	. 551	, ,	Ü
Percent Time-Spent-Follo	owing with 1	Passing L	ane	
Downstream length of two-lane highway with	thin effect	tive leng	th	
of passing lane for percent time-spe			5.37	mi
Length of two-lane highway downstream of				
the passing lane for percent time-sp			-5.27	mi
Adj. factor for the effect of passing la		J		
on percent time-spent-following, fpl			0.62	
Percent time-spent-following			-	
including passing lane, PTSFpl			62.7	%
Level of Service and Other Perform	nance Measur	res with	Passing	Lane
Torol of gomeine impledimentation 2	T O C 1	a		
Level of service including passing lane,	LOSpI	C	, ,	
Peak 15-min total travel time, TT15		3.9	veh-h	
Bicycle Level	of Service	<u>م</u>		
proyers heve	OT SETATOR	·		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	740.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.34
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and public 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2
% No-passing zones 100
40 mi/hr mi % No-passing zones 100 % Access point density 40 /mi Up/down Analysis direction volume, Vd 812 veh/h Opposing direction volume, Vo 740 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.935 0.920 Grade adj. factor,(note-1) fg 0.99 0.98 877 pc/h Directional flow rate, (note-2) vi 821 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.4 mi/h 1.4 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 41.9 mi/h Percent Free Flow Speed, PFFS 74.2 કૃ

Percent Ti	me-Spent-Follow:	ing		
Direction PCE for trucks, ET PCE for RVs, ER	Analysis(d) 1.0 1.0	Or	pposing 1.0 1.0	(0)
Heavy-vehicle adjustment factor, fH			1.000	
Grade adjustment factor, (note-1) fg			0.99	
	_	c/h	747	pc/h
Base percent time-spent-following, (
Adjustment for no-passing zones, fng Percent time-spent-following, PTSFd		25.7 83.0 %		
Level of Service and	d Other Performa	ance Meası	ıres	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.50		
Peak 15-min vehicle-miles of travel	, VMT15		reh-mi	
Peak-hour vehicle-miles of travel,	·		veh-mi	
Peak 15-min total travel time, TT15			zeh-h	
Capacity from ATS, CdATS			reh/h	
Capacity from PTSF, CdPTSF			reh/h	
Directional Capacity			reh/h	
Passin	g Lane Analysis			
Total length of analysis segment, L	t		0.9	mi
Length of two-lane highway upstream		lane, Lu		mi
Length of passing lane including ta		,	0.1	mi
Average travel speed, ATSd (from ab			41.9	mi/h
Percent time-spent-following, PTSFd			83.0	·
Level of service, LOSd (from above)			E	
Average Travel S	peed with Pass	ing Lane		
Downstream length of two-lane highw	av within effect	tive		
length of passing lane for aver- Length of two-lane highway downstre	age travel speed am of effective	d, Lde		mi
length of the passing lane for Adj. factor for the effect of passis		speed, Ld	-1.00	mi
on average speed, fpl			1.11	
Average travel speed including pass	ing lane. ATSpl		45.2	
Percent free flow speed including p	_	FSpl	80.1	%
Percent Time-Spent-	Following with	Passing La	ane	
-	_	_		
Downstream length of two-lane highw	_			4
of passing lane for percent tim	_	_		mi
Length of two-lane highway downstre				•
the passing lane for percent ti	_	ıng, Ld	-4.22	mi
Adj. factor for the effect of passi			0 60	
on percent time-spent-following	, IPI		0.62	
Percent time-spent-following including passing lane, PTSFpl			56.7	%
Level of Service and Other Pe	rformance Measu	res with I	Passing	Lane
Lovel of gervice including persi-	lano todal	С		
Level of service including passing Peak 15-min total travel time, TT15	_	C 4.1 v	reh-h	
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	812.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.38
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and public 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2
% No-passing zones 100
40 mi/hr mi % No-passing zones 100 % Access point density 40 /mi Up/down Analysis direction volume, Vd 812 veh/h Opposing direction volume, Vo 740 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.935 0.920 Grade adj. factor,(note-1) fg 0.99 0.98 877 pc/h Directional flow rate, (note-2) vi 821 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.4 mi/h 1.4 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 41.9 mi/h Percent Free Flow Speed, PFFS 74.2 કૃ

Percent Time	me-Spent-Follow	ing		
Direction PCE for trucks, ET PCE for RVs, ER	Analysis(d) 1.0 1.0	Op	posing 1.0 1.0	(0)
Heavy-vehicle adjustment factor, fH			1.000	
<pre>Grade adjustment factor,(note-1) fg Directional flow rate,(note-2) vi</pre>		c/h	0.99 747	pc/h
Base percent time-spent-following,(note-4) BPTSFd	69.6 %		-
Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd		25.7 83.0 %		
Level of Service and			res	
Level of service, LOS Volume to capacity ratio, v/c		D 0.50		
Peak 15-min vehicle-miles of travel	VMT15		eh-mi	
Peak-hour vehicle-miles of travel,			en-mi	
Peak 15-min total travel time, TT15			en-mi eh-h	
Capacity from ATS, CdATS			eh/h	
Capacity from PTSF, CdPTSF			eh/h	
Directional Capacity			eh/h	
Passing	g Lane Analysis			
Total length of analysis segment, La	† .		0.9	mi
Length of two-lane highway upstream		lane Lu		mi
Length of passing lane including tap	_	ranc, ra	0.1	mi
Average travel speed, ATSd (from about			41.9	mi/h
Percent time-spent-following, PTSFd			83.0	/ 11
Level of service, LOSd (from above)			D	
Average Travel S	peed with Pass	ing Lane		
Downstream length of two-lane highwa	ay within effect	tive		
length of passing lane for avera Length of two-lane highway downstrea	age travel speed am of effective	d, Lde	1.70	mi
length of the passing lane for a Adj. factor for the effect of passing		speed, Ld	-1.00	mi
on average speed, fpl	115 10110		1.11	
Average travel speed including pass:	ing lane. ATSpl		45.2	
Percent free flow speed including page	_		80.1	%
Percent Time-Spent-	Following with 1	Passing La	.ne	
Downstream length of two-lane highwa	av within offor	tive langt	h	
	_			mi
of passing lane for percent time	_			mi
Length of two-lane highway downstrea				m i
the passing lane for percent time	_	ıng, Ld	-4.22	mi
Adj. factor for the effect of passing			0 60	
on percent time-spent-following	, IPI		0.62	
Percent time-spent-following including passing lane, PTSFpl			56.7	%
Level of Service and Other Per	rformance Measu	res with F		Lane
			-	
Level of service including passing Peak 15-min total travel time, TT15	_	C 4.1 v	eh-h	
Bicycle	Level of Service	e		
				

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	812.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.38
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and Dubc.
Lane width 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr % No-passing zones 100 Access point density 40 Up/down % /mi Analysis direction volume, Vd 783 veh/h Opposing direction volume, Vo veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.917 0.917 Grade adj. factor,(note-1) fg 0.99 0.99 862 pc/h Directional flow rate, (note-2) vi 922 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.7 mi/h mi/h Adjustment for no-passing zones, fnp 1.2 Average travel speed, ATSd 39.6 mi/h Percent Free Flow Speed, PFFS 72.5

Percent Ti	ime-Spent-Follow	ing		
Direction	Analysis(d)	Oı	pposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fl	I.000		1.000	
Grade adjustment factor, (note-1) for			1.00	
Directional flow rate,(note-2) vi	_	c/h	837	pc/h
Base percent time-spent-following,				
Adjustment for no-passing zones, fr	_	24.8		
Percent time-spent-following, PTSFo	1	81.1 %		
Level of Service ar	nd Other Performa	ance Meas	ures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.49		
Peak 15-min vehicle-miles of travel	L, VMT15	176	veh-mi	
Peak-hour vehicle-miles of travel,	VMT60	705	veh-mi	
Peak 15-min total travel time, TT15	5	4.4	veh-h	
Capacity from ATS, CdATS		1591	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1591	veh/h	
Passir	ng Lane Analysis_			
Total length of analysis segment, I	it		0.9	mi
Length of two-lane highway upstream		lane. Lu		mi
Length of passing lane including to		ranc, ra	0.4	mi
Average travel speed, ATSd (from al	_		39.6	mi/h
Percent time-spent-following, PTSFo			81.1	
Level of service, LOSd (from above)			E	
Average Travel S	Speed with Pass:	ing Lane_		
Downstream length of two-lane high	vor within offort	- 1		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre	_	ı, Lae	1.70	шт
length of the passing lane for		aneed I.d	-1 60	mi
Adj. factor for the effect of passing		speed, nd	-1.00	шт
on average speed, fpl	ing ranc		1.11	
Average travel speed including pass	sing lane ATSpl		41.9	
Percent free flow speed including past		7Spl	76.7	%
		_		
Percent Time-Spent-	-Following with I	Passing La	ane	
Downstream length of two-lane high	vay within effect	tive leng	th	
of passing lane for percent tir	_			mi
Length of two-lane highway downstre				
the passing lane for percent to	me-spent-follow	ing, Ld	-5.02	mi
Adj. factor for the effect of pass	ing lane			
on percent time-spent-following	g, fpl		0.62	
Percent time-spent-following				
including passing lane, PTSFpl			64.0	%
Level of Service and Other Pe	erformance Measu	res with	Passing	Lane
Level of service including passing	lane, LOSpl	D		
Peak 15-min total travel time, TT15	_		veh-h	
53 m	Torol of Cont.	_		
Bicycle	rever of Service	=		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	783.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.37
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and Duscale
Lane width 12.0 ft % Trucks crawling 0.0
Seament length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100 mi/hr mi % No-passing zones 100 % Access point density 40 Up/down /mi Analysis direction volume, Vd 783 veh/h Opposing direction volume, Vo 878 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.917 0.936 Grade adj. factor,(note-1) fg 0.99 1.00 862 pc/h Directional flow rate, (note-2) vi 938 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.7 mi/h mi/h Adjustment for no-passing zones, fnp 1.2 39.5 Average travel speed, ATSd mi/h

72.3

Percent Ti	ime-Spent-Follow:	ing		
Direction	Analysis(d)	Oı	pposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fl	HV 1.000		1.000	
Grade adjustment factor, (note-1) for	1.00		1.00	
Directional flow rate, (note-2) vi	_	c/h	878	pc/h
Base percent time-spent-following, (
Adjustment for no-passing zones, fr		23.9		
Percent time-spent-following, PTSF	i.	81.0 %		
Level of Service ar	nd Other Performa	ance Measi	ıres	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.49		
Peak 15-min vehicle-miles of travel	L, VMT15	176	veh-mi	
Peak-hour vehicle-miles of travel,		705	veh-mi	
Peak 15-min total travel time, TT15	5	4.5	veh-h	
Capacity from ATS, CdATS		1591	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1591	veh/h	
Passir	ng Lane Analysis			
Total length of analysis segment, I	it		0.9	mi
Length of two-lane highway upstream		lane. Lu		mi
Length of passing lane including ta			0.4	mi
Average travel speed, ATSd (from al			39.5	mi/h
Percent time-spent-following, PTSF			81.0	•
Level of service, LOSd (from above)			D	
Average Travel S	Speed with Pass:	ing Lane		
Downstream length of two-lane high	way within effect	+ 1 170		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre	_	a, Ede	1.70	шт
length of the passing lane for		speed. Id	-1.60	mi
Adj. factor for the effect of passi		opeca, La	1.00	
on average speed, fpl			1.11	
Average travel speed including pass	sing lane, ATSpl		41.8	
Percent free flow speed including p		FSpl	76.5	%
Percent Time-Spent-		_		
-	_	_		
Downstream length of two-lane highw	_			
of passing lane for percent time				mi
Length of two-lane highway downstre		_		
the passing lane for percent ti	_	ıng, Ld	-5.02	mi
Adj. factor for the effect of passi			0 60	
on percent time-spent-following	g, ipl		0.62	
Percent time-spent-following including passing lane, PTSFpl			63.9	%
Level of Service and Other Pe	erformance Measu	res with 1	Passing	Lane
			2	
Level of service including passing Peak 15-min total travel time, TT15	_	C 4.2	veh-h	
	T1	_		
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	783.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.37
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: _____Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawing
1.3 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
Togging zones 100 Lane width 0.0 0.0 Segment length mi/hr Rolling Terrain type % No-passing zones 100 Grade: Length Access point density 18 /mi Up/down % Analysis direction volume, Vd 894 veh/h Opposing direction volume, Vo 764 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.903 1.00 Grade adj. factor,(note-1) fg 0.99 952 pc/h Directional flow rate, (note-2) vi 855 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.3

35.2

69.8

mi/h

Average travel speed, ATSd

Percent Ti	me-Spent-Follow	ing		
Direction	Analysis(d)	C)pposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fH	IV 1.000		1.000	
Grade adjustment factor, (note-1) for			1.00	
		c/h	764	pc/h
Base percent time-spent-following, (-			<u>.</u> .
Adjustment for no-passing zones, fr		23.8		
Percent time-spent-following, PTSFC	_	85.4	5	
Level of Service an	nd Other Performa	ance Meas	sures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.56		
Peak 15-min vehicle-miles of travel	. VMT15	291	veh-mi	
Peak-hour vehicle-miles of travel,			veh-mi	
Peak 15-min total travel time, TT15			veh-h	
Capacity from ATS, CdATS			veh/h	
Capacity from PTSF, CdPTSF			veh/h	
Directional Capacity			veh/h	
Passir	ng Lane Analysis_			
Total length of analysis segment, I	ıt.		1.3	mi
Length of two-lane highway upstream		lane. Ju		mi
Length of passing lane including ta	_	20110, 20	0.4	mi
Average travel speed, ATSd (from all			35.2	mi/h
Percent time-spent-following, PTSFG			85.4	,
Level of service, LOSd (from above)			E	
Average Travel S	Speed with Passi	ing Lane_		
Downstream length of two-lane highw	ay within effect	-ive		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre	_	i, Edc	1.70	шт
length of the passing lane for		speed I.d	1 -1 70	mi
Adj. factor for the effect of passi		ъреец, по	1 -1.70	mı
on average speed, fpl	ing rane		1.11	
Average travel speed including pass	ring land ATCnl		36.3	
	_	aca 1	71.9	%
Percent free flow speed including p	passing lane, Pri	PPI	71.9	6
Percent Time-Spent-	-Following with I	Passing I	ane	
Downstream length of two-lane highw	ay within effect	tive leng	ŋth	
of passing lane for percent tim	ne-spent-followir	ng, Lde	4.34	mi
Length of two-lane highway downstre	_	_		
the passing lane for percent ti		_	-4.34	mi
Adj. factor for the effect of passi	_			
on percent time-spent-following			0.62	
Percent time-spent-following	· · •			
including passing lane, PTSFpl			75.4	%
Level of Service and Other Pe	erformance Measur	res with	Passing	Lane
Level of service including passing	lana IOCnl	E		
	_		web b	
Peak 15-min total travel time, TT15)	8.0	veh-h	
Bicycle	Level of Service	<u> </u>		
-				

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	894.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.80
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: _____Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawing
1.3 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
Togging zones 100 Lane width 0.0 0.0 Segment length mi/hr Rolling Terrain type % No-passing zones 100 Grade: Length Access point density 18 /mi Up/down % Analysis direction volume, Vd 894 veh/h Opposing direction volume, Vo 764 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.903 1.00 Grade adj. factor,(note-1) fg 0.99 952 pc/h Directional flow rate, (note-2) vi 855 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.3 Average travel speed, ATSd 35.2 mi/h

69.8

Percent T	ime-Spent-Followi	ing		
Direction	Analysis(d)	(Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fi	HV 1.000		1.000	
Grade adjustment factor, (note-1) fe	g 1.00		1.00	
Directional flow rate, (note-2) vi	894 pc	c/h	764	pc/h
Base percent time-spent-following,	(note-4) BPTSFd	72.6	ò	
Adjustment for no-passing zones, f:	np	23.8		
Percent time-spent-following, PTSF	d	85.4	ò	
Level of Service a	nd Other Performa	ance Meas	sures	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.56		
Peak 15-min vehicle-miles of trave	1, VMT15	291	veh-mi	
Peak-hour vehicle-miles of travel,		1162	veh-mi	
Peak 15-min total travel time, TT1		8.3	veh-h	
Capacity from ATS, CdATS		1596	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1596	veh/h	
Passi	ng Lane Analysis_			
Total length of analysis segment,	Lt		1.3	mi
Length of two-lane highway upstream		lane. Li		mi
Length of passing lane including to		ranc, n	0.4	mi
Average travel speed, ATSd (from a	_		35.2	mi/h
Percent time-spent-following, PTSF			85.4	1111
Level of service, LOSd (from above			D	
Average Travel	Speed with Passi	ing Lane ₋		
Downstream length of two-lane high	=			
length of passing lane for ave	_	d, Lde	1.70	mi
Length of two-lane highway downstr				
length of the passing lane for		speed, Lo	d -1.70	mi
Adj. factor for the effect of pass	ing lane			
on average speed, fpl			1.11	
Average travel speed including pas			36.3	
Percent free flow speed including	passing lane, PFF	FSpl	71.9	%
Percent Time-Spent	-Following with I	Passing 1	Lane	
Downstream length of two-lane high	way within effect	cive lend	gth	
of passing lane for percent time	_			mi
Length of two-lane highway downstr				
the passing lane for percent t				mi
Adj. factor for the effect of pass	_	J ,	_	
on percent time-spent-following			0.62	
Percent time-spent-following	∵ . ⊥		2 -	
including passing lane, PTSFpl			75.4	%
Level of Service and Other P	erformance Measur	res with	Passing	Lane
Level of service including passing	lane Incal	D		
	_		weh-h	
Peak 15-min total travel time, TT1	J	8.0	veh-h	
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	894.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.80
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 1
Shoulder width 6.0 ft % Trucks and Dusco
Lane width 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100
40 mi/hr % No-passing zones 100 Access point density 40 /mi Up/down % Analysis direction volume, Vd 963 veh/h Opposing direction volume, Vo 1152 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.936 0.936 Grade adj. factor,(note-1) fg 1.00 1.00 1029 pc/h Directional flow rate, (note-2) vi 1231 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.6 mi/h mi/h Adjustment for no-passing zones, fnp 1.0

Average travel speed, ATSd

Percent Free Flow Speed, PFFS

36.1

66.1

mi/h

Percent T:	ime-Spent-Follow:	ing		
Direction	Analysis(d)	C)pposing	(o)
PCE for trucks, ET	1.0		1.0	. ,
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fl			1.000	
Grade adjustment factor, (note-1) for			1.00	
Directional flow rate, (note-2) vi		c/h	1152	pc/h
Base percent time-spent-following,	— — — — — — — — — — — — — — — — — — —			P 0 / 11
Adjustment for no-passing zones, fi		16.6	,	
Percent time-spent-following, PTSF0	_	86.3 %	i	
Level of Service an	nd Other Performa	ance Meas	sures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.61		
Peak 15-min vehicle-miles of travel	1 17MT15		veh-mi	
Peak-hour vehicle-miles of travel,			veh-mi	
Peak 15-min total travel time, TT1!			ven-mi	
	,			
Capacity from ATS, CdATS			veh/h	
Capacity from PTSF, CdPTSF Directional Capacity			veh/h veh/h	
	ng Lane Analysis			
Total length of analysis segment, 1		_	0.9	mi
Length of two-lane highway upstream		lane, Lu		mi
Length of passing lane including ta			0.4	mi
Average travel speed, ATSd (from al			36.1	mi/h
Percent time-spent-following, PTSF	d (from above)		86.3	
Level of service, LOSd (from above)		E	
Average Travel S	Speed with Pass:	ing Lane_		
Downstream length of two-lane high	wav within effect	cive		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre		2, 200	_ , , ,	
length of the passing lane for		speed. Id	1 -1 60	mi
Adj. factor for the effect of pass:		эрсса, да	1.00	1111
on average speed, fpl	riig raiic		1.11	
Average travel speed including pass	ging lane ATCnl		38.2	
Percent free flow speed including pass		ZCn1	69.9	%
Percent free from speed including p	passing lane, Pri	- phi	09.9	6
Percent Time-Spent	-Following with I	Passing L	ane	
Downstream length of two-lane high	way within effect	tive leng	ŗth	
of passing lane for percent time	_			mi
Length of two-lane highway downstre				
the passing lane for percent to		_		mi
Adj. factor for the effect of pass:	_	-,,	2.,0	
on percent time-spent-following			0.62	
Percent time-spent-following	o, ∸⊵∸		0.02	
including passing lane, PTSFpl			68.1	%
Level of Service and Other Pe	erformance Measu	res with	Passing :	Lane
Torrol of governo including an arrive	lano IOC-1	177		
Level of service including passing	_	E	la l-	
Peak 15-min total travel time, TT1!	0	5.7	veh-h	
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	963.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.48
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 3
Shoulder width 6.0 ft % Trucks and Dusco
Lane width 12.0 ft % Trucks crawling 0.0
Segment length 0.9 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
No-passing zones 100
40 mi/hr % No-passing zones 100 Access point density 40 /mi Up/down % Analysis direction volume, Vd 963 veh/h Opposing direction volume, Vo 1152 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.936 0.936 Grade adj. factor,(note-1) fg 1.00 1.00 1029 pc/h Directional flow rate, (note-2) vi 1231 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 49 mi/h Observed total demand, (note-3) V 674 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 54.6 mi/h mi/h Adjustment for no-passing zones, fnp 1.0

Average travel speed, ATSd

Percent Free Flow Speed, PFFS

36.1

66.1

mi/h

Percent Ti	me-Spent-Follow:	ing		
Direction	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.0	. ,
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fH			1.000	
Grade adjustment factor, (note-1) fg			1.00	
Directional flow rate, (note-2) vi		c/h	1152	pc/h
Base percent time-spent-following, (_		%	P 0 / 11
Adjustment for no-passing zones, fin		16.6	v	
Percent time-spent-following, PTSFd		86.3	%	
Level of Service an	nd Other Performa	ance Mea	sures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.61		
Peak 15-min vehicle-miles of travel	VMT15	217	veh-mi	
Peak-hour vehicle-miles of travel,		867	veh-mi	
Peak 15-min total travel time, TT15		6.0	veh-h	
	,			
Capacity from ATS, CdATS		1591	veh/h	
Capacity from PTSF, CdPTSF Directional Capacity		1700 1591	veh/h veh/h	
	ng Lane Analysis			
	-			
Total length of analysis segment, I		_	0.9	mi
Length of two-lane highway upstream		lane, L		mi
Length of passing lane including ta			0.4	mi
Average travel speed, ATSd (from ab			36.1	mi/h
Percent time-spent-following, PTSFd	l (from above)		86.3	
Level of service, LOSd (from above)			E	
Average Travel S	Speed with Pass:	ing Lane	:	
Downstream length of two-lane highw	av within effect	cive		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre	_	2, 200		
length of the passing lane for		speed. I	d -1 60	mi
Adj. factor for the effect of passi		speca, L	1.00	1111
on average speed, fpl	ing rane		1.11	
Average travel speed including pass	ing lane ATChl		38.2	
Percent free flow speed including pass			69.9	%
Percent free from speed including p	assing lane, Pri	- pbr	09.9	6
Percent Time-Spent-	Following with I	Passing	Lane	
Downstream length of two-lane highw	ay within effect	tive len	gth	
of passing lane for percent tim	_			mi
Length of two-lane highway downstre				
the passing lane for percent ti		_		mi
Adj. factor for the effect of passi	_	J, _~	•	
on percent time-spent-following			0.62	
Percent time-spent-following	,,		J. J.	
including passing lane, PTSFpl			68.1	%
Level of Service and Other Pe	erformance Measu	res with	Passing :	Lane
Lovel of general including product	lana todal	D		
Level of service including passing	_	D F 7	1- 1-	
Peak 15-min total travel time, TT15		5.7	veh-h	
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	963.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	12.48
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Hudson Bluff to Chestnut Road Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ mi/hr % No-passing zones 100 Access point density 40 Up/down % /mi Analysis direction volume, Vd 1152 veh/h Opposing direction volume, Vo 963 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.950 0.950 Grade adj. factor,(note-1) fg 1.00 1.00 1213 pc/h Directional flow rate, (note-2) vi 1014 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 50 mi/h Observed total demand, (note-3) V 772 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 56.3 mi/h mi/h Adjustment for no-passing zones, fnp 1.1

37.9

67.3

mi/h

Average travel speed, ATSd

Percent	t Time-Spent-Follow	ing		
Direction	Analysis(d)	(Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor			1.000	
Grade adjustment factor, (note-1			1.00	42
Directional flow rate, (note-2)		c/h	963	pc/h
Base percent time-spent-following			00	
Adjustment for no-passing zones	_	16.6	_	
Percent time-spent-following, P	rsfa	90.1	96	
Level of Service	e and Other Performa	ance Meas	sures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.71		
Peak 15-min vehicle-miles of tra	avel. VMT15	259	veh-mi	
Peak-hour vehicle-miles of trave		1037	veh-mi	
Peak 15-min total travel time,		6.8	ven mi veh-h	
Capacity from ATS, CdATS		1615	veh/h	
Capacity from PTSF, CdPTSF		1700	veh/h	
Directional Capacity		1615	veh/h	
Pa:	ssing Lane Analysis			
			_	
Total length of analysis segment			0.9	mi
Length of two-lane highway upst		lane, L	u 0.1	mi
Length of passing lane including			0.1	mi
Average travel speed, ATSd (from	m above)		37.9	mi/h
Percent time-spent-following, P	TSFd (from above)		90.1	
Level of service, LOSd (from about	ove)		E	
Average Trave	el Speed with Pass	ing Lane		
Downstream length of two-lane h:	ichwar within offor	+ i		
			1.70	mi
length of passing lane for a		ı, Lae	1.70	шт
Length of two-lane highway downs		amaad T	a 1 00	- -
length of the passing lane		speea, Lo	a -1.00	mı
Adj. factor for the effect of pa	assing lane			
on average speed, fpl			1.11	
Average travel speed including p			40.9	•
Percent free flow speed including	ng passing lane, PF	F'Sp1	72.7	%
Percent Time-Spe	ent-Following with	Passing 1	Lane	
Downstream length of two-lane ha	ighway within effec	tive lend	qth	
of passing lane for percent				mi
Length of two-lane highway downs				
the passing lane for percent		_		mi
Adj. factor for the effect of pa	_	1119, Hu	2.70	
on percent time-spent-follow	_		0.62	
Percent time-spent-following	wind, thi		0.04	
including passing lane, PTSI	Fpl		62.3	%
Level of Service and Other	r Performance Measu	res with	Passing	Lane
		_		
Level of service including pass:		D	_	
Peak 15-min total travel time, 7	TT15	6.3	veh-h	
Bicyo	cle Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1152.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	9.56
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawling
1.3 mi Truck crawl speed
Rolling % Recreational vehi Lane width 0.0 0.0 Segment length mi/hr Rolling % Recreational vehicles 2 Terrain type % No-passing zones 100 Grade: Length - mi Access point density 18 /mi Up/down % Analysis direction volume, Vd 1170 veh/h Opposing direction volume, Vo 942 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.939 Grade adj. factor,(note-1) fg 1.00 1.00 1246 pc/h Directional flow rate, (note-2) vi 1003 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.1

31.9

63.3

mi/h

Average travel speed, ATSd

Percent	Time-Spent-Follow:	ing		
Direction	Analysis(d)	On	posing	(0)
PCE for trucks, ET	1.0	-	1.0	,
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor,			1.000	
Grade adjustment factor, (note-1)			1.00	
Directional flow rate, (note-2) v		c/h	942	pc/h
Base percent time-spent-followin	_			- .
Adjustment for no-passing zones,		16.5		
Percent time-spent-following, PT		90.6 %		
Level of Service	and Other Performa	ance Measu	res	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.73		
Peak 15-min vehicle-miles of tra	vel. VMT15		eh-mi	
Peak-hour vehicle-miles of trave			eh-mi	
Peak 15-min total travel time, T			eh-h	
Capacity from ATS, CdATS			eh/h	
Capacity from PTSF, CdPTSF			eh/h	
Directional Capacity			eh/h	
Pas	sing Lane Analysis			
Total length of analysis segment	, Lt		1.3	mi
Length of two-lane highway upstr		lane. Lu		mi
Length of passing lane including		10110, 1u	0.4	mi
Average travel speed, ATSd (from			31.9	mi/h
Percent time-spent-following, PT			90.6	
Level of service, LOSd (from abo			E	
Average Trave	l Speed with Pass	ing Lane		
Downstream length of two-lane hi	ghway within effect	tive		
length of passing lane for a			1.70	mi
Length of two-lane highway downs	_	a, Lac	1.70	
length of the passing lane f		speed. Ld	-1.70	mi
Adj. factor for the effect of pa		opeca, La		
on average speed, fpl	bbing rane		1.11	
Average travel speed including p	assing lane. ATSpl		33.0	
Percent free flow speed includin			65.3	%
_		_		
Percent Time-Spe	nt-Following with 1	Passing La	.ne	
Downstream length of two-lane hi				
of passing lane for percent	-	_		mi
Length of two-lane highway downs				
the passing lane for percent	_	ing, Ld	-3.60	mi
Adj. factor for the effect of pa	ssing lane			
on percent time-spent-follow	ing, fpl		0.62	
Percent time-spent-following				
including passing lane, PTSF	pl		80.0	%
Level of Service and Other	Performance Measur	res with P	assing :	Lane
Level of service including passi	ng lane, LOSpl	E		
Peak 15-min total travel time, T		11.5 v	eh-h	
Bicyc	le Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1170.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.93
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 26 12.0 ft % Trucks crawling 0.0
1.3 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type mi % No-passing zones 100 % Access point density 18 /mi - mi Grade: Length Up/down Analysis direction volume, Vd 721 veh/h Opposing direction volume, Vo 828 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.6 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.864 0.904 Grade adj. factor,(note-1) fg 0.98 0.99 852 pc/h Directional flow rate, (note-2) vi 925 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 54 mi/h Observed total demand, (note-3) V 664 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 60.0 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 44.9 mi/h Percent Free Flow Speed, PFFS 74.9

Percent Tim	e-Spent-Follow	ing		
Direction PCE for trucks, ET	Analysis(d)	Op	posing	(0)
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	
Grade adjustment factor, (note-1) fg	0.99		1.00	
Directional flow rate, (note-2) vi	728 p	c/h	828	pc/h
Base percent time-spent-following, (n	ote-4) BPTSFd	66.9 %		
Adjustment for no-passing zones, fnp)	25.6		
Percent time-spent-following, PTSFd		78.9 %		
Level of Service and	Other Perform	ance Measu	ıres	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.46		
Peak 15-min vehicle-miles of travel,	VMT15		eh-mi	
Peak-hour vehicle-miles of travel, V			eh-mi	
Peak 15-min total travel time, TT15			eh-h	
Capacity from ATS, CdATS			eh/h	
Capacity from PTSF, CdPTSF		1700 v	eh/h	
Directional Capacity		1574 v	reh/h	
Passing	Lane Analysis			
Total length of analysis segment, Lt			1.3	mi
Length of two-lane highway upstream		lane, Lu		mi
Length of passing lane including tap		,	_	mi
Average travel speed, ATSd (from abo	_		44.9	mi/h
Percent time-spent-following, PTSFd			78.9	
Level of service, LOSd (from above)			D	
Average Travel Sp	eed with Pass	ing Lane		
Downstream length of two-lane highwa	y within effec	tive		
length of passing lane for avera Length of two-lane highway downstrea	ge travel speed	d, Lde	_	mi
length of the passing lane for a	verage travel		-	mi
Adj. factor for the effect of passin on average speed, fpl	A Tane		_	
Average travel speed including passi	na lane ATSnl		_	
Percent free flow speed including passi		FSp1	0.0	%
	_	_		
Percent Time-Spent-F	ollowing with	Passing La	ıne	
Downstream length of two-lane highwa	_		h	
of passing lane for percent time	_		_	mi
Length of two-lane highway downstrea		_	:	
the passing lane for percent tim	_	ing, Ld	-	mi
Adj. factor for the effect of passin	_			
on percent time-spent-following,	fpl		_	
Percent time-spent-following including passing lane, PTSFpl			_	%
Level of Service and Other Per	formance Measu	res with F	assing	Lane
			5	
Level of service including passing l	ane, LOSpl	E		
Peak 15-min total travel time, TT15		- v	reh-h	
Bicycle L	evel of Service	e		
==-1310 =				

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	721.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	15.11
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Fax:

Phone:

E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2017 Description Northbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 26 12.0 ft % Trucks crawling 0.0
1.3 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type mi % No-passing zones 100 % % Access point density 18 /mi - mi Grade: Length Up/down Analysis direction volume, Vd 721 veh/h Opposing direction volume, Vo 828 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.6 1.4 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.864 0.904 Grade adj. factor,(note-1) fg 0.98 0.99 852 pc/h Directional flow rate, (note-2) vi 925 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 54 mi/h Observed total demand, (note-3) V 664 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 60.0 mi/h 1.3 mi/h Adjustment for no-passing zones, fnp Average travel speed, ATSd 44.9 mi/h Percent Free Flow Speed, PFFS 74.9

Percent Tim	e-Spent-Follow	ing		
Direction PCE for trucks, ET	Analysis(d)	Op	posing	(0)
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	
Grade adjustment factor, (note-1) fg	0.99		1.00	
Directional flow rate, (note-2) vi	728 p	c/h	828	pc/h
Base percent time-spent-following, (n	ote-4) BPTSFd	66.9 %		
Adjustment for no-passing zones, fnp)	25.6		
Percent time-spent-following, PTSFd		78.9 %		
Level of Service and	Other Perform	ance Measu	ıres	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.46		
Peak 15-min vehicle-miles of travel,	VMT15		eh-mi	
Peak-hour vehicle-miles of travel, V			eh-mi	
Peak 15-min total travel time, TT15			eh-h	
Capacity from ATS, CdATS			eh/h	
Capacity from PTSF, CdPTSF		1700 v	eh/h	
Directional Capacity		1574 v	reh/h	
Passing	Lane Analysis			
Total length of analysis segment, Lt			1.3	mi
Length of two-lane highway upstream		lane, Lu		mi
Length of passing lane including tap		,	_	mi
Average travel speed, ATSd (from abo	_		44.9	mi/h
Percent time-spent-following, PTSFd			78.9	
Level of service, LOSd (from above)			D	
Average Travel Sp	eed with Pass	ing Lane		
Downstream length of two-lane highwa	y within effec	tive		
length of passing lane for avera Length of two-lane highway downstrea	ge travel speed	d, Lde	_	mi
length of the passing lane for a	verage travel		-	mi
Adj. factor for the effect of passin on average speed, fpl	A Tane		_	
Average travel speed including passi	na lane ATSnl		_	
Percent free flow speed including passi		FSp1	0.0	%
	_	_		
Percent Time-Spent-F	ollowing with	Passing La	ıne	
Downstream length of two-lane highwa	_		h	
of passing lane for percent time	_		_	mi
Length of two-lane highway downstrea		_	:	
the passing lane for percent tim	_	ing, Ld	-	mi
Adj. factor for the effect of passin	_			
on percent time-spent-following,	fpl		_	
Percent time-spent-following including passing lane, PTSFpl			_	%
Level of Service and Other Per	formance Measu	res with F	assing	Lane
			5	
Level of service including passing l	ane, LOSpl	E		
Peak 15-min total travel time, TT15		- v	reh-h	
Bicycle L	evel of Service	e		
==-1310 =				

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	721.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	15.11
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone:

Percent Free Flow Speed, PFFS

Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawling ...

1.3 mi Truck crawl speed 0.0

Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type % No-passing zones 100 % Access point density 18 /mi Grade: Length Up/down % Analysis direction volume, Vd 828 veh/h Opposing direction volume, Vo 721 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.6 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.921 0.887 Grade adj. factor,(note-1) fg 0.99 0.98 908 pc/h Directional flow rate, (note-2) vi 829 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.3 Average travel speed, ATSd 35.7 mi/h

70.8

Percent Time-S	Spent-Follow	ing		
Direction	Analysis(d)	0	pposing	(0)
PCE for trucks, ET	1.0		1.0	(- /
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV			1.000	1
Grade adjustment factor, (note-1) fg	1.00		0.99	
Directional flow rate, (note-2) vi		c/h	728	pc/h
Base percent time-spent-following, (note	-		, 20	P 0 / 11
Adjustment for no-passing zones, fnp	o i, biibia	25.6		
Percent time-spent-following, PTSFd		83.7 %		
Level of Service and O	ther Perform	ance Meas	ures	
Toyol of gorwigo IOC		T.		
Level of service, LOS		E		
Volume to capacity ratio, v/c	4m1 F	0.52	1 '	
Peak 15-min vehicle-miles of travel, VI			veh-mi	
Peak-hour vehicle-miles of travel, VMT	50		veh-mi	
Peak 15-min total travel time, TT15			veh-h	
Capacity from ATS, CdATS			veh/h	
Capacity from PTSF, CdPTSF			veh/h	
Directional Capacity		1596	veh/h	
Passing La	ane Analysis			
Total length of analysis segment, Lt			1.3	mi
Length of two-lane highway upstream of	the passing	lane. Lu		mi
Length of passing lane including taper:		rane, ha	0.4	mi
Average travel speed, ATSd (from above	_		35.7	mi/h
Percent time-spent-following, PTSFd (fi			83.7	1111
Level of service, LOSd (from above)	Lom above)		63.7 E	
Average Travel Speed	dth Dogg	ing Tono		
Average fraver speed	a With Pass	Ing Lane_		
Downstream length of two-lane highway w	within effec	tive		
length of passing lane for average	travel spee	d, Lde	1.70	mi
Length of two-lane highway downstream of	of effective			
length of the passing lane for aver	rage travel	speed, Ld	-1.70	mi
Adj. factor for the effect of passing ?	lane			
on average speed, fpl			1.11	
Average travel speed including passing	lane, ATSpl		36.9	
Percent free flow speed including pass:			73.0	%
Davisant Mine Grant Hall	1	D		
Percent Time-Spent-Fol:	-			
Downstream length of two-lane highway				
of passing lane for percent time-sp			4.80	mi
Length of two-lane highway downstream			f	
the passing lane for percent time-s		ing, Ld	-4.80	mi
Adj. factor for the effect of passing 3	lane			
on percent time-spent-following, f	pl .		0.62	
Percent time-spent-following				
including passing lane, PTSFpl			73.9	%
Level of Service and Other Perform	rmance Measu	res with	Passing	Lane
Total of corrigo including pagaing land	n I ∩C~1	T.		
Level of service including passing land	∈, поры	E 7 2 .	and h	
Peak 15-min total travel time, TT15		7.3	veh-h	
Bicycle Leve	el of Servic	e		
bicycie neve		<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	828.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.76
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Existing Conditions PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2017 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawling ...

1.3 mi Truck crawl speed 0.0

Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type % No-passing zones 100 % Access point density 18 /mi Grade: Length Up/down % Analysis direction volume, Vd 828 veh/h Opposing direction volume, Vo 721 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.4 1.6 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.921 0.887 Grade adj. factor,(note-1) fg 0.99 0.98 908 pc/h Directional flow rate, (note-2) vi 829 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.3 Average travel speed, ATSd 35.7 mi/h

70.8

Percent Time	-Spent-Follow	ing		
Direction	Analysis(d)	Or	posing	(0)
PCE for trucks, ET	1.0		1.0	(- /
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV			1.000	1
				1
Grade adjustment factor, (note-1) fg	1.00	/ 3	0.99	/1
Directional flow rate, (note-2) vi	-	c/h	728	pc/h
Base percent time-spent-following, (no	te-4) BPTSFd			
Adjustment for no-passing zones, fnp		25.6		
Percent time-spent-following, PTSFd		83.7 %		
Level of Service and	Other Perform	ance Measu	ıres	
Level of service, LOS		D		
Volume to capacity ratio, v/c		0.52		
Peak 15-min vehicle-miles of travel,			reh-mi	
Peak-hour vehicle-miles of travel, VM	T60	1076 v	eh-mi	
Peak 15-min total travel time, TT15		7.5 v	reh-h	
Capacity from ATS, CdATS		1596 v	reh/h	
Capacity from PTSF, CdPTSF			reh/h	
Directional Capacity			eh/h	
Passing	Lane Analysis			
			1 0	
Total length of analysis segment, Lt			1.3	mi
Length of two-lane highway upstream o	f the passing	lane, Lu	0.9	mi
Length of passing lane including tape	rs, Lpl		0.4	mi
Average travel speed, ATSd (from abov	e)		35.7	mi/h
Percent time-spent-following, PTSFd (83.7	,
Level of service, LOSd (from above)	rrom above,		D D	
Average Travel Spe	ed with Pass	ing Lane		
Downstream length of two-lane highway				
length of passing lane for averag	e travel speed	d, Lde	1.70	mi
Length of two-lane highway downstream	of effective			
length of the passing lane for av		speed, Ld	-1.70	mi
Adj. factor for the effect of passing		apeca, La		
	Tane		1 11	
on average speed, fpl	1 1 1 1		1.11	
Average travel speed including passin			36.9	_
Percent free flow speed including pas	sing lane, PF	FSpl	73.0	%
Percent Time-Spent-Fo	llowing with	Passing La	ine	
Downstream length of two-lane highway	within effect	tive lengt	:h	
of passing lane for percent time-			4.80	mi
		_		mi
Length of two-lane highway downstream				
the passing lane for percent time		ing, Ld	-4.80	mi
Adj. factor for the effect of passing	lane			
on percent time-spent-following,			0.62	
Percent time-spent-following	-		=	
including passing lane, PTSFpl			73.9	%
Level of Service and Other Perf	ormance Measu	res with F	assing	Lane
			_	
Level of service including passing la	ne, LOSpl	D		
Peak 15-min total travel time, TT15		7.3 v	eh-h	
Bicycle Le	vel of Servic	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	828.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.76
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 26 12.0 ft % Trucks crawling 0.0
1.3 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type % No-passing zones 100 % Access point density 18 /mi Grade: Length - mi Up/down % Analysis direction volume, Vd 764 veh/h Opposing direction volume, Vo 894 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.5 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.883 0.926 Grade adj. factor,(note-1) fg 0.99 1.00 874 pc/h Directional flow rate, (note-2) vi 965 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 54 mi/h Observed total demand, (note-3) V 664 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 59.8 mi/h mi/h Adjustment for no-passing zones, fnp 1.2 44.3 Average travel speed, ATSd mi/h

74.1

કૃ

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00		Opposing 1.0 1.0 1.000	
	68.9 23.8 79.9	894 %	pc/h
Level of Service and Other Performa	ance Me	easures	
Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF	D 0.49 248 993 5.6 1574 1700 1574	veh-mi veh-mi veh-h veh/h veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	1.3 Lu - - 44.3 79.9 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lan	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two-lane highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	- 0.0	%
Percent Time-Spent-Following with P	Passing	J Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	-	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	h Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u></u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	764.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	15.14
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2022 Description Northbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 26 12.0 ft % Trucks crawling 0.0
1.3 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type % No-passing zones 100 % Access point density 18 /mi Grade: Length - mi Up/down % Analysis direction volume, Vd 764 veh/h Opposing direction volume, Vo 894 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.5 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.883 0.926 Grade adj. factor,(note-1) fg 0.99 1.00 874 pc/h Directional flow rate, (note-2) vi 965 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 54 mi/h Observed total demand, (note-3) V 664 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 59.8 mi/h mi/h Adjustment for no-passing zones, fnp 1.2 44.3 Average travel speed, ATSd mi/h

74.1

કૃ

Percent Time-Spent-Followi	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg 1.00 1.00 1.00		Opposing 1.0 1.0 1.000	
	68.9 23.8 79.9	894 %	pc/h
Level of Service and Other Performa	ance Me	easures	
Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF	D 0.49 248 993 5.6 1574 1700 1574	veh-mi veh-mi veh-h veh/h veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	1.3 Lu - - 44.3 79.9 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lan	ne	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective		-	mi
length of two-lane highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	- 0.0	%
Percent Time-Spent-Following with P	Passing	J Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	-	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res wit	h Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u></u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	764.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	15.14
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: _____Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawing
1.3 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
Togging zones 100 Lane width 0.0 0.0 Segment length mi/hr Rolling Terrain type % No-passing zones 100 Grade: Length Access point density 18 /mi Up/down % Analysis direction volume, Vd 894 veh/h Opposing direction volume, Vo 764 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.903 1.00 Grade adj. factor,(note-1) fg 0.99 952 pc/h Directional flow rate, (note-2) vi 855 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.3

35.2

69.8

mi/h

Average travel speed, ATSd

Percent Ti	me-Spent-Follow:	ing		
Direction	Analysis(d)	(Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fH	IV 1.000		1.000	
Grade adjustment factor, (note-1) fg			1.00	
		c/h	764	pc/h
Base percent time-spent-following, (-		2	<u>.</u> .
Adjustment for no-passing zones, fin		23.8		
Percent time-spent-following, PTSFd			8	
Level of Service an	nd Other Performa	ance Meas	sures	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.56		
Peak 15-min vehicle-miles of travel	vмт15	291	veh-mi	
Peak-hour vehicle-miles of travel,		1162	ven-mi	
Peak 15-min total travel time, TT15		8.3	ven-mi veh-h	
Capacity from ATS, CdATS	,	1596	ven-n veh/h	
Capacity from PTSF, CdPTSF		1700	ven/n veh/h	
Directional Capacity		1596	ven/n veh/h	
	ng Lane Analysis			
Total length of analysis segment, I		7	1.3	mi
Length of two-lane highway upstream		lane, Lu		mi
Length of passing lane including ta			0.4	mi
Average travel speed, ATSd (from ab			35.2	mi/h
Percent time-spent-following, PTSFd			85.4	
Level of service, LOSd (from above)			E	
Average Travel S	Speed with Pass	ing Lane_		
Downstream length of two-lane highw	ay within effect	tive		
length of passing lane for aver	_		1.70	mi
Length of two-lane highway downstre		,		
length of the passing lane for		speed, Lo	d -1.20	mi
Adj. factor for the effect of passi				
on average speed, fpl			1.11	
Average travel speed including pass	sing lane. ATSpl		37.6	
Percent free flow speed including p		FSpl	74.5	%
		_		
Percent Time-Spent-	-Following with I	Passing I	Lane	
Downstream length of two-lane highw	ay within effect	tive leng	gth	
of passing lane for percent tim				mi
Length of two-lane highway downstre	eam of effective	length o	of	
the passing lane for percent ti	me-spent-follow:	ing, Ld	-3.84	mi
Adj. factor for the effect of passi	_			
on percent time-spent-following			0.62	
Percent time-spent-following	-			
including passing lane, PTSFpl			63.7	%
Level of Service and Other Pe	erformance Measu	res with	Passing	Lane
Level of cervice including pageing	lane Inchi	r.		
Level of service including passing	_	E 7 7	rrob b	
Peak 15-min total travel time, TT15)	7.7	ven-n	
Bicycle	Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	894.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.80
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: _____Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 5-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2022 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawing
1.3 mi Truck crawl speed 0.0
Polling % Recreational vehicles 2
Togging zones 100 Lane width 0.0 0.0 Segment length mi/hr Rolling Terrain type % No-passing zones 100 Grade: Length Access point density 18 /mi Up/down % Analysis direction volume, Vd 894 veh/h Opposing direction volume, Vo 764 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.5 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.903 1.00 Grade adj. factor,(note-1) fg 0.99 952 pc/h Directional flow rate, (note-2) vi 855 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.3 Average travel speed, ATSd 35.2 mi/h

69.8

Percent Time-Spent-Followi	ing		
Direction Analysis(d)		Opposing	(0)
PCE for trucks, ET 1.0		1.0	
PCE for RVs, ER 1.0		1.0	
Heavy-vehicle adjustment factor, fHV 1.000		1.000	
Grade adjustment factor,(note-1) fg 1.00		1.00	
Directional flow rate, (note-2) vi 894 pc	c/h	764	pc/h
Base percent time-spent-following, (note-4) BPTSFd	72.6	%	
Adjustment for no-passing zones, fnp	23.8		
Percent time-spent-following, PTSFd	85.4	%	
Level of Service and Other Performa	ance Mea	asures	
Level of service, LOS	D		
Volume to capacity ratio, v/c	0.56		
Peak 15-min vehicle-miles of travel, VMT15	291	veh-mi	
Peak-hour vehicle-miles of travel, VMT60	1162	veh-mi	
Peak 15-min total travel time, TT15	8.3	veh-h	
Capacity from ATS, CdATS	1596	veh/h	
Capacity from PTSF, CdPTSF	1700	veh/h	
Directional Capacity	1596	veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt		1.3	mi
Length of two-lane highway upstream of the passing	lane, I		mi
Length of passing lane including tapers, Lpl	,	0.4	mi
Average travel speed, ATSd (from above)		35.2	mi/h
Percent time-spent-following, PTSFd (from above)		85.4	
Level of service, LOSd (from above)		D	
Average Travel Speed with Passi	ing Lane	e	
Downstream length of two-lane highway within effect	ive		
length of passing lane for average travel speed		1.70	mi
Length of two-lane highway downstream of effective	.,		
length of the passing lane for average travel s	speed, I	Ld -1.20	mi
Adj. factor for the effect of passing lane	- <u>-</u>		
on average speed, fpl		1.11	
Average travel speed including passing lane, ATSpl		37.6	
Percent free flow speed including passing lane, PFF	FSpl	74.5	%
Percent Time-Spent-Following with F	Passing	Lane	
Downstream length of two-lane highway within effect			d
of passing lane for percent time-spent-following			mi
Length of two-lane highway downstream of effective	_		m i
the passing lane for percent time-spent-following	ıng, Ld	-3.84	mi
Adj. factor for the effect of passing lane		0 60	
on percent time-spent-following, fpl		0.62	
Percent time-spent-following including passing lane, PTSFpl		63.7	%
Level of Service and Other Performance Measur	res with	n Passing	Lane
Lovel of gervice including pageing land ICC-1	D		
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	D 7.7	veh-h	
- care to main cooks craves came, 1115	. • 1	, C11 11	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	894.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.80
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 26 12.0 ft % Trucks crawling 0.0
1.3 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type % No-passing zones 100 % Access point density 18 /mi Grade: Length - mi Up/down % Analysis direction volume, Vd 942 veh/h Opposing direction volume, Vo 1170 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.926 0.926 Grade adj. factor,(note-1) fg 1.00 1.00 1017 pc/h Directional flow rate, (note-2) vi 1263 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 54 mi/h Observed total demand, (note-3) V 664 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 59.6 mi/h mi/h Adjustment for no-passing zones, fnp 1.0

40.8

68.6

mi/h

Average travel speed, ATSd

Percent Time-Spent-Followi	lng		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg Directional flow rate, (note-2) vi Analysis(d) 1.0 1.0 1.00 942 pc	c/h	Opposing 1.0 1.0 1.000 1.000	
Base percent time-spent-following,(note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	78.1 16.5 85.5	oo oo	
Level of Service and Other Performa	ance Me	asures	
Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF	E 0.60 306 1225 7.5 1574 1700 1574	veh-mi veh-h veh/h veh/h veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane,	1.3 Lu - - 40.8 85.5 E	mi mi mi mi/h
Average Travel Speed with Passi	ing Lan	e	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective	cive	-	mi
length of two-lane highway downstream of effective length of the passing lane for average travel s Adj. factor for the effect of passing lane on average speed, fpl	speed,	Ld - -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with P	Passing	Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	_	mi
the passing lane for percent time-spent-followi Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	8
Level of Service and Other Performance Measur	res wit	h Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	942.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	15.24
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis_____ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2042 Description Northbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 26 12.0 ft % Trucks crawling 0.0
1.3 mi Truck crawl speed 0.0
Rolling % Recreational vehicles 2 Lane width Segment length mi/hr Rolling Terrain type % No-passing zones 100 % Access point density 18 /mi Grade: Length - mi Up/down % Analysis direction volume, Vd 942 veh/h Opposing direction volume, Vo 1170 veh/h _____Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.926 0.926 Grade adj. factor,(note-1) fg 1.00 1.00 1017 pc/h Directional flow rate, (note-2) vi 1263 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM 54 mi/h Observed total demand, (note-3) V 664 veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS mi/h Adj. for lane and shoulder width, (note-3) fLS mi/h Adj. for access point density, (note-3) fA mi/h Free-flow speed, FFSd 59.6 mi/h mi/h Adjustment for no-passing zones, fnp 1.0

40.8

68.6

mi/h

Average travel speed, ATSd

Percent Time-Spent-Follows	ing		
Direction PCE for trucks, ET PCE for RVs, ER Heavy-vehicle adjustment factor, fHV Grade adjustment factor, (note-1) fg Directional flow rate, (note-2) vi Analysis(d) 1.0 1.0 1.00 942 pc	c/h	Opposing 1.0 1.0 1.000 1.000	(o) pc/h
Base percent time-spent-following,(note-4) BPTSFd Adjustment for no-passing zones, fnp Percent time-spent-following, PTSFd	78.1 16.5 85.5	o ₀	
Level of Service and Other Performa	ance Mea	asures	
Level of service, LOS Volume to capacity ratio, v/c Peak 15-min vehicle-miles of travel, VMT15 Peak-hour vehicle-miles of travel, VMT60 Peak 15-min total travel time, TT15 Capacity from ATS, CdATS Capacity from PTSF, CdPTSF Directional Capacity	D 0.60 306 1225 7.5 1574 1700 1574	veh-mi veh-mi veh-h veh/h veh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt Length of two-lane highway upstream of the passing Length of passing lane including tapers, Lpl Average travel speed, ATSd (from above) Percent time-spent-following, PTSFd (from above) Level of service, LOSd (from above)	lane, 1	1.3 Lu - - 40.8 85.5 D	mi mi mi mi/h
Average Travel Speed with Passi	ing Lane	e	
Downstream length of two-lane highway within effect length of passing lane for average travel speed Length of two-lane highway downstream of effective	tive	-	mi
length of two-lane highway downstream of effective length of the passing lane for average travel so Adj. factor for the effect of passing lane on average speed, fpl	speed, 1	Ld - -	mi
Average travel speed including passing lane, ATSpl Percent free flow speed including passing lane, PFF	FSpl	0.0	%
Percent Time-Spent-Following with I	Passing	Lane	
Downstream length of two-lane highway within effect of passing lane for percent time-spent-following Length of two-lane highway downstream of effective	ng, Lde	_	mi
the passing lane for percent time-spent-follows Adj. factor for the effect of passing lane on percent time-spent-following, fpl	_		mi
Percent time-spent-following including passing lane, PTSFpl		-	%
Level of Service and Other Performance Measur	res witl	h Passing	Lane
Level of service including passing lane, LOSpl Peak 15-min total travel time, TT15	E -	veh-h	
Bicycle Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	942.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	15.24
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ Highway class Class 1 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawling
1.3 mi Truck crawl speed
Rolling % Recreational vehi Lane width 0.0 0.0 Segment length mi/hr Rolling % Recreational vehicles 2 Terrain type % No-passing zones 100 Grade: Length - mi Access point density 18 /mi Up/down % Analysis direction volume, Vd 1170 veh/h Opposing direction volume, Vo 942 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.939 Grade adj. factor,(note-1) fg 1.00 1.00 1246 pc/h Directional flow rate, (note-2) vi 1003 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.1

31.9

63.3

mi/h

Average travel speed, ATSd

Percent	Time-Spent-Follow:	ing		
Direction	Analysis(d)	On	posing	(0)
PCE for trucks, ET	1.0	-	1.0	,
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor,			1.000	
Grade adjustment factor, (note-1)			1.00	
Directional flow rate, (note-2) v		c/h	942	pc/h
Base percent time-spent-followin	_			- .
Adjustment for no-passing zones,		16.5		
Percent time-spent-following, PT		90.6 %		
Level of Service	and Other Performa	ance Measu	res	
Level of service, LOS		E		
Volume to capacity ratio, v/c		0.73		
Peak 15-min vehicle-miles of tra	vel. VMT15		eh-mi	
Peak-hour vehicle-miles of trave			eh-mi	
Peak 15-min total travel time, T			eh-h	
Capacity from ATS, CdATS			eh/h	
Capacity from PTSF, CdPTSF			eh/h	
Directional Capacity			eh/h	
Pas	sing Lane Analysis			
Total length of analysis segment	, Lt		1.3	mi
Length of two-lane highway upstr		lane. Lu		mi
Length of passing lane including		10110, 1u	0.4	mi
Average travel speed, ATSd (from			31.9	mi/h
Percent time-spent-following, PT			90.6	
Level of service, LOSd (from abo			E	
Average Trave	l Speed with Pass	ing Lane		
Downstream length of two-lane hi	ghway within effect	tive		
length of passing lane for a			1.70	mi
Length of two-lane highway downs	_	a, Lac	1.70	
length of the passing lane f		speed. Ld	-1.70	mi
Adj. factor for the effect of pa		opeca, La		
on average speed, fpl	bbing rane		1.11	
Average travel speed including p	assing lane. ATSpl		33.0	
Percent free flow speed includin			65.3	%
_		_		
Percent Time-Spe	nt-Following with 1	Passing La	.ne	
Downstream length of two-lane hi				
of passing lane for percent	-	_		mi
Length of two-lane highway downs				
the passing lane for percent	_	ing, Ld	-3.60	mi
Adj. factor for the effect of pa	ssing lane			
on percent time-spent-follow	ing, fpl		0.62	
Percent time-spent-following				
including passing lane, PTSF	pl		80.0	%
Level of Service and Other	Performance Measur	res with P	assing :	Lane
Level of service including passi	ng lane, LOSpl	E		
Peak 15-min total travel time, T		11.5 v	eh-h	
Bicyc	le Level of Service	e		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1170.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.93
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Phone: Fax: E-Mail: ______Directional Two-Lane Highway Segment Analysis______ Analyst BFJ Planning Agency/Co. BFJ Planning Date Performed Analysis Time Period Future 25-Year PM Peak Hr Route 9W Highway From/To Chestnut Road to St James Pl Jurisdiction NYS Analysis Year 2042 Description Southbound Direction _____Input Data_____ Highway class Class 3 Peak hour factor, PHF 1.00 Shoulder width 6.0 ft % Trucks and buses 21 12.0 ft % Trucks crawling
1.3 mi Truck crawl speed
Rolling % Recreational vehi Lane width 0.0 0.0 Segment length mi/hr Rolling % Recreational vehicles 2 Terrain type % No-passing zones 100 Grade: Length - mi Access point density 18 /mi Up/down % Analysis direction volume, Vd 1170 veh/h Opposing direction volume, Vo 942 veh/h ______Average Travel Speed_____ Direction Analysis(d) Opposing (o) PCE for trucks, ET 1.3 1.3 PCE for RVs, ER 1.1 1.1 Heavy-vehicle adj. factor,(note-5) fHV 0.939 0.939 Grade adj. factor,(note-1) fg 1.00 1.00 1246 pc/h Directional flow rate, (note-2) vi 1003 pc/h Free-Flow Speed from Field Measurement: Field measured speed, (note-3) S FM mi/h Observed total demand, (note-3) V veh/h Estimated Free-Flow Speed: Base free-flow speed, (note-3) BFFS 55.0 mi/h Adj. for lane and shoulder width, (note-3) fLS 0.0 mi/h Adj. for access point density, (note-3) fA 4.5 mi/h Free-flow speed, FFSd 50.5 mi/h mi/h Adjustment for no-passing zones, fnp 1.1

31.9

63.3

mi/h

Average travel speed, ATSd

Percent Time-Spent-Followi	ng		
Direction Analysis(d)	Or	posing	(0)
PCE for trucks, ET 1.0	-	1.0	` ,
PCE for RVs, ER 1.0		1.0	
Heavy-vehicle adjustment factor, fHV 1.000		1.000	
Grade adjustment factor, (note-1) fg 1.00		1.00	
	c/h	942	pc/h
Base percent time-spent-following, (note-4) BPTSFd			- .
Adjustment for no-passing zones, fnp	16.5		
Percent time-spent-following, PTSFd	90.6 %		
Level of Service and Other Performa	ance Measi	ıres	
Level of service, LOS	E		
Volume to capacity ratio, v/c	0.73		
Peak 15-min vehicle-miles of travel, VMT15		reh-mi	
Peak-hour vehicle-miles of travel, VMT60		zeh-mi	
Peak 15-min total travel time, TT15		zeh-h	
Capacity from ATS, CdATS		reh/h	
Capacity from PTSF, CdPTSF		zeh/h	
Directional Capacity		reh/h	
Passing Lane Analysis_			
Total length of analysis segment, Lt		1.3	mi
Length of two-lane highway upstream of the passing	lane, Lu		mi
Length of passing lane including tapers, Lpl	10110, 10	0.4	mi
Average travel speed, ATSd (from above)		31.9	mi/h
Percent time-spent-following, PTSFd (from above)		90.6	
Level of service, LOSd (from above)		E	
Average Travel Speed with Passi	ng Lane		
Downstream length of two-lane highway within effect	tive		
length of passing lane for average travel speed		1.70	mi
Length of two-lane highway downstream of effective	i, Eac	1.70	
length of the passing lane for average travel s	speed. Id	-1 20	mi
Adj. factor for the effect of passing lane	ореса, да	1.20	
on average speed, fpl		1.11	
Average travel speed including passing lane, ATSpl		34.1	
Percent free flow speed including passing lane, PFF	7Snl	67.6	%
	_		
Percent Time-Spent-Following with F	Passing La	ane	
Downstream length of two-lane highway within effect			
of passing lane for percent time-spent-followir			mi
Length of two-lane highway downstream of effective		-	
the passing lane for percent time-spent-following	lng, Ld	-3.10	mi
Adj. factor for the effect of passing lane			
on percent time-spent-following, fpl		0.62	
Percent time-spent-following			
including passing lane, PTSFpl		67.7	%
Level of Service and Other Performance Measur	res with E	Passing	Lane
Level of service including passing lane, LOSpl	D		
Peak 15-min total travel time, TT15		reh-h	
Bicycle Level of Service	<u> </u>		

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	1170.0
Effective width of outside lane, We	24.00
Effective speed factor, St	4.79
Bicycle LOS Score, BLOS	11.93
Bicycle LOS	F

- 1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
- 2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F.
- 3. For the analysis direction only and for v>200 veh/h.
- 4. For the analysis direction only.
- 5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.